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Abstract

Landmark detection plays a critical role in diagnosis of
Developmental Dysplasia of the Hip (DDH). Heatmap and
anchor-based object detection techniques could obtain rea-
sonable results. However, they have limitations in both ro-
bustness and precision given the complexities and inhomo-
geneity of hip X-ray images. In this paper, we propose a
much simpler and more efficient framework called CircleNet
to improve the accuracy of landmark detection by predict-
ing landmark and corresponding radius. Using the CircleNet,
we not only constrain the relationship between landmarks but
also integrate landmark detection and object detection into an
end-to-end framework. In order to capture the effective in-
formation of the long-range dependency of landmarks in the
DDH image, here we propose a new context modeling frame-
work, named the Local Non-Local (LNL) block. The LNL
block has the benefits of both non-local block and lightweight
computation. We construct a professional DDH dataset for
the first time and evaluate our CircleNet on it. The dataset
has the largest number of DDH X-ray images in the world
to our knowledge. Our results show that the CircleNet can
achieve the state-of-the-art results for landmark detection on
the dataset with a large margin of 1.8 average pixels com-
pared to current methods. The dataset and source code will
be publicly available.

Introduction
In medical image analysis, landmarks have significant clin-
ical and scientific value. Clinical measurements, derived
from the landmarks in X-ray images, are used for diagnosis
and surgeries. Developmental Dysplasia of the Hip (DDH)
is one of the most common diseases of skeletal system in
infants and children. Current common method is proposed
by Tonnis (Tönnis 1985). The key to the Tonnis’s method
is detecting six landmarks (see Figure 1(a)) to estimate the
degree (see Figure 1(b)) of DDH.

The accuracy of detection directly affects the diagnosis re-
sults. Many children do not receive timely treatment based
on two reasons. a) The characteristic of lower contrast in
hip X-ray images and the diversities of bone morphology
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Figure 1: In image of DDH (a), six blue landmarks need to
be detected. The figure (b) is a schematic diagram of the
clinical diagnosis of the hip joint. We need detect four land-
marks (1, 2, 3, 4) to draw Hilgenreiner line (Tönnis 1985)
and Perkin line (Tönnis 1985) to divide areas shown as I, II,
III, IV. When landmarks 5 and 6 are detected, the degree of
DDH depends on which areas they are in.

(see Figure 2). b) The lack of medical facilities and profes-
sional doctors in remote rural areas hospitals. How to solve
the shortage of medical resources and improve the accuracy
of DDH diagnosis has become a significant problem in the
health field of many countries.

Recent years have witnessed the progress of deep learn-
ing in object detection (Duan et al. 2019) (Zhou, Zhuo, and
Krahenbuhl 2019) (Wang et al. 2019b) and landmark de-
tection, especially in medical image analysis (Payer et al.
2016) (Xu et al. 2017) (Xie et al. 2019) (Liu et al. 2019).
Because of noise, lower contrast, blurry boundaries and var-
ious shapes of bones in hip X-ray images, it is difficult to
obtain precise landmarks. Meanwhile, segmentation (Ron-
neberger, Fischer, and Brox 2015) (Xu et al. 2017) is a com-
mon method in medical image processing. Due to the com-
plex morphological structures of skeletons in hip X-ray im-
ages, it is difficult to mark the accurate bone contours for
segmentation operation. In addition to landmark detection,
we need to find 5- and 6-centered femoral head regions (red
circles in Figure 3) to better judge whether the hip is dislo-
cated. For example, two red circles in Figure 3 have big dif-
ference in size, which means the patient may have symptom
of DDH. This suggests that we need cross-domain research
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Figure 2: Lower contrast and the diversities of bone mor-
phology in hip X-ray images. The upper four images from
left to right represent four different characteristics (relatively
clear, lower contrast, infant and child). The bottom four im-
ages represent four different morphology (normal, left hip
dislocation, right hip dislocation, bilateral hip dislocation).

at landmark detection and object detection.
The recent approaches for object detection can be cate-

gorized into two classes. The first is to use anchors over an
image and classify them directly. Anchor-based methods in-
clude two-stage detector (Ren et al. 2015) (Lu et al. 2019)
and multi-stage methods (Cai and Vasconcelos 2018) (Chen
et al. 2019). These methods need post-processing, namely
Non-Maxima Suppression (NMS), then remove duplicated
detections by computing IoU. The second is anchor-free
methods (Lin et al. 2017) (Kong et al. 2019) (Duan et al.
2019), which usually need NMS or complex grouping of
predicted landmarks.

In this paper, we provide a much simpler and more ef-
ficient framework called CircleNet which combines land-
mark detection and object detection. As shown in Figure 3,
the CircleNet predicts a radius while detecting landmarks.
For landmarks 1 and 3, these radii are the distance between
them. For landmarks 2 and 4, these radii are also the dis-
tance between them. In this way, we constrain the relation-
ship between landmarks instead of predicting them in iso-
lation. For landmarks 5 and 6, we need these radii to get
the size of their respective femoral head regions to provide a
more accurate clinical diagnosis. Namely, landmark 5 and 6
are through self-constraint via respective radius to improve
the accuracy of landmark detection. Our designed CircleNet
combines landmark detection and object detection together
to achieve end-to-end training through a unified framework.

At present, the mainstream method of landmark detec-
tion is based on heatmaps (Payer et al. 2016), but when
this method extract features, it mainly focuses on local ar-
eas. To capture long-range dependency, repeating convolu-
tion operation is needed, which is computationally ineffi-
cient and hard to optimize (Wang et al. 2018). To address
this issue, the non-local network (Wang et al. 2018) based on
self-attention (Vaswani et al. 2017) is proposed to model the
long-range dependency using only one layer. Because the
non-local network computes the pairwise relations between
the query position and all positions to form an attention map
for each query position, this global modeling idea leads to
higher computations. In order to better integrate the long-
range dependency of images and simplify the computation,

Figure 3: Six landmarks of different colors represent land-
marks that need to be predicted. Circles of different colors
are generated by the radii (yellow arrow) and corresponding
color landmarks.

we design a block named Local Non-Local (LNL) which can
be used in the backbone of the CircleNet.

In addition, we construct a professional DDH dataset for
the first time, which has 9532 DDH X-ray images. Accord-
ing to the standards of professional doctors, the distribution
(age and degree of DDH) of data is reasonable. The DDH
dataset has significant clinical and scientific value. We eval-
uate the CircleNet on the dataset, and our results demon-
strate that the CircleNet can achieve the state-of-the-art per-
formance.

Related Work
Landmark detection by heatmap or segmentation. Payer
et al. (Payer et al. 2016) output a heatmap to detect land-
marks. Ronneberger et al. (Ronneberger, Fischer, and Brox
2015) propose a fully convolution network (FCN) called U-
net to segment objects. (Xu et al. 2017) adopt a supervised
action map for image segmentation to extract landmarks.

Object detection with implicit anchors. Faster RCNN
(Ren et al. 2015) generates region proposal and uses numer-
ous anchors to detect objects. (Cai and Vasconcelos 2018)
adopts cascade anchor-based detectors to balance positive
and negative samples. Hybrid Task Cascade (Chen et al.
2019) uses a multi-stage network with multi-branch to de-
tect objects and get segmentation masks. Guided Anchoring
(Wang et al. 2019a) proposes a new anchoring scheme that
predicts sparse and arbitrary-shaped anchors.

Object detection without anchors. CornerNet (Law and
Deng 2018) detects two bounding box corners as landmarks.
Duan et al. (Duan et al. 2019) propose CenterNet, which de-
tects objects using a triple, including one center point and
two corners. CornerNet-Lite (Law et al. 2019) is an im-
proved version of CornerNet. However, these methods re-
quire a grouping stage after landmark detection, which sig-
nificantly slows down each algorithm. FoveaBox (Kong et
al. 2019) sets central area as landmarks to be predict. The
problem of this method is that center areas of objects have
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fewer features to identify objects.
Modeling long-range dependency. The main approaches

for long-range dependency modeling is to model the pair-
wise relations. This operation has recently been success-
fully used in machine translation and visual recognition (Hu
et al. 2018) (Wang et al. 2018) (Yuan and Wang 2018).
Non-local (Wang et al. 2018) adopts self-attention mech-
anisms to model the pixel-level pairwise relations to cap-
ture long-range dependency between all positions. CCNet
(Huang et al. 2018) improves non-local block via stack-
ing two criss-cross blocks. GCNet (Cao et al. 2019) adopts
a query-independent formulation to model global context.
Looking closely at Figure 4, we can see that the skeleton is
basically distributed in the central area of the image, named
region of interest, and very little useful information is pro-
vided at the edge of the image. Based on this observation,
we can find that calculating the edge of the image with non-
local is a waste of computation to model pixel-level pairwise
relations. The propsed LNL block can effectively model the
effective context as non-local (Wang et al. 2018), with the
lightweight computation and amount of parameters. At the
same time, the LNL block can achieve better performance
than the non-local and GC block on our task.

Figure 4: Yellow box in (a) denotes region of interest in
DDH image to efficiently capture long-range dependency
with the LNL block. The red and blue points in (a) denote
corners of region of interest, which are extracted by the func-
tion findContours in OpenCV in train dataset 7706 images.
Distributions of these points are shown in (b). Best viewed
in color.

Proposed Method
Figure 5 illustrates the overall CircleNet framework for
landmark detection and radius prediction. The backbone of
CircleNet is ResNet-50.

Landmark detection and radius prediction
Given an input image I with width W and height H , we
need to produce a landmark heatmap Ŷ ∈ [0, 1]

W
S ×H

S ×C ,
where S is the output stride and C is the number of land-
marks in an image, here C = 6. Similarly to (Dai et al.
2017), we use the default output stride of S = 4. Ŷx,y,c = 1
means a detected landmark. We adopt ResNet-50 as back-
bone to predict Ŷ from an image I . The CircleNet is trained

following (Law and Deng 2018). For each ground truth land-
mark p of class c, we denote p̃ = � p

S �. We use a Gaussian

kernel Yxyc = exp(− (x−p̃x)
2+(y−p̃y)

2

2σ2
p

) to generate ground

truth of landmarks onto a heatmap Y ∈ [0, 1]
W
S ×H

S ×C ,
where σp is a changeable standard deviation. If these Gaus-
sian labels have overlaps, we take the element-wise maxi-
mum Mxyc = max

c=1,2,...,C
Yxyc. The training loss can be for-

mulated as focal loss:

Ll = − 1

N

∑
xyc

ψxyc(1− Ŷxyc)
α
log(Ŷxyc). (1)

Where

Ŷxyc =

{
Ŷxyc
1− Ŷxyc

if Yxyc = 1
otherwise

(2)

and

ψxyc =

{
1

(1−Mxyc)
β

if Yxyc = 1
otherwise.

(3)

N is the number of landmarks in an image I , α and β are
default parameters of the focal loss. We expect N to be 6.
Similarly to (Law and Deng 2018), α = 2 and β = 4 are
default in our experiments.

To compensate for the error caused by downsampling, we
additionally predict a local offset Ô for each landmark. We
use L1 loss to train offset, and loss function is

Lo =
1

N

∑
p

∣∣∣Ôp̃ − (
p

S
− p̃)

∣∣∣ . (4)

We denote (x(l), y(l)) as the landmark of image with cat-
egory cl. We use our final heatmaps to predict all landmarks.
At the same time, we regress to the radius rl for each class
cl. L1 loss is adopted at each landmark to regress radius

Lr =
1

N

N∑
l=1

∣∣∣R̂pl
− rl

∣∣∣ . (5)

Here R̂pl
represents the ground truth radius of each land-

mark. The whole training loss function consists of three ba-
sic parts:

Lcircle = Ll + λrLr + λoLo. (6)

In our experiments, we adopt λr = 0.1 and λo = 1 as de-
fault setting, and other values of λr are shown in experi-
ments section. The CircleNet can predict different radii at
different landmarks. As result shown in Figure 5, we treat
landmark 1 and 3 (2 and 4) as a group, and radii of these
two landmarks are the distance between them. For landmark
5 or 6 via self-restraint, we predict the circumcircle (red cir-
cle in Result) of the femoral head. Using the CircleNet, we
not only constrain the relationship between landmarks but
also integrate landmark detection and object detection into
an end-to-end framework.
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Figure 5: Illustration of the CircleNet for the DDH images landmark detection. The backbone is default ResNet-50 with four
basic residual block named stage 2, 3, 4, 5. The DeConv in figure denotes transposed convolution. The overall architecture of
CircleNet mainly comprises two components, i.e. the feature extraction section and landmark and radius detection section. We
use an end-to-end network to predict the Ŷ , offset Ô, and R̂ of each landmark. As shown in figure, the LNL block is embedded
after stage 4 of the backbone to efficiently capture long-range dependency of pixel-wise relationship. The detail of the LNL
block is shown in figure. Best viewed in color.

Local non-local block
The classic non-local block can be used to improve the fea-
tures between the query position and other positions. We de-
note F = {Fi}Np

i=1 as the feature map of an image, where
Np =W ×H . F is the input of the non-local block, and Z
is output. F and Z have the same dimensions. We can ex-
press the non-local block as

Zi = Fi +Wz

∑
Np

j=1

f(Fi, Fj)

φ(F )
(Wv, Fj). (7)

In this formula, i is the query position, and j are other
possible positions. We denote f(Fi, Fj) as the relation-
ship between position i and j. φ(F ) is a normaliza-
tion factor. Wz and Wv denote linear transform matri-
ces. ωij =

f(Fi,Fj)
φ(F ) denotes pariwise relationship between

i and j. The most widely-used method, Embedded Gaus-
sian, is illustrated in Figure 6(a). The ωij is defined as
ωij =

exp(〈WqFi,WkFj〉)∑
m exp(〈WqFi,WkFm〉) .

In order to make full use of the effective information of
the long-range dependency of landmarks in the image, and
simplify the computation and amount of parameters, here we
propose a novel Local Non-Local (LNL) block. The detailed
architecture of the LNL block is illustrated in Figure 6(d),
formulated as

Zi = Fi + η(
∑μ2Np

j=1

f(Fi, Fj)

φ(F )
(Wv, Fj)), (8)

where η(·) denotes Wz2ReLU(LN(Wz1(·)).

Different from the traditional non-local block, our LNL
block has three advantages. a) With less number of parame-
ters compared to non-local. The LNL block is used between
stage 4 and 5 of the backbone. We replace 1 × 1 convolution,
namely Wz in Figure 6(a), with LayerNorm, ReLU and two
1 × 1 convolution, shown as Wz1 and Wz2 in Figure 6(d).
The number of parameters drops from 1024 × 1024 to 2 ×
1024 × 1024/θ, where θ is to reduce the number of channels.
With default reduction ratio set to θ = 8, the number of pa-
rameters can be reduced to 1/4. More results on different θ
are shown in Table 3. b) Reduce computations. We crop the
feature maps after stage 4, and the long-range dependency
computing shrinks from 32 × 32 × 1024 to 32 × μ × 32
× μ × 1024, where μ is the area ratio of feature. We use
function findContours in OpenCV to obtain regions of inter-
est where main pelvises are in, as shown in Figure 4(a). The
default area ratio is set to μ = 24/32, and more parametric
comparison results are shown in Table 5. c) Focus on ef-
fective region of interest to improve long-range dependency.
We use padding = 4 in Wz2 to recover the size to 32 × 32
× 1024. Based on the region of interest, the LNL block can
pay more attention to area where concentrate most of the re-
late information of all landmarks. At the same time, focusing
on region of interest can suppress interference by unrelated
information in edge region of image.

Inference
We obtain peaks in heatmap for each category of landmark
in every channel to get six landmarks. We extract all peaks
whose value is greater or equal to its neighbors points. Fi-
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Figure 6: Illustration of several blocks. These blocks are used after stage 4 as default, and number of channels and size of
feature maps are shown in blocks. (a) is basic non-local (NL) block. (b) is global context (Cao et al. 2019) (GC) block. (c) is
simplified non-local (SNL) block to reduce the amount of parameters. (d) is the proposed LNL block. ⊗ denotes element-wise
addition, and ⊗ denotes matrix multiplication.

nally, we extract the maximum peaks in every channel as six
final outputs. At the same time, we use the offset to com-
pensate for the error caused by downsampling. We adopt the
predicted radius to obtain the areas of bone. All outputs are
produced directly from the landmark estimation without the
need of NMS or other post-processing. Finally, we find six
maximum confidence landmarks of the six categories and
the corresponding radii in each image as the final output.

Experiments

To evaluate the CircleNet, we carry out a series experiments
on our DDH dataset. Experimental results demonstrate that
the proposed CircleNet outperforms other methods. The pro-
posed LNL block can bring further improvements in accu-
racy of landmark detection.

Dataset

The DDH dataset is collected in the process of clinical rou-
tine and contain all common conditions in clinical cases
between 2013-2019. The DDH X-ray images are collected
from Children’s Hospital. We extracted the original DICOM
format files from the hospital PACS system, and we con-
verted these files into JPEG format images. All landmarks
of dataset are labeled by fifteen professional doctors. Each
image has a corresponding txt document which contains co-
ordinates of landmarks and radii of femoral heads. Patients
are between 0.1-12 years old. The total number of DDH im-
ages is 9532, in which 7706 images are used for training and
the rest 1826 images are for testing. The dataset is ready for
openness. Now, the dataset is available from authors upon
reasonable request.

Experimental Setup
We apply the CircleNet to the DDH dataset for landmark
detection. The CircleNet is trained using the Pytorch frame-
work on a Ubuntu workstation equipped with an Intel i7-
9700 CPU and two 11GB Nvidia GeForce 1080Ti GPUs.
During training, the mini batch size is set to 12. Adagrad op-
timizer is used for updating with the learning rate of 1.25e-4.
The default training epoch is 30. During training, we resize
the input resolution to 512 × 512. At inference, we recover
the output to original size to statistically analyze behaviors
of different methods.

State-of-the-art comparison
We compare the CircleNet with other approaches in Table
1. Mean distance error of each landmark position in pixels
is used for comparison, and we compare the Missed Detec-
tion (MD) and Frame-Per-Second (FPS). These approaches
include mainstream segmentation networks such as Unet
(Ronneberger, Fischer, and Brox 2015) and SAC (Xu et al.
2017) to detect landmarks. One-stage methods in object de-
tection such as RetinaNet (Lin et al. 2017), FCOS (Tian et
al. 2019), GHM (Li, Liu, and Wang 2019) are listed in the
table. Other methods in object detection include Faster R-
CNN (Ren et al. 2015), Fater R-CNN (Ren et al. 2015) with
Dconv2 (Zhu et al. 2019b), Grid R-CNN (Lu et al. 2019),
Cascade R-CNN (Cai and Vasconcelos 2018), Hybrid Task
Cascade (Chen et al. 2019), GN (Wu and He 2018) with
WS (Qiao et al. 2019), Libra R-CNN (Pang et al. 2019), and
Generalized Attention (Zhu et al. 2019a). For most differ-
ent methods, we use the same backbone ResNet-50 to test
to ensure the comparability of results. Label of each land-
mark of these object detection methods in training is bound-
ing box with a side length of 2r. We can find in Tabel 1,
thanks to its simple algorithm and no need for complex post-
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Table 1: State-of-the-art comparison on the DDH test dataset which include 1826 images. Mean distance error of landmark
detection is measured in pixels. The lmk in table denotes landmark. FPS is measured on the same computer with a Nvidia
GeForce 1080Ti GPU. Miss detection (MD) denotes number of images on which at least one landmark is not found, and these
images do not participate in the statistics of mean error in pixels. Average denotes mean error of six landmarks in an image.

Backbone FPS MD lmk1 lmk2 lmk3 lmk4 lmk5 lmk6 Average
Unet Unet 3.2 17 8.03 8.12 5.26 6.53 9.74 9.30 7.83
SAC FCN 1.9 46 11.93 11.11 65.04 63.79 18.83 15.97 31.11

RetinaNet ResNet-50 15.4 0 7.65 8.64 5.89 7.60 6.32 6.91 7.17
FCOS ResNet-50 15.0 0 10.66 10.48 7.90 10.91 12.22 12.61 10.80

RetinaNet+GHM ResNet-50 16.8 0 7.67 8.80 5.35 7.05 5.59 7.04 6.92
Faster R-CNN ResNet-50 10.2 12 7.49 8.50 5.29 6.87 5.17 6.58 6.65

Faster R-CNN+Dconv2 ResNet-50 12.4 14 7.25 8.04 5.71 7.26 5.12 6.29 6.61
Grid R-CNN ResNet-50 9.1 9 8.22 9.37 6.30 8.05 5.28 6.26 7.25

Cascade R-CNN ResNet-50 7.4 15 7.74 8.51 5.74 7.46 5.14 6.16 6.79
Hybrid Task Cascade ResNet-50 3.9 4 7.90 8.74 6.09 8.01 5.91 6.83 7.25

Faster R-CNN+GN+WS ResNet-50 6.4 21 7.40 8.28 5.30 6.75 5.32 6.50 6.59
Libra R-CNN ResNet-50 13 13 7.34 8.39 5.38 8.00 5.50 6.68 6.88

Generalized Attention ResNet-50 9.8 0 7.52 8.30 6.05 7.75 5.38 6.79 6.97
CircleNet ResNet-50 25.6 0 6.16 6.13 4.54 4.72 4.22 4.14 4.99

CircleNet+LNL ResNet-50 22.7 0 5.68 6.21 4.17 4.40 4.26 4.01 4.79

Table 2: Different blocks in different stages of the backbone ResNet-50 to capture long-range dependency.
Block Stage 4 Stage 5 FPS MD lmk1 lmk2 lmk3 lmk4 lmk5 lmk6 Average

- - - 25.6 0 6.16 6.13 4.54 4.72 4.22 4.14 4.99
NL � 22.2 2 6.07 6.46 4.41 4.59 3.91 4.24 4.95
NL � 13.3 1 5.78 6.29 4.28 4.88 4.23 4.05 4.92
GC � 11.1 1 5.74 6.08 4.53 4.70 4.01 4.08 4.86
GC � 4.5 4 6.10 6.29 4.34 4.93 4.11 4.14 4.99

SNL � 21.7 1 5.88 5.97 4.19 4.93 4.10 4.44 4.92
SNL � 12.2 0 6.29 6.26 4.62 4.69 3.95 4.06 4.98
LNL � 22.7 0 5.68 6.21 4.17 4.40 4.26 4.01 4.79
LNL � 11.8 0 6.07 6.35 4.54 4.62 4.10 4.10 4.96

processing, the Circlenet achieves the highest speed of land-
mark detection (FPS=25.6) and zero MD. The CircleNet re-
duces 1.6 average pixels error compared to Faster R-CNN
(Ren et al. 2015) with GN (Wu and He 2018) and WS (Qiao
et al. 2019). Because of the LNL block can capture effective
features in areas where pelvises are located, it can bring the
precision of landmark detection. As shown in the tabel, the
CircleNet with LNL block can improve 1.8 average pixels.
Compared with the CircleNet, the LNL block contributes 0.2
average pixels.

Additional experiments
In order to explain the impact of other parameter settings in
more detail, we make the following comparative tests on the
DDH dataset.

Different blocks in different stages of the backbone
ResNet-50 to capture long-range dependency. We com-
pare four methods (NL (Wang et al. 2018) in Figure 6(a),
GC (Cao et al. 2019) in Figure 6(b), simplified non-local

(SNL) in Figure 6(c), LNL in Figure 6(d) after stage 4 and
stage 5 of ResNet-50. The result is shown in Table 2. The
GC block and SNL block can be respectively formulated as

Zi = Fi + η(
∑Np

j=1

eWvFj∑Np

m=1 e
WvFm

Fj) (9)

and

Zi = Fi + η(
∑Np

j=1

f(Fi, Fj)

φ(F )
(Wv, Fj)), (10)

where η(·) is Wz2ReLU(LN(Wz1(·)). We set λr = 0.1,
μ = 24/32, θ = 8. As we can see, the LNL block after stage
4 can obtain lowest average pixels error with higher FPS.

Radius weight λr in the CircleNet. In order to illus-
trate the effect of introducing the radius loss on the detec-
tion accuracy of landmarks, we compare different values
of radius weight λr, and results are shown in Table 3. We
set μ = 24/32, θ = 8, and use the LNL after stage 4 of the
backbone. Because of the values of MD and FPS are almost
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same for different λr, these values are not shown in the ta-
ble. We can find that λr = 0.1 gives a good result compared
to other λr. The average error can reduce 0.11 average pixels
with λr = 0.1 compared to λr = 0.01.

Table 3: Different radius weights λr in the CircleNet.
λr lmk1 lmk2 lmk3 lmk4 lmk5 lmk6 Average

0.01 5.88 6.01 4.31 4.97 4.17 4.05 4.90
0.1 5.68 6.21 4.17 4.40 4.26 4.01 4.79
0.2 5.96 6.26 4.36 4.96 4.03 3.93 4.92
0.5 5.90 6.03 4.36 4.71 4.06 3.89 4.82
0.7 5.87 6.10 4.26 4.61 4.05 4.11 4.83
1 5.92 6.39 4.37 4.60 4.00 4.13 4.90

Different μ in LNL block to pay attention to regions
of interest. We analyze the sensitivity of the LNL block
to the area ratio of regions of interest μ. Different values
of μ affect computations. We use the function findCounter
in OpenCV to get regions of interest where pelvises are lo-
cated in 7706 images, and distribution of region corners are
shown in Figure 4(b). After the stage 4 of backbone, the fea-
ture maps is 32 × 32. We can find in Figure 4(b) that the
region of interest is probably located in the center of the im-
age, which accounts for about 3/4 × 3/4 of the image. Three
different values of μ (20/32, 24/32, 28/32) are for compari-
son experiments, results are shown in Table 4. μ = 24/32 is
the best with 0.05 average pixels error reducing compared to
μ = 20/32. Feature maps area with μ = 24/32 can not only
pay more attention to regions of interest but also suppress
information of edge regions in images.

Table 4: Different μ in LNL block to pay attention to regions
of interest.

μ FPS MD lmk1 lmk2 lmk3 lmk4 lmk5 lmk6 Average
20/32 23.1 3 5.68 6.12 4.21 4.99 3.98 4.08 4.84
24/32 22.7 0 5.68 6.21 4.17 4.40 4.26 4.01 4.79
28/32 22.2 1 5.80 6.36 4.45 4.71 4.20 4.00 4.92

Different methods in LNL block to capture long-range
dependency. To meet various needs in practical applica-
tions, four methods of the non-local block (Wang et al.
2018) with different ωij are designed, namely Gaussian
(Gau), Embedded Gaussian (E-Gau), Dot product (Dot pro),
and Concat. Gaussian denotes ωij as the Gaussian func-
tion, which is defined as ωij =

exp(〈Fi,Fj〉)∑
m exp(〈Fi,Fm〉) . For Dot

product, ωij is formulated as ωij =
〈WqFi,WkFj〉

Np
. Concat is

defined as ωij =
ReLU(Wq [Fi,Fj ])

Np
. We compare these four

methods in the LNL block, and results can be seen in Table
5. As can be seen from the table, the Embedding-Gaussian
gives a lowest pixels average error compared to other meth-
ods. Gaussian has the highest FPS, which is 0.6 higher than
Embedding-Gaussian.

Different θ in LNL block to reduce the amount of pa-
rameters. We alert the ratio θ to reduce redundancy in pa-
rameters and provide a tradeoff between performance and
amount of parameters. Results are shown in Table 6. We can
find that θ = 8 can bring at least average 0.01 pixels im-
provement in landmarks accuracy with lowest MD.

Table 5: Different methods in LNL block to capture long-
range dependency.

Method FPS MD lmk1 lmk2 lmk3 lmk4 lmk5 lmk6 Average
Gau 23.3 1 5.81 6.14 4.74 5.30 3.99 3.95 4.99

E-Gau 22.7 0 5.68 6.21 4.17 4.40 4.26 4.01 4.79
Dot pro 19.6 0 5.95 6.47 4.41 4.35 4.08 3.98 4.87
Concat 19.1 5 5.81 6.14 4.74 5.30 3.99 3.95 4.99

Table 6: Different θ in LNL block to reduce the amount of
parameters.
θ FPS MD lmk1 lmk2 lmk3 lmk4 lmk5 lmk6 Average
4 22.7 0 5.82 6.24 4.47 4.56 4.04 4.01 4.86
8 22.7 0 5.68 6.21 4.17 4.40 4.26 4.01 4.79

16 22.6 2 5.85 5.90 4.51 4.48 4.05 3.99 4.80
32 22.7 1 5.78 6.08 4.58 4.60 4.00 4.29 4.89

Conclusion
In this paper, we present a novel approach to address the
problem of landmark detection in hip X-ray images. We first
construct a professional DDH dataset which is of great sig-
nificance to both clinical practice and scientific research. We
propose the CircleNet by integrating landmark detection and
object detection into an end-to-end framework. Based on
this integration, the CircleNet can constrain the relationship
between landmarks instead of predicting them in isolation.
In addition, the LNL block is designed to effectively capture
long-range dependency of regions of interest in DDH im-
ages. Using the CircleNet, we present superior performances
against other methods. Further investigation on its clinical
value will be performed.
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