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Abstract

Activity image-to-video retrieval task aims to retrieve videos
containing the similar activity as the query image, which is a
challenging task because videos generally have many back-
ground segments irrelevant to the activity. In this paper, we
utilize R-C3D model to represent a video by a bag of activ-
ity proposals, which can filter out background segments to
some extent. However, there are still noisy proposals in each
bag. Thus, we propose an Activity Proposal-based Image-
to-Video Retrieval (APIVR) approach, which incorporates
multi-instance learning into cross-modal retrieval framework
to address the proposal noise issue. Specifically, we propose
a Graph Multi-Instance Learning (GMIL) module with graph
convolutional layer, and integrate this module with classifica-
tion loss, adversarial loss, and triplet loss in our cross-modal
retrieval framework. Moreover, we propose geometry-aware
triplet loss based on point-to-subspace distance to preserve
the structural information of activity proposals. Extensive ex-
periments on three widely-used datasets verify the effective-
ness of our approach.

1 Introduction

Cross-modal retrieval task has attracted considerable re-
search attention in the field of retrieval task. With the
rapid development of video applications, a specific type of
retrieval task, Activity Image-to-Video Retrieval (AIVR),
comes into our sight. The goal of AIVR task is to retrieve
the videos containing the similar activity as the image query,
which expands its value in widespread applications. One
daily-life example is news videos searching with a provided
photo containing a particular activity. Another example is
fitness videos recommendation based on a sports picture.

The key idea of cross-modal retrieval is to learn a com-
mon feature space, where cross-modal data of relevant se-
mantic can be close to each other. Although there are abun-
dant methods for cross-modal retrieval like text-image re-
trieval (Feng, Wang, and Li 2014; Hardoon, Szedmák, and
Shawe-Taylor 2004; Peng, Huang, and Qi 2016; Wang et
al. 2016; 2013), few methods (de Araújo and Girod 2018;
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Xu et al. 2017) are proposed for image-video retrieval. How-
ever, these methods are not specifically designed for AIVR
task. AIVR task is in high demand of meaningful video rep-
resentations, because a video may contain background seg-
ments irrelevant to the activity and poor video representa-
tions without considering noisy background segments will
lead to inferior performance of AIVR task.

Recently, RNN (Ng et al. 2015; Srivastava, Mansimov,
and Salakhutdinov 2015) and 3D CNN (Ji et al. 2013;
Tran et al. 2015; Qiu, Yao, and Mei 2017) are used to ex-
tract deep learning-based video representations. As an ex-
tension of 3D CNN, R-C3D (Xu, Das, and Saenko 2017)
can generate candidate temporal regions containing activi-
ties and filter out noisy background segments to obtain the
superior activity video representations. Therefore, we take
advantage of R-C3D model to generate temporal proposals
that are most likely to contain activities and extract one fea-
ture vector for each proposal, leading to a bag of proposal
features for each video. This paper is the first to target at
AIVR task by utilizing activity proposals for videos.

In this paper, we propose an Activity Proposal-based
Image-to-Video Retrieval (APIVR) approach for AIVR task.
The major innovation in our paper is incorporating Graph
Multi-Instance Learning (GMIL) module into cross-modal
retrieval framework to address the proposal noise issue. As
illustrated in Figure 1, our cross-modal retrieval framework
is based on Adversarial Cross-Modal Retrieval (ACMR)
proposed in (Wang et al. 2017), in which image features and
activity proposal-based video features are projected into a
common feature space steered by triplet loss, classification
loss, and adversarial loss. To address the proposal noise is-
sue, we treat each video as a bag and the activity propos-
als in each bag as multiple instances, which coincides with
multi-instance learning (MIL) paradigm (Ilse, Tomczak, and
Welling 2018). We assume that there is at least one clean in-
stance in each bag, and employ self-attention mechanism to
learn different weights for multiple instances, with higher
weights indicating clean activity proposals. To further con-
sider the relation among multiple instances in each bag, we
insert graph convolutional layer into MIL module, yielding
a novel Graph MIL (GMIL) module.

After learning weights based on our GMIL module, we
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Figure 1: The flowchart of our proposed approach. The image features and bags of activity proposal features for videos are
extracted by VGG (Simonyan and Zisserman 2014) and R-C3D (Xu, Das, and Saenko 2017) models respectively, and then
projected into a common feature space. Our retrieval framework consists of triplet loss, classification loss, and adversarial loss.
We incorporate Graph Multi-Instance Learning (GMIL) module into retrieval framework to address the proposal noise issue.
We also design geometry-aware triplet loss based on truncated bag of activity proposals. Best viewed in color.

use weighted average of activity proposal features in each
bag as input for the classification loss and adversarial loss in
cross-modal retrieval framework, to suppress noisy activity
proposals. For the remaining triplet loss, we propose a novel
geometry-aware triplet loss, which calculates the point-to-
subspace distance between image and bag of activity propos-
als. Considering that the noisy activity proposals may mis-
lead the point-to-subspace distance, we use truncated bag of
activity proposals based on the weights learnt by our GMIL
module. Thus, our geometry-aware triplet loss can mitigate
the proposal noise issue and simultaneously preserve the ge-
ometry property of activity proposals.

The contributions of our paper are summarized as follows:

• This work is the first activity proposal-based approach for
activity image-to-video retrieval task. Our major contri-
bution is incorporating multi-instance learning into cross-
modal retrieval framework to address the proposal noise
issue.

• Our two minor contributions are Graph Multi-Instance
Learning (GMIL) module with graph convolutional layer
and geometry-aware triplet loss based on truncated bag of
activity proposals.

• Experiment results on three datasets, i.e., action-based
THUMOS’14 and ActivityNet datasets, event-based
MED2017 Event dataset, demonstrate the superiority of
our approach compared to state-of-the-art methods.

2 Related Work

In this section, we provide a brief overview of video repre-
sentation, cross-modal retrieval, and multi-instance learning.
Video representations: Video representations play a cru-
cial role in image-to-video retrieval task. Recently, deep
learning-based models, e.g., RNN (Jiang et al. 2018) and 3D
CNN (Qiu, Yao, and Mei 2017), are proposed to fully exploit

spatio-temporal information across consecutive frames. As
an advanced 3D CNN model, R-C3D (Xu, Das, and Saenko
2017) can generate activity proposals across temporal di-
mension to filter out noisy background segments. Hence, we
adopt R-C3D to generate video representations, which sig-
nificantly facilitates the AIVR task.

Cross-modal retrieval methods: Cross-modal retrieval
methods fall into two major categories: binary-value based
methods (Yu et al. 2014; Lin, Shen, and van den Hen-
gel 2014; Ye et al. 2017; Ding, Guo, and Zhou 2014;
Xu et al. 2017) and real-value based retrieval methods (Zhai,
Peng, and Xiao 2014; Wang et al. 2016; Peng, Huang, and
Qi 2016; Peng et al. 2018; Wang, Li, and Lazebnik 2016;
Wang et al. 2017; Zhen et al. 2019). Our cross-modal re-
trieval framework is based on ACMR (Wang et al. 2017),
which consists of classification loss, triplet loss, and adver-
sarial loss. Our contribution is incorporating graph multi-
instance learning module into cross-modal retrieval frame-
work together with geometry-aware triplet loss.

Multi-instance learning: Multi-instance learning (MIL)
groups training samples into multi-instance bags, in which
each bag contains at least one positive instance. Some early
methods (Li et al. 2009) treat one bag as an entirety or in-
fers instance labels within each bag. Recently, deep multi-
instance learning methods (Zhu et al. 2017; Pappas and
Popescu-Belis 2014; Ilse, Tomczak, and Welling 2018) em-
ploy pooling operators or trainable operators to aggregate
multiple instances in each bag. Moreover, several graph
MIL (Tu et al. 2019; Guo and Yi 2013) methods are pro-
posed to exploit the graph structure of training bags in dif-
ferent ways, but their methods cannot be easily integrated
into our cross-modal retrieval framework.
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3 Methodology

In this section, we introduce our activity proposal-based
image-to-video retrieval approach.

3.1 Problem Definition

For concise mathematical expression, we denote a matrix
(e.g., A) and vector (e.g., a) using an uppercase and lower-
case letter in boldface respectively, and denote a scalar (e.g.,
a) using a lowercase letter. We use Ik and AT to denote an
identity matrix with size k and the transpose of A respec-
tively. By using vec(·), we perform column-wise concatena-
tion to transform a matrix into a column vector. Moreover,
we use 〈x,y〉 to denote the inner product of x and y.

In the AIVR task, our training process is based on
mini-batches of video-image pairs {(Vi,ui)|ni=1}, in which
(Vi,ui) is a pair of video and image with the same category
label, and n is the number of pairs in a mini-batch. Specif-
ically, Vi = {h1,h2, ...,hk} with hk ∈ R

d1×1 is a bag of
proposal features in the i-th video and ui ∈ R

d2×1 is the fea-
ture of the i-th image. Note that the dimensionalities of the
image feature and activity proposal features are not equal in
our problem, i.e., d1 �= d2. Each pair (Vi,ui) is associated
with a one-hot label vector yi with the entry corresponding
to its category as one. In the testing stage, given an image
query, the goal of the AIVR task is to retrieve the videos
related to the activity in the image.

3.2 Activity Proposal-based Image-to-Video
Retrieval (APIVR) Approach

As mentioned above, we represent each video as a bag of
proposal features V = {h1,h2, ...,hk} and each image as
a feature vector u. Considering the different statistical prop-
erties and data distributions of videos and images, we project
video and image features into a common feature space with
the mapping function fv(·) and fu(·) respectively. The map-
ping functions are defined as

fv(V ) = {fv(h1), fv(h2), ..., fv(hk)}
=

{
h̄1, h̄2, ..., h̄k

}
= V̄ , (1)

fu(u) = ū, (2)

where fv : Rd1×k → R
r×k, fu : Rd2×1 → R

r×1. The map-
ping functions fv(·) (resp., fu(·)) are three fully-connected
layers with model parameters denoted as θp.

Based on the projected features V̄ and ū, following
ACMR (Wang et al. 2017), we employ three types of losses:
triplet loss, classification loss, and adversarial loss. Con-
cretely, triplet loss pulls an image close to the videos of the
same category while pushing it far away from the videos of
a different category. The classification loss targets at suc-
cessfully separating the training samples from different cat-
egories regardless of modalities, which can preserve seman-
tic information and simultaneously minimize the modality
gap. The adversarial loss is involved in a minimax game by
discriminating two modalities with a modality classifier and
generating modality-agnostic representations to confuse the
modality classifier, which can further reduce the modality

gap. In summary, the above three types of losses jointly con-
tribute to modality consistency and semantic distinguisha-
bility in the common feature space.

Graph Multi-Instance Learning Module In the common
feature space, although we use R-C3D model to generate
activity proposals from each video which are very likely
to contain the activity, there still remain some noisy activ-
ity proposals irrelevant to the activity. Hence, each video
is comprised of a mixture of clean and noisy proposals. If
we utilize these noisy activity proposals based on the video
label, the quality of semantic learning will be greatly de-
graded. In fact, this problem can be formulated as multi-
instance learning, in which each video is treated as a bag
and the activity proposals in each bag are treated as in-
stances. Based on the assumption that there should be at
least one clean instance in each bag, we expect to assign
higher weights on the clean instances and lower weights on
the noisy ones, so that the clean instances will play a domi-
nant role in video bags.

Given a bag of instances V̄ =
{
h̄1, h̄2, ..., h̄k

}
, in-

spired by (Ilse, Tomczak, and Welling 2018), we employ
self-attention mechanism to learn different weights for dif-
ferent instances in each bag as (3). In particular, we apply
a fully-connected layer L1 ∈ R

r×r′ with non-linear opera-
tion tanh(·) to V̄ , producing tanh(V̄ TL1). Then, we apply
another fully-connected layer L2 ∈ R

r′×1 followed by soft-
max layer to obtain the k-dim weight vector a for V̄ .

a = softmax(tanh(V̄ TL1)L2). (3)

However, the above process ignores the relation among
multiple instances in each bag. To take such relation into
consideration, we insert graph convolutional layer (Kipf
and Welling 2017) into (3), which can leverage the graph
structure of each bag. Graph convolutional layer (Kipf and
Welling 2017) is originally proposed for semi-supervised
learning and now we employ it for multi-instance learning.
Following (Kipf and Welling 2017), we calculate the sim-
ilarity graph S for each bag V = {h1,h2, ...,hk} during
preprocessing, in which Sij is the cosine similarity between
hi and hj . Besides, we define S′ = S + Ik and a diagonal
matrix D with Dii =

∑
jS

′
ij . Then, graph convolutional

layer can be represented by a 1 × 1 convolution layer with
parameters S̄ = D−1/2S′D−1/2. We insert two graph con-
volutional layers into (3) and arrive at

â = softmax(S̄ tanh(S̄V̄ TL1)L2). (4)

The generated â is expected to be smoother than a, i.e., the
weights of two instances in a bag should be close when these
two instances are similar. The theoretical proof and more
details can be found in (Kipf and Welling 2017).

At last, we obtain the weighted average of instance fea-
tures as the bag-level feature Z(V̄ ) =

∑k
j=1 âjh̄j . By as-

signing different weights on different activity proposals, we
aim to focus more on the clean proposals and obtain discrim-
inative video features.

Geometry-aware Triplet Loss with GMIL We use triplet
loss to preserve the semantic relevance of similar training
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samples across different modalities. As defined in (Schroff,
Kalenichenko, and Philbin 2015), triplet loss is based on an
anchor sample x, a positive sample p, and a negative sample
n, where x has the same category label as p yet a different
category label from n. Given a triplet (x,p,n), triplet loss
is used to enforce the distance between x and p to be smaller
than that between x and n by a margin.

Since our objective is to retrieve videos by a given image
query, anchor sample x is an image while positive sample p
and negative sample n are videos. In a mini-batch of video-
image pairs {(V̄i, ūi)|ni=1}, with each image ūi being an
anchor sample, we use its paired video sample as the positive
sample V̄ +

i and one video from a different category as the
negative sample V̄ −

j , leading to in total n triplets in a mini-
batch. Then our triplet loss is formulated as

Ltriplet =
∑
i,j

∣∣ d(ūi, V̄
+
i )− d(ūi, V̄

−
j ) +m

∣∣
+
, (5)

in which m is the margin set as 0.1 in our experiments,
d(x,y) is the distance between x and y, and |x|+ = x if
x > 0 and 0 otherwise. For d(ū, V̄ ), a straightforward ap-
proach is calculating the distance between ū and weighted
average of activity proposal features Z(V̄ ), but that will
cause serious loss of structural information in activity pro-
posals. As shown in (Xu et al. 2017), point-to-subspace dis-
tance1 is able to preserve the structural information and ge-
ometric property. In our problem, an image can be seen as a
high-dimensional data point and video is a subspace spanned
by activity proposals. Then the point-to-subspace distance is
the Euclidean distance between an image point and its or-
thogonal projection on the subspace of videos.

Considering that noisy proposals may mislead point-to-
subspace distance, we use truncated bag of proposals in lieu
of intact bag of proposals. To be exact, we denote trun-
cated bag as V̄ ′ = V̄ [:,Sb], in which Sb is the index
set of proposals with top-b GMIL weights âi. That means,
we use the top-b clean proposals in triplet loss. With sim-
ple mathematical derivation1, the orthogonal projection of
point ū on subspace V̄ ′ can be calculated as Ṽ ū, where
Ṽ = V̄ ′((V̄ ′)T V̄ ′)−1(V̄ ′)T . Then, the point-to-subspace
distance between ū and V̄ ′, i.e., Euclidean distance between
ū and Ṽ ū, can be simplified as

d
(
ū, V̄ ′) = ∥∥∥ū−Ṽ ū

∥∥∥2
2
=Tr((Ir−Ṽ )T (Ir−Ṽ )ūūT )

= ūT ū−
〈

vec(Ṽ ), vec(ūūT )
〉

(6)

By using d̃
(
ū, Ṽ

)
to denote

〈
vec(Ṽ ), vec(ūūT )

〉
and

substituting (6) into (5), we can arrive at

Ltriplet =
∑
i,j

∣∣∣ d(ūi, V̄
′+
i )− d(ūi, V̄

′−
j ) +m

∣∣∣
+

=
∑
i,j

∣∣∣ d̃(ūi, Ṽ
−
j

)
−d̃

(
ūi, Ṽ

+
i

)
+m

∣∣∣
+
. (7)

1https://en.wikipedia.org/wiki/Projection (linear algebra)

Following (Yao, Mei, and Ngo 2015), given an anchor
sample ūi, we tend to select its hardest negative sample V̄ −

j
and the details are omitted here. Based on (7), we tend to
minimize Ltriplet by optimizing GMIL module parameters
θm and projection module parameters θp.

Classification Loss with GMIL To ensure the training
samples in each modality are semantically discriminative,
we additionally use a semantic classifier to separate intra-
modal training samples from different categories. To min-
imize the modality gap, we apply the same classifier for
both images and videos. In particular, we add a softmax
classification layer with model parameters θc on top of the
image features ū and the weighted average of proposal
features Z(V̄ ). Given a mini-batch of video-image pairs
{(V̄i, ūi)|ni=1} associated with one-hot label {yi|ni=1}, the
classification loss is written as follows,

Lclass = − 1

n

n∑
i=1

yT
i (log(p(Z(V̄i))) + log(p(ūi))), (8)

in which p(·) denotes the prediction scores by using the soft-
max classification layer. Defining GMIL module parameters
θm = {L,w}, we tend to minimize Lclass by optimizing
semantic classifier parameters θc, GMIL module parameters
θm, and projection module parameters θp.

Adversarial Loss with GMIL To further minimize the
modality gap across videos and images, adversarial learn-
ing (Goodfellow et al. 2014; Wang et al. 2017) is imple-
mented as an interplay between discriminating modalities by
learning a modality classifier and learning representations to
confuse the modality classifier. In the process of discriminat-
ing modalities, we learn a modality classifier to discriminate
the video modality from the image modality. The modality
classifier is implemented as a binary classifier with model
parameters θd, in which we assume the label of video (resp.,
image) modality is 1 (resp., 0). In the process of learning
representations to confuse the modality classifier, we expect
the projected video/image features in the common feature
space could fool the modality classifier. Considering that
clean proposals have more representative feature distribution
while the noisy proposals are scattered throughout the fea-
ture space, we apply the modality classifier on the weighted
average of proposal features Z(V̄ ) for videos. Similar to the
classification loss, the adversarial loss is formally defined as

Ladv = − 1

n

n∑
i=1

log(δ(Z(V̄i)) + log(1− δ(ūi)), (9)

where δ(·) is the predicted probability of being from video
modality. As adversarial learning is an interplay between
discriminating modalities and learning representations, in
the process of discriminating modalities, we tend to mini-
mize Ladv by optimizing the modality classifier parameters
θd. On the contrary, in the process of learning representa-
tions, we tend to maximize Ladv by optimizing projection
module parameters θp and GMIL module parameters θm.

The Whole Algorithm We collect Ltriplet, Lclass, and
Ladv in (7), (8), (9) as the following total training loss:

Ltotal = α · Ltriplet + β · Lclass − Ladv, (10)
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where α and β are trade-off parameters and empirically fixed
as 0.1 and 10 respectively in our experiments.

Due to the adversarial loss Ladv in (10), we play a min-
imax game by learning representations and discriminating
modalities alternatingly. By using θg = {θp,θm,θc} to de-
note the model parameters in learning representations, our
objective can be written as follows,

min
θg

max
θd

α · Ltriplet + β · Lclass − Ladv, (11)

which can be optimized by updating θg and θd in an alter-
nating manner. In the testing, we pass the testing images and
videos through our trained model, yielding the projected fea-
tures ū (resp., Z(V̄ )) for images (resp., videos). Then, given
a query image ui, we retrieve its relevant videos by ranking
all the l2 distances between ūi and Z(V̄ ).

4 Experiments

In this section, we compare our APIVR approach with the
state-of-the-art methods on three datasets and provide ex-
tensive ablation studies.

4.1 Datasets Construction

To the best of our knowledge, there are no publicly available
datasets of activity video-image pairs specifically designed
for the AIVR task. Therefore, we construct video-image
datasets for the AIVR task based on public video datasets,
i.e., THUMOS’142, ActivityNet (Heilbron et al. 2015) and
MED2017 Event3 datatsets, in which THUMOS’14 and Ac-
tivityNet datasets are action-based datasets while MED2017
Event dataset is an event-based dataset. The difference be-
tween “action” and “event” lies in that an event generally
consists of a sequence of interactive or stand-alone actions.
Based on the above three datasets, we aim to obtain activity
images and activity video clips, which can be used to con-
struct our datasets for AIVR task.

To obtain activity video clips, considering that long
videos may belong to multiple activity categories, we divide
each long video into multiple short videos based on the ac-
tivity temporal annotations to ensure that each short video
only belongs to one activity category. Then, we sample a
fixed number of consecutive key frames in each short video
as a video clip. The number of key frames used in our exper-
iments is 768 for all datasets, which is large enough to cover
at least one activity instance.

To obtain activity images, we first locate the activity in-
tervals in long videos according to activity temporal annota-
tions. Then, we sample images from those activity intervals
so that each image should belong to one activity category.

With obtained activity images and activity video clips,
we sample video clips and images from each category to
form training pairs and testing pairs. Particularly, for THU-
MOS’14 dataset, we form 1500 training pairs and 406 test-
ing pairs. For ActivityNet dataset, we form 4800 training
pairs and 1200 testing pairs. For MED2017 Event dataset,
we form 2200 training pairs and 404 testing pairs.

2http://crcv.ucf.edu/THUMOS14/
3https://www.nist.gov/itl/iad/mig/med-2017-evaluation/

Method
mean Average Precision (mAP)
@10 @20 @50 @100

APIVR (w/o TL) 0.3228 0.3096 0.2956 0.2875
APIVR (w/o AL) 0.3278 0.3146 0.3026 0.2905
APIVR (w/o CL) 0.2438 0.2389 0.2312 0.2306
APIVR (w/o GA) 0.3531 0.3376 0.3204 0.3145

APIVR (w/o GMIL) 0.3428 0.3368 0.3276 0.3102
APIVR (w/o Graph) 0.3618 0.3521 0.3326 0.3285
Full APIVR approach 0.3812 0.3645 0.3459 0.3314

Table 1: Comparision of our full APIVR approach and our
special cases in terms of mAP@K on THUMOS’14. Best
results are denoted in boldface.

Figure 2: The effect of top-b proposals chosen from video
bags to represent videos on THUMOS’14 dataset.

4.2 Implementation Details

For images, we employ VGG model (Simonyan and Zisser-
man 2014) to extract the fc7 layer features and then reduce
the dimension from 4096-dim to 128-dim by PCA for the
ease of memory and computation in our experiment.

For video clips, we use R-C3D model to generate activ-
ity proposals, which is pretrained on Sports-1M dataset and
finetuned on UCF101 dataset (Tran et al. 2015). We extract a
4096-dim feature vector for each activity proposal and each
video is represented by a bag of top-60 proposal features,
i.e., k = 60, by ranking the scores that may contain activi-
ties. In our geometry-aware triplet loss, we use top-50 pro-
posals in each bag, i.e., b = 50.

In the projection module, mapping functions fv(·) (resp.,
fu(·)) are implemented as three fully-connected layers as
follows. fv : V (d1 = 4096) → 500 → 200 → V̄ (r= 64)
and fu : u(d2 = 128) → 100 → 80 → ū(r = 64). In our
experiments, we use mAP@K, i.e., mean Aversion Precision
based on top K retrieved results, as the evaluation metric.

4.3 Ablation Studies

In order to explore the effectiveness of different components
in our approach, we investigate some special cases of our
approach. Specifically, we study the contributions of three
types of losses by comparing with APIVR (w/o TL), APIVR
(w/o AL), and APIVR (w/o CL), which are our three spe-
cial cases by ablating Triplet Loss (TL), Adversarial Loss
(AL), and Classification Loss (CL) respectively. Besides, to
verify the benefit of geometry-aware triplet loss, we replace
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Figure 3: Illustration of activity proposal weights learnt by our GMIL module on the ActivityNet dataset. The clean proposal is
assigned with the highest weight (marked in red) and the other two noisy proposals are assigned with the lowest weights.

d
(
ū, V̄ ′) in (6) with

∥∥ū− Z(V̄ )
∥∥2
2

and refer to this spe-
cial case as APIVR (w/o GA). To demonstrate the effective-
ness of our Graph Multi-Instance Learning (GMIL) module,
we replace GMIL module in (4) with MIL module in (3),
and name this case as APIVR (w/o Graph). Furthermore,
we also assign uniform weights to proposals in each video
instead of learning weights using GMIL module and name
this special case as APIVR (w/o GMIL), which means that
Z(V̄ ) = 1

k

∑k
s=1 h̄s in (8) (9) and intact bags of activity

proposals are used in (7).
By taking THUMOS’14 dataset as an example, experi-

mental results are reported in Table 1. Obviously, we can
see that APIVR (w/o TL), APIVR (w/o AL), and APIVR
(w/o CL) are all inferior to our full APIVR approach, which
indicates that each type of loss plays an essential role in
our cross-modal framework and contributes to the overall
performance. Based on the results of three datasets, com-
pared with adversarial loss and triplet loss, we can see
that classification loss has more influence on the perfor-
mance, which proves the significance of semantic classifier
in our approach. When using standard triplet loss instead of
geometry-aware triplet loss, APIVR (w/o GA) suffers from
a drop in performance, which demonstrates that it is ben-
eficial to preserve the structural information and geometric
property of activity proposals. Moreover, we can also note
that the results of APIVR (w/o GMIL) are worse than the
full APIVR approach, which proves the benefit of paying
more attention to clean proposals based on our GMIL mod-
ule. Finally, we can observe that APIVR (w/o graph) under-
performs the full APIVR approach, which shows the advan-

tage of inserting graph convolutional layer into MIL module.
Recall that we use truncated bags of top-b clean proposals

in our geometry-aware triplet loss. To investigate the impact
of b, we vary b and report the performance of our full APIVR
approach in Figure 2. We can observe that b = 50 achieves
the best performance, and the intact bags of proposals, i.e.,
b = 60, may harm the performance because of the included
noisy proposals. When b is very small (i.e., b ≤ 30), too
much useful information is discarded and thus the perfor-
mance is also unsatisfactory.

4.4 Visualization of Retrieved Videos

To better demonstrate the effectiveness of our GMIL mod-
ule for identifying clean proposals, we provide two repre-
sentative qualitative results in Figure 3, in which the query
image belongs to the category “surfing” (resp., “kick” ) in
the top (resp., “bottom” ) row. We list top-2 retrieved videos
for each query image. For each retrieved video, we show one
proposal with the highest weight and another two proposals
with the lowest weights. It is obvious that the proposals with
the highest weight can capture the relevant activity while
the other two proposals are less relevant or even background
segments, which indicates the great advantages of our GMIL
module in identifying clean proposals.

4.5 Comparisons with the State-of-the-art
Methods

We compared our APIVR approach with the state-of-
the-art methods including single modality hashing meth-
ods CBE-opt (Yu et al. 2014), ITQ (Gong and Lazebnik
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Methods
THUMOS’14 dataset MED2017 Event dataset

mAP@10 mAP@20 mAP@50 mAP@100 mAP@10 mAP@20 mAP@50 mAP@100

ITQ 0.2613 0.2572 0.2477 0.2340 0.2284 0.2168 0.2127 0.2034
SpH 0.2131 0.2080 0.2033 0.1914 0.2044 0.1926 0.1878 0.1611

SKLSH 0.2004 0.1974 0.1951 0.1847 0.1956 0.1924 0.1883 0.1774
CBE-opt 0.2687 0.2601 0.2554 0.2483 0.2268 0.2128 0.2051 0.1984

MFH 0.2402 0.2398 0.2188 0.2128 0.2246 0.2192 0.2108 0.1994
SCM 0.2661 0.2576 0.2484 0.2395 0.2113 0.2041 0.1962 0.1924

CMFH 0.2545 0.2513 0.2466 0.2331 0.2262 0.2169 0.2101 0.2088
BPBC 0.2724 0.2706 0.2684 0.2571 0.2488 0.2501 0.2451 0.2402
JRL 0.2770 0.2656 0.2526 0.2411 0.2347 0.2278 0.2203 0.2198
CCL 0.3222 0.3188 0.3072 0.2949 0.2454 0.2417 0.2321 0.2267

JFSSL 0.2367 0.2351 0.2325 0.2241 0.2292 0.2218 0.2131 0.2064
Corr-AE 0.2266 0.2178 0.2096 0.2104 0.2032 0.2011 0.1971 0.1918

DSPE 0.2632 0.2544 0.2443 0.2312 0.2312 0.2246 0.2161 0.2004
CMDN 0.2927 0.2892 0.2754 0.2714 0.2328 0.2342 0.2250 0.2171
ACMR 0.3361 0.3274 0.3107 0.3061 0.2518 0.2401 0.2373 0.2244

DSCMR 0.3621 0.3523 0.3251 0.3188 0.2665 0.2576 0.2470 0.2381
APIVR 0.3812 0.3645 0.3459 0.3314 0.3049 0.2973 0.2867 0.2771

Table 2: mAP@K of different methods on THUMOS’14 and MED2017 Event dataset. Best results are denoted in boldface.

Method
mean Average Precision (mAP)
@10 @20 @50 @100

ITQ 0.1851 0.1704 0.1598 0.1414
SpH 0.1885 0.1843 0.1617 0.1551

SKLSH 0.1638 0.1595 0.1556 0.1474
CBE-opt 0.2044 0.1970 0.1842 0.1768

MFH 0.2155 0.2048 0.1977 0.1932
SCM 0.2285 0.2230 0.2166 0.2011

CMFH 0.2334 0.2318 0.2205 0.2155
BPBC 0.2352 0.2296 0.2184 0.2071
JRL 0.2266 0.2182 0.2177 0.2096
CCL 0.2358 0.2208 0.2138 0.2082

JFSSL 0.2166 0.2087 0.1958 0.1929
Corr-AE 0.2024 0.2012 0.1924 0.1866

DSPE 0.2212 0.2107 0.2079 0.2055
CMDN 0.2422 0.2401 0.2288 0.2232
ACMR 0.2318 0.2224 0.2111 0.2091

DSCMR 0.2481 0.2344 0.2287 0.2122
APIVR 0.2635 0.2545 0.2488 0.2319

Table 3: Performance of different methods in terms of
mAP@K on the ActivityNet dataset. Best results are de-
noted in boldface.

2011), SKLSH (Raginsky and Lazebnik 2009), SpH (Heo
et al. 2012), multiple modalities hashing methods MFH (Ye
et al. 2017), SCM (Zhang and Li 2014), CMFH (Ding,
Guo, and Zhou 2014), BPBC (Xu et al. 2017), and cross-
modal retrieval methods Corr-AE (Feng, Wang, and Li
2014), CMDN (Peng, Huang, and Qi 2016), ACMR (Wang
et al. 2017), DSPE (Wang, Li, and Lazebnik 2016),
JRL (Zhai, Peng, and Xiao 2014), JFSSL (Wang et al. 2016),
CCL (Peng et al. 2018), DSCMR (Zhen et al. 2019). Among
them, BPBC is a hashing method targeting at image-to-video
retrieval task. Although the method in (de Araújo and Girod
2018) also targets at image-to-video retrieval, but it focuses
on improving video Fisher Vectors using bloom filters and

thus cannot be directly applied to our problem. Besides,
Corr-AE, CMDN, ACMR, CCL, DSPE and DSCMR are
deep learning-based methods and have achieved remarkable
results in cross-modal retrieval task. For all baselines, we
take the average of proposal features extracted by R-C3D as
the video features and VGG fc7 features as the image fea-
tures for fair comparison. The encoding length in the hash-
ing methods is set to 128-bit.

The experiment results are summarized in Table 2, 3.
Compared with ACMR (Wang et al. 2017) method, which
has a similar framework to ours, our superior performance
confirms the advantages of preserving structural information
using geometric projection and attending clean proposals us-
ing GMIL module. Obviously, we can see that our approach
achieves significant improvement over all baselines in all
scope of K on both action-based and event-based datasets.

5 Conclusion

In this paper, we have proposed the first activity proposal-
based image-to-video retrieval (APIVR) approach for the
activity image-to-video retrieval task. We have incorporated
graph multi-instance learning module into cross-modal re-
trieval framework to address the proposal noise issue, and
also proposed geometry-aware triplet loss. Experiments on
three datasets have demonstrated the superiority of our ap-
proach compared to the state-of-the-art methods.
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