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Abstract

Pedestrian trajectory prediction is an important but difficult
task in self-driving or autonomous mobile robot field be-
cause there are complex unpredictable human-human interac-
tions in crowded scenarios. There have been a large number
of studies that attempt to understand humans’ social behav-
ior. However, most of these studies extract location features
from previous one time step while neglecting the vital ve-
locity features. In order to address this issue, we propose a
novel feature-cascaded framework for long short-term net-
work (CF-LSTM) without extra artificial settings or social
rules. In this framework, feature information from previous
two time steps are firstly extracted and then integrated as a
cascaded feature to LSTM, which is able to capture the pre-
vious location information and dynamic velocity information,
simultaneously. In addition, this scene-agnostic cascaded fea-
ture is the external manifestation of complex human-human
interactions, which can also effectively capture dynamic in-
teraction information in different scenes without any other
pedestrians’ information. Experiments on public benchmark
datasets indicate that our model achieves better performance
than the state-of-the-art methods and this feature-cascaded
framework has the ability to implicitly learn human-human
interactions.

Introduction

Trajectory prediction of pedestrians has many applica-
tions in various fields such as autonomous driving (Lerner,
Chrysanthou, and Lischinski 2010), robot navigation (Luo et
al. 2018; Pellegrini et al. 2009; Vivacqua et al. 2017; Thrun
et al. 2002) and surveillance camera analysis (Leonard and
Durrant-Whyte 1990; Trautman and Krause 2010) Estimat-
ing the future positions of pedestrians accurately is neces-
sary and beneficial for such tasks (Luber et al. 2010). A big
challenge for trajectory prediction of pedestrians is that there
are many different interactions which have great influences
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Figure 1: An illustration of a common scene where static in-
teractions and dynamic interactions both occur. The pedes-
trian who is under an umbrella (framed by red dashed line)
has static interactions with stationary obstacles (tree and
bench), dynamic interactions with two other pedestrians,
which has influences on his/her future trajectory.

on the future trajectory occur in the scene. It mainly contains
two kinds shown in Figure 1: (1) static interactions caused
by stationary obstacles or some other certain objects in the
scene, which is straightforward and understandable; (2) dy-
namic interactions that take place among pedestrians, which
is nearly impossible to quantify such complex and often sub-
tle human-human interactions.

Recently, a large number of LSTM-based models (Alahi
et al. 2016; Bisagno, Zhang, and Conci 2018) are proposed
to try to address this issue, and various mechanisms are de-
signed to learn dynamic interactions (Vemula, Muelling, and
Oh 2018; Chandra et al. 2019; Zhang et al. 2019), defin-
ing three inputs: (1) feature information of current location,
(2) feature information from previous one time step, and (3)
feature information of dynamic interactions. Although these
models achieve competitive performance, they are still in-
complete and far from comprehensive, here are two limita-
tions.

a. Feature information from previous one time step is
insufficient.

Usually, hidden state in LSTM from previous one time
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step is used to capture previous spatial features of the pedes-
trian. However, it only represents the previous location infor-
mation while the velocity information, is neglected. A sim-
ple example is that if one pedestrian stands still on the side-
walk and suddenly begins to walk or suddenly changes the
walking velocity, which is common in real world, the pre-
vious location information does not have strong connection
with his/her future location. It is crucial to acquire the veloc-
ity features for trajectory prediction in such cases. Generally,
feature information from previous one time step is not ade-
quate in some real situations, and the velocity information is
also important.

b. Feature information of neighboring dynamic inter-
actions is not reliable in different scenes.

Many researches extract feature information of neigh-
boring interactions and share across networks by design-
ing an extra layer or a sub-module (Alahi et al. 2016;
Zhang et al. 2019; Sadeghian et al. 2019). However, these
researches focus on modeling interactions at some instant
while neglecting the different characteristics of different
scenes. For instance, in a crowed scene, there are a lot of
complex human-human interactions, the future trajectory of
the observed pedestrian is very likely influenced by such in-
teractions. On the contrary, in a sparse scene, the human-
human interactions have a relative smaller impact on his/her
future trajectory. Whether dynamic interactions have influ-
ences on future trajectory or the degree of such influences in
different scenes with different characteristics (e.g. crowded
or sparse pedestrian flows) has not been considered by recent
studies.

In order to address above two limitations, we propose a
novel feature-cascaded framework for LSTM (CF-LSTM)
in our paper. We firstly extract the feature information of
pedestrians from previous two time steps and then integrate
them as one independent input of LSTM. With feature infor-
mation from previous two time steps, the previous location
information as well as the velocity features are both cap-
tured. Additionally, instead of measuring complex feature
information of human-human interactions, we focus on the
internal characteristics of these dynamic interactions. The
essence of human-human interactions is to allow pedestrians
to change their positions, this change of positions is exactly
the external manifestation of these interactions, regardless
of different scenes. So, the cascaded feature, which reflects
the velocity features, can also implicitly explain the dynamic
interactions occur in different scenes.

Contributions are summarized as follows:

• Our proposed framework can capture previous location
information, dynamic velocity features, and feature infor-
mation of dynamic interactions without other pedestrians’
information at the same time, which is robust to different
scenes with different characteristics.

• State-of-the-art results on public benchmark datasets with
different scenes.

Related Work

Research on Trajectory Prediction Task
Considering Interactions

A traditional approach having considered both static and dy-
namic interactions is a named ”Social Force” model (Hel-
bing and Molnar 1995), defining interactions as forces upon
the pedestrians. Modern socially-aware methods usually use
recurrent neural networks (Mikolov et al. 2010) for trajec-
tory prediction (Fernando et al. 2018a; Kitani et al. 2011;
Ryoo et al. 2014; Srivastava, Mansimov, and Salakhudinov
2015; Vemula, Muelling, and Oh 2018; Liang et al. 2019;
Chung et al. 2014; Mohajerin and Rohani 2019; Liu et al.
2016; Shi et al. 2019) and introduce attention mechanism to
interaction measure (Bhattacharyya, Fritz, and Schiele 2018;
Choi and Dariush 2019) and social behavior understand-
ing (Sadeghian et al. 2019; Haddad et al. 2019; Al-Molegi,
Jabreel, and Martı́nez-Ballesté 2018; Varshneya and Srini-
vasaraghavan 2017). Also, Generative Adversarial Network
(GAN) model is designed to generate multiple reasonable
trajectories (Gupta et al. 2018; Fernando et al. 2018b;
Amirian, Hayet, and Pettré 2019).

In comparison, we focus on the essential characteristics
and external manifestations of such dynamic interactions in-
stead of measuring them with neighboring information of
other pedestrians in the scene.

LSTM models for Sequence Prediction Task

Long Short-Term Memory Networks (LSTM) is a recur-
rent neural networks variant (Hochreiter and Schmidhuber
1997) in order to solve the gradient vanishment or gradi-
ent explosion issue. LSTM has various successful appli-
cations in dealing with sequence prediction tasks such as
Natural Language Process (Chung et al. 2015; Young et
al. 2017), Image Generation (Den Oord, Kalchbrenner, and
Kavukcuoglu 2016; Karpathy and Li 2015), Machine Trans-
lation (Sutskever, Vinyals, and Le 2014) and so on.

While in our work, we extend the LSTM network as fea-
ture extractor to capture features from past trajectories.

Feature-Cascaded Framework

Our proposed feature-cascaded framework is also inspired
by the idea of Residual Learning (He et al. 2016; Srivastava,
Greff, and Schmidhuber 2015), which can enhance the gen-
eralization ability of networks and make easier for deeper
networks to optimize (Wang et al. 2017; Huang et al. 2017;
2016; Yang et al. 2018).

Residual learning can obtain historical information,
namely feature map, from previous layers, while our pro-
posed feature-cascaded framework is capable of extracting
the feature information from previous two time steps and
integrate them as an independent input of LSTM networks,
which is different in essence.

Methodology

Problem Definition

First, we assume that frames of the video with a fixed in-
terval are preprocessed to obtain the spatial coordinates of
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Figure 2: Overview of proposed CF-LSTM. ’EM’ represents the extracting module, ’IM’ represents the inference module, and
’CF’ represents the cascaded feature module.

each pedestrian. We denote the coordinates (xt
i, y

t
i) ∈ R

2

of pedestrian i at time t as �pti. Then, we formally describe
the trajectory prediction problem as follow. Predict the fu-
ture trajectory Γi = (�pobs+1

i , ..., �ppredi ) of the target pedes-
trian i from time steps t = Tobs+1, ..., Tpred, taking account
his/her own past trajectory Hi = (�p1i , ..., �p

obs
i ) from time

steps t = 1, ..., Tobs and other pedestrians’ trajectory in the
scene {Hj : j ∈ 1, 2, ..., N, j �= i}, where N denotes the
number of pedestrians in the scene.

Our goal is to learn the parameters W ∗ of a model f(·)
in order to predict the future locations of each pedestrian
between t = Tobs+1 and t = Tpred. Formally,

Γi = f(H1,H2, ...,HN ;W ∗) (1)

where W ∗ is the collection of all parameters used in the
model.

CF-LSTM Framework

The overview of our proposed framework is illustrated in
Figure 2. Our framework consists of three key components:
(1) extracting module, (2) cascaded feature module, and (3)
inference module.

First, the extracting moudle is designed to capture current
location information of pedestrians in the scene. In our case,
at time t, we use the vanilla LSTM to encode the coordi-
nates (xt

i, y
t
i) of pedestrian i. Then, the hidden states ht−1

and ht−2, representing the feature information of pedestrian
i at time t − 1 and t − 2, are extracted and fed into the cas-
caded feature module. This module is designed to generate
the cascaded feature from previous two time steps. Finally,
the hidden states ht at time t pass through the inference mod-
ule to estimate the locations at time t+ 1.

Extracting Module In order to extract joint features from
past locations of all pedestrians, we use the LSTM network
to capture the temporal dependency between all states of the
pedestrians and encode them into a higher dimensional fea-
ture representation.

In our case, the coordinates (xt
i, y

t
i) of pedestrian i at time

t are embedded into a vector eti as follows:

eti = φ
(
xt
i, y

t
i ;We

)
(2)

where φ is the embedding function with ReLU non-linerlity,
We are the embedding parameters.

The vector eti represents the spatial feature information
of the target pedestrian i at time t. And eti is defined as one
input of LSTM network in Figure 2.

Cascaded Feature Module We design a cascaded feature
module consisting of two steps to obtain the feature infor-
mation of pedestrians from previous two time steps. Note
that the hidden state ht

i of the LSTM at time t captures the
latent representation of the pedestrian i in the scene. At the
first step, the hidden states ht−1

i and ht−2
i of pedestrian i at

time t− 1 and t− 2 are extracted and fed into the cascaded
feature module for integration. Assume the dimension of the
hidden state is D, and the output of the cascaded feature in-
formation module is ht

i
∗ (the dimension of ht

i
∗ is also D),

the ht
i
∗ is calculated as follows:

ht
i
∗
(m) = α(m) · ht−1

i (m) + β(m) · ht−2
i (m) (3)

where m ∈ {1, 2, ..., D} is the column index, vector α and
vector β are integration factors of ht−1

i and ht−2
i respec-

tively.
Equation 3 can be rewritten as:

ht
i
∗
(m) = (α(m) + β(m)) · ht−1

i (m) + (−β(m)) · (ht−1
i (m)− ht−2

i (m)
) (4)

where the first term represents the previous location infor-
mation and the second term represents the dynamic velocity
information. So the ht

i
∗ extracts not only the previous loca-

tion information but also the dynamic velocity information.
At the second step, the output ht

i
∗ is defined as the other

input, along with the eti, to the LSTM network in Figure 2,
which is formulated as follows:

ht+1
i = LSTM

(
ht
i
∗
, eti;Wl

)
(5)

where Wl are the LSTM parameters.

12543



Table 1: Comparison results of CF-LSTM and P-LSTM

Dataset
Performance (ADE/FDE)

CF-LSTM P-LSTM

ETH 0.45/0.82 0.48/0.89
Hotel 0.49/0.81 0.50/0.80

ZARA01 0.39/0.30 0.45/0.37
ZARA02 0.36/0.50 0.43/0.60

UCY 0.47/0.73 0.48/0.73

Average 0.43/0.63 0.47/0.68

Inference Module In inference module, we assume a bi-
variate Gaussian distribution parameterized by the mean
μt
i = (μx, μy)

t
i, standard deviation σt

i = (σx, σy)
t
i, and

correlation coefficient ρti to estimate the predicted coordi-
nates. These parameters at time t are determined by the hid-
den state ht

i at time t passing through a linear layer Wo as
follows: (

μt
i, σ

t
i , ρ

t
i

)
= Woh

t
i (6)

The predicted coordinates are given by:

(x̂t
i, ŷ

t
i) ∼ N (

μt
i, σ

t
i , ρ

t
i

)
(7)

Our model is jointly trained by minimizing the negative
log-likelihood loss Li (Li represents the ith trajectory) as
follows:

Li (We,Wa,Wl,Wo) = −
Tpred∑

t=Tobs+1

log
(
P
(
xt
i, y

t
i |σt

i , μ
t
i, ρ

t
i

))
(8)

Note that the loss is calculated over the entire trajectories
in the training datasets. We jointly back-propagate through
our model at every time step and tuning the parameters to
minimize the loss.

Perceptive Feature Module Our proposed cascaded fea-
ture module introduced above can integrate feature informa-
tion from previous two time steps. We also design a differ-
ent perceptive feature module using a multi-layer perception
for integration, which we referred to as P-LSMT. Same as
the definitions of dimension in cascaded feature module, the
output of perceptive feature module ht

i

′
is formulated as fol-

lows:
ht
i

′
= γ(ht−1

i , ht−2
i ) (9)

where γ represents a MLP.
This can be considered as a variant of the operation in

equation 3, and is used to replace the ht
i
∗ in equation 5 while

training. The difference between these two integration oper-
ation is that, in CF-LSTM, the value in each column of the
ht
i
∗ is calculated from corresponding columns of ht−1

i and
ht−2
i , but in P-LSTM, this correspondence no longer exists.

Experiments and Analysis

In this section, we demonstrate the experimental results of
our approach in two public datasts: ETH (Pellegrini, Ess,

and Van Gool 2010) and UCY (Leal-Taixé et al. 2014).
The ETH datast has total 750 pedestrians and two scenes
(ETH and Hotel). The UCY dataset has totoal 786 pedestri-
ans and three scenes (ZARA01, ZARA02, and UCY). These
two datasets are both collected from real world, containing
complex situations such as pedestrians walking in groups,
non-linear trajectories with different velocities, intentionally
avoiding collisions and other challenging behaviors, which
is suitable for our experiments.

Evaluation Metrics: Similar to following baselines, we
use two following metrics. Assume N is the number of the
trajectories in the testing process, �pti,pred represents the pre-
dicted spatial coordinates (xt, yt) of the ith pedestrian at
time t and �pti,obs represents the respective observed location.

• Average Displacement Error (ADE): This error calcu-
lates the mean distance between all predicted points and
the actual points in one trajectory .

ADE =

∑N
i=1

∑Tpred

t=Tobs+1

(
�pti,pred − �pti,obs

)2

N (Tpred − (Tobs + 1))
(10)

• Final Displacement Error (FDE): This error calculates
the mean distance between the final predicted point and
the final actual point at the end of the prediction process
Tpred.

FDE =

∑N
i=1

√(
�pti,pred − �pti,obs

)2

N
(11)

Baselines: We compare our model with several represen-
tative existing models:
• The vanilla LSTM model (LSTM*). Predict the trajectory

with vanilla LSTM.
• Social LSTM model (S-LSTM*) (Alahi et al. 2016). An

extra pooling layer is designed to connect LSTM for pass-
ing the interaction information among pedestrians.

• Social GAN model (S-GAN*) (Gupta et al. 2018). A gen-
erative adversarial network (GAN) is used to generate
multiple possible trajectories. It has an extra pooling mod-
ule to share interaction information among pedestrians.

• SoPhie model (SoPhie*) (Sadeghian et al. 2019). An im-
proved GAN-based model with attention mechanisms on
social relationship and physical acceptability.
We try our best to reproduce the Social LSTM model (S-

LSTM) following implementation details in the paper(Alahi
et al. 2016). In addition, we introduce our proposed frame-
work to the Social LSTM model (CF-S-LSTM) for compar-
ison.

Implementation Details: During training, we use a
leave-one-out approach where we train and validate our
model on 4 sets and test on the remaining one. During
testing, we observe the trajectory for 8 frames and predict
the next 12 frames. The frame rate is 0.4, which means
Tobs = 3.2secs, Tpred − Tobs = 4.8secs. We set the dimen-
sion of the hidden state D as 128 for all the LSTM models.
All the inputs are embedded into a 64 dimensional vector
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Table 2: Quantitative results of baselines and our models on all datasets.

Dataset
Performance (ADE/FDE)

LSTM* S-LSTM* S-GAN* SoPhie* S-LSTM CF-LSTM(Ours) CF-S-LSTM(Ours)

ETH 1.09/2.41 0.70/1.40 0.81/1.52 0.70/1.43 0.50/0.95 0.45/0.82 0.45/0.86
Hotel 0.86/1.91 0.37/0.73 0.72/1.61 0.76/1.67 0.53/0.94 0.49/0.81 0.49/0.78

ZARA01 0.61/1.31 0.49/1.15 0.34/0.69 0.30/0.63 0.54/0.97 0.39/0.30 0.46/0.48
ZARA02 0.41/0.88 0.39/0.89 0.42/0.84 0.38/0.78 0.48/0.71 0.36/0.50 0.37/0.50

UCY 0.52/1.11 0.60/1.32 0.60/1.26 0.54/1.24 0.57/0.85 0.47/0.73 0.46/0.65

Average 0.7/1.52 0.51/1.10 0.58/1.18 0.54/1.15 0.52/0.88 0.43/0.63 0.45/0.65

(a) ETH (b) Hotel (c) ZARA01

(d) ZARA02 (e) UCY (f) Average

Figure 3: Variations of the error of each frame. The x-axis represents the frame number to be predicted, ranking from 1 to 12,
and the y-axis represents the average displacement error.

with ReLU nonlinearity. The batch size is 8 and the model is
trained for 150 epochs using Adam with an initial learning
rate of 0.001.

During inference process, we use our trained model to de-
termine the parameters of the bivariate Gaussian distribution
and then sample from it to obtain the coordinates (x̂, ŷ)ti
of the ith pedestrians according to equation 7. From time
Tobs+1 to Tpred, we replace the actual coordinates (xt

i, y
t
i)

in equation 2 with the predicted coordinates (x̂t
i, ŷ

t
i) to make

predictions.

Quantitative Analysis

Comparison Between CF-LSTM and P-LSTM Table 1
shows the results of our proposed models with two different
integration operations. As shown in Table 1, the CF-LSTM
outperforms the P-LSTM for 8.5%/7.4%. An viable expla-
nation is that the value in different columns of the hidden
state h represents a distinctive feature in higher dimensional
feature space, according to equation 3, the integration op-
eration in CF-LSTM does not change such correspondence.

Figure 4: Variations of the number of pedestrians whose tra-
jectories are predicted.

However, it is highly possible that the integration operation
in P-LSTM would lead to confusion of features in higher
dimensional feature space.
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fastslow

Figure 5: Illustration of predicted trajectories. These examples consist of different complex but common situations in real world,
such as collisions avoidance, walking alone or in groups, walking with different velocities and so on.

Comparison Between Baselines and Ours Table 2 indi-
cates the quantitative results of baselines and our models.

S-LSTM* vs S-LSTM: In Table 2, the results of our S-
LSTM model implementation are different from what are re-
ported in (Alahi et al. 2016). It is possible because there are
so many factors that account, such as the hyper-parameters,
the randomness of inference process, the pre-process of
datasets and so on. And the ADE between these two models
are about the same.

CF-LSTM vs others: In general, our CF-LSTM
model achieves the best performance based on ADE
and FDE metrics, increasing 38.6%/58.6%, 15.7%/42.7%,
25.9%/46.6%, 20.4%/45.2%, and 17.3%/28.4% relative to
LSTM* model, S-LSTM* model, S-GAN* model, SoPhie*
model and S-LSTM model, respectively.

Although interaction information is not directly past
through our model, the cascaded feature can still implicitly
represent the interaction information because the change of
positions is the external performance of interactions. With
such feature information considered during training, our
model is capable of handling complicated situations within
subtle human-human interactions.

S-LSTM vs CF-LSTM vs CF-S-LSTM: We also in-
troduce our cascaded feature into S-LSTM model (CF-S-
LSTM). The CF-S-LSTM model outperforms the S-LSTM
model for 13.5%/26.1%, but slightly worse than CF-LSTM
model. In particular, CF-LSTM model performs better in
scene ZARA01 and ZARA02, which are relatively sparser
compared with other scenes, and the interactions have rela-
tive much smaller influences on future trajectories. Our CF-
LSTM model, without directly passing the interaction infor-
mation, can have a better prediction in sparse scenes.

Also, with the guidance of cascaded feature, CF-S-LSTM
model is able to capture the velocity information, which
helps to improve the performance of S-LSTM.

ADE of Each Frame Figure 3 plots the change of aver-
age displacement error along with the frame number on five
datasets. Generally, in Figure 3(f), our proposed CF-LSTM
model has the smallest ADE of 12 frame, and with the guid-
ance of cascaded feature, CF-S-LSTM model is better than
the original S-LSTM model.

In Figure 3(a), 3(b) and 3(e), the ADE increases when
frame number increases, it is congenial with reason and
common sense. However, in Figure 3(c) and 3(d), the change
is dramatic, the ADE increases at the beginning and then
plunges.

In order to find out the reason, the number of pedes-
trians who participate in the trajectory prediction in each
frame is illustrated in Figure 4. The number of pedestri-
ans whose effective trajectories are longer than 20 frames
(8 frames for observation and 12 frames for predictions) is
small in ZARA01 and ZARA02. In case ZARA01, there are
only two pedestrians participating in prediction since frame
6 and these two pedestrians’ predicted locations determine
the whole ADE. So, the accumulative error before frame 6
is largely eliminated and this situation is consistent with the
sudden drop in Figure 3(c). Similar in case ZARA02, from
frame 2 to frame 3, the number of pedestrians dramatically
reduces from 42 to 22, this sudden change of the number
also greatly decreases the accumulative error and it is a pos-
sible reason for the sudden drop in Figure 3(d).
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Qualitative Analysis

In this section, we visualize some of predicted trajectories in
Figure 5.

In the first column of Figure 5 (Figure 5(a), 5(e)) there
are pedestrians (framed with yellow dashed line) standing
in front of the observed pedestrian, the S-LSTM model and
CF-LSTM model are both capable of avoiding the collision.
Meanwhile, our proposed CF-LSTM model has smaller er-
ror and the direction of predicted trajectory is closer to the
ground truth. In the first row (Figure 5(b), 5(c), 5(d)), there
are three examples that the observed pedestrians walking in
opposite direction alone or in groups where human-human
interactions occur. The distance between pedestrians who
are walking towards each other is safe enough according to
the ground truth, but the trajectories predicted by S-LSTM
model indicates that pedestrians want to enlarge the distance
between them and walk away from each other, namely the
deviation phenomena. Our proposed model, considering the
dynamic velocity information, can make better predictions.

In the second row (Figure 5(f), 5(g), 5(h)), there are some
examples where situations are more complex, such as avoid
collisions along with interactions in Figure 5(f), sudden
change of the direction in Figure 5(g), and walking in dif-
ferent velocities in Figure 5(h). It can be seen that our CF-
LSTM model has better performance than S-LSTM model
in such complicated situations.

Above all, our proposed CF-LSTM model is able to un-
derstand human-human interactions without extracting ex-
tra other pedestrians’ neighboring information. Additionally,
with the guidance of velocity information, our model is more
robust to different scenes with complicated situations.

Conclusion

In this paper, we propose a novel feature-cascaded frame-
work for LSTM to address the limitations of the pedestrian
trajectory prediction. In our work, we extract the feature in-
formation from previous two time steps and integrate them
as the cascaded feature, which can obtain three kinds of fea-
ture information at the same time: (1) previous location in-
formation, (2) feature information of dynamic velocity, and
(3) feature information of dynamic interactions. Then, we
define the cascaded feature along with the current location
information as inputs to LSTM for learning. Experiments
indicate that our scene-agnostic model achieves better per-
formance than the state-of-the-art methods on public bench-
mark datasets.

References
Al-Molegi, A.; Jabreel, M.; and Martı́nez-Ballesté, A. 2018. Move,
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