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Abstract

Defocus blur detection aims to separate the in-focus and out-
of-focus regions in an image. Although attracting more and
more attention due to its remarkable potential applications,
there are still several challenges for accurate defocus blur de-
tection, such as the interference of background clutter, sen-
sitivity to scales and missing boundary details of defocus
blur regions. In order to address these issues, we propose a
deep neural network which Recurrently Refines Multi-scale
Residual Features (R2MRF) for defocus blur detection. We
firstly extract multi-scale deep features by utilizing a fully
convolutional network. For each layer, we design a novel re-
current residual refinement branch embedded with multiple
residual refinement modules (RRMs) to more accurately de-
tect blur regions from the input image. Considering that the
features from bottom layers are able to capture rich low-level
features for details preservation while the features from top
layers are capable of characterizing the semantic information
for locating blur regions, we aggregate the deep features from
different layers to learn the residual between the intermediate
prediction and the ground truth for each recurrent step in each
residual refinement branch. Since the defocus degree is sen-
sitive to image scales, we finally fuse the side output of each
branch to obtain the final blur detection map. We evaluate the
proposed network on two commonly used defocus blur detec-
tion benchmark datasets by comparing it with other 11 state-
of-the-art methods. Extensive experimental results with abla-
tion studies demonstrate that R2MRF consistently and signifi-
cantly outperforms the competitors in terms of both efficiency
and accuracy.

Defocus blur is a common phenomenon which occurs when
the objects of a scene are not exactly at the camera’s fo-
cus distance. As an important task, defocus blur detec-
tion aims to separate the out-of-focus regions from an im-
age, which has obtained more and more attention due to
its wide potential applications such as image deblurring
(Shi, Xu, and Jia 2014), defocus magnification (Bae and
Durand 2007), image refocusing (Zhang and Cham 2009;
2012), image quality assessment (Wang et al. 2008), and
salient object detection (Jiang et al. 2013), just list a few.
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Figure 1: Some challenging cases for defocus blur detection.
(a) Input image, defocus blur detection maps obtained by (b)
LBP, (c) DBDF, (d) BTBNet, (e) our R2MRF, and (f) ground
truth (GT).

During the past decades, a large number of defocus blur
detection methods have been proposed. Based on the used
image features, these methods can be generally classified
into two categories, i.e., methods based on traditional hand-
crafted features and deep learning features. As to the for-
mer kind of methods, they often extract low-level features
such as gradient and frequency which can model the edge
changes since defocus blur usually blunts object edges in
an image(Liu, Li, and Jia 2008; Su, Lu, and Tan 2011;
Zhuo and Sim 2011; Vu, Phan, and Chandler 2012; Zhang
and Hirakawa 2013; Zhu et al. 2013; Shi, Xu, and Jia 2014;
Pang et al. 2015; Tang et al. 2016; Saad and Hirakawa 2016;
Park et al. 2017). Despite great improvement has been
achieved by traditional methods based on hand-crafted fea-
tures, there are still several challenges which hamper the fi-
nal results. Firstly, traditional low-level features cannot dis-
tinguish the blurry smooth regions which do not contain
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structural information from the in-focus smooth regions.
Secondly, these methods cannot well capture the global
semantic information which is critical for detecting low-
contrast focal regions (as shown in the red rectangular re-
gion of Figure 1a) and suppressing the background clutter
(as shown in the blue rectangular region of Figure 1a). In
addition, the edge information of in-focus objects have not
been well preserved (as shown in the green rectangular re-
gion of Figure 1a).

In the past few years, due to the powerful feature ex-
traction and learning capability, deep convolutional neu-
ral networks (CNNs) have been widely used in various
computer vision tasks and made significant advances.To
this end, CNNs are also leveraged for image defocus blur
region detection (Yan and Shao 2016; Park et al. 2017;
Zhao et al. 2018). Park et al. (Park et al. 2017) extracted
both deep and hand-crafted features in image patches which
contain sparse strong edges. However, low-contrast focal
regions are still not well distinguished. Recently, Zhao et
al. (Zhao et al. 2018) proposed a multi-stream bottom-top-
bottom fully convolutional network (BTBNet), which is the
first attempt to develop an end-to-end deep network for defo-
cus blur detection. In BTBNet, low-level cues and high-level
semantic information are integrated to promote the final re-
sults and a multi-stream strategy is leveraged to handle the
defocus degree’s sensitivity to image scales. Although sig-
nificant improvement has been obtained by BTBNet, it uses
a forward stream and a backward stream to integrate fea-
tures from different levels for each image scale, which would
cause high computational complexity for both network train-
ing and testing. More importantly, the complementary infor-
mation of different layers in this method cannot been fully
exploited, which causes some background clutters in the fi-
nal results. In addition, some low-contrast focal areas are
still mistakenly detected as defocus blur regions.

In this work, we propose a novel efficient pixel-wise fully
convolutional network for defocus blur detection via recur-
rently refining multi-layer residual features (R2MRF). The
advantages of the residual learning and multi-level infor-
mation encoded in multiple layers of a convolutional net-
work are efficiently leveraged to boost the detection results.
Specifically, we firstly extract multi-scale deep features by
utilizing a backbone fully convolutional network. For each
layer, we design a novel recurrent residual refinement branch
and embed multiple residual refinement modules (RRMs)
into the branch to more accurately detect blur regions from
the input image. Considering that the features from bottom
layers are able to capture rich low-level features for details
preservation while the features from top layers are capable
of exploiting the semantic information for locating blur re-
gions, we aggregate the deep features from multiple layers
to learn the residual between the intermediate prediction and
the ground truth for each recurrent step in each residual re-
finement branch. Since the image scale significantly influ-
ences the clarity of an image, which makes the defocus de-
gree sensitive to image scales, we add the learned residual
output of each RRM from each layer to the input of RRM
of its previous layer in a hierarchical manner at each recur-
rent step, and finally fuse the side output of each branch to

obtain the final blur detection map. We summarize the tech-
nical contributions of this work as follows:

• A new effective and efficient pixel-wise fully convolu-
tional network is proposed to detect defocus regions from
a still input image via recurrently refining multi-scale
residual features (R2MRF), which can accurately separate
defocus regions from homogeneous and low-contrast fo-
cal regions.

• A novel residual refinement module (RRM) is designed
to learn the residual between the intermediate prediction
and the ground truth at each recurrent step.

• We evaluate the proposed R2MRF on two commonly used
benchmark datasets and compare it with 11 state-of-the-
art defocus blur detection methods. Both qualitative and
quantitative experimental results validate the superority of
our method over other competitors on the two datasets. In
addition, our R2MRF is very efficient and it takes only
less than 0.1s by using a single GTX 1080Ti GPU with
32G memory to generate the defocus blur map for a test-
ing image in the two datasets.

Related Work

As a subfield of computer vision, defocus blur detection has
been widely investigated due to its important role in many
practical applications. Therefore, various defocus blur de-
tection methods have been proposed, which can be gener-
ally categorized into two classes, i.e., hand-crafted features
based methods and deep learning based methods. Following
we give a brief review about these methods.

Hand-crafted Features based Methods

Since defocus blur usually degenerates object edges in an
image, traditional methods often extract features such as gra-
dient and frequency which can describe the change of edges
(Elder and Zucker 1998; Tai and Brown 2009; Couzinie-
Devy et al. 2013; Tang, Hou, and Song 2013). Based on the
observation that the first few most significant eigen-images
of a blurred image patch usually have higher weights (i.e.
singular values) than an image patch with no blur, Su et al.
(Su, Lu, and Tan 2011) detected blur regions by examining
singular value information for each image pixels. Shi et al.
(Shi, Xu, and Jia 2014) studied a series of blur feature repre-
sentations such as gradient, Fourier domain, and data-driven
local filters features to enhance discriminative power for dif-
ferentiating blurred and unblurred image regions. In (Pang et
al. 2015), Pang et al. developed a kernel-specific feature for
blur detection, the blur regions and in-focus regions are clas-
sified using SVM. Considering that feature descriptors based
on local information cannot distinguish the just noticeable
blur reliably from unblurred structures, Shi et al. (Shi, Xu,
and Jia 2015) proposed a simple yet effective blur feature
via sparse representation and image decomposition. Yi and
Eramian (Yi and Eramian 2016) designed a sharpness metric
based on local binary patterns and the in- and out-of-focus
image regions are separated by using the metric. Tang et al.
(Tang et al. 2016) designed a log averaged spectrum residual
metric to obtain a coarse blur map, then an iterative updating
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Figure 2: The pipeline of our R2MRF. The lavender block represents our proposed RRM module. Given an input image, we first
extract its multi-scale features by using the basic ResNeXt network. For each feature extracting layer, we construct a residual
feature leaning and refining branch by embedding multiple RRMs into it.

mechanism is proposed to refine the blur map from coarse to
fine based on the intrinsic relevance of similar neighbor im-
age regions. Golestaneh and Karam (Alireza Golestaneh and
Karam 2017) proposed to detect defocus blur maps based on
a novel high-frequency multiscale fusion and sort transform
of gradient magnitudes. Based on the maximum ranks of
the corresponding local patches with different orientations
in gradient domain, Xu et al. (Xu, Quan, and Ji 2017) pre-
sented a fast yet effective approach to estimate the spatially
varying amounts of defocus blur at edge locations, then the
complete defocus map is generated by a standard propaga-
tion procedure.

Although previous hand-crafted methods have earned
great success for defocus blur region detection, they can only
work well for images with simple structures but are not ro-
bust enough for complex scenes. Therefore, extracting high
level and more discriminative features is necessary.

Deep Learning based Methods

Due to their high level feature extraction and learning power,
deep CNNs based methods have refreshed the records of
many computer vision tasks (Simonyan and Zisserman
2015), including defocus blur detection (Park et al. 2017;
Zhao et al. 2018). In (Park et al. 2017), high-dimensional
deep features are first extracted by using a CNN-based
model, then these features and traditional hand-crafted fea-
tures are concatenated together and fed into a fully con-
nected neural network classifier for defocus degree deter-
mination. Purohit et al. (Purohit, Shah, and Rajagopalan
2018) proposed to train two sub-networks which aim to learn
global context and local features respectively, then the pixel-
level probabilities estimated by two networks are aggregated
and feed into a Markov Random Field based framework for
blur regions segmentation. Zhang et al. (Zhang et al. 2018a)
proposed a dilated fully convolutional neural network with
pyramid pooling and boundary refinement layers to gener-
ate blur response maps. Considering that the degree of defo-
cus blur is sensitive to scales, Zhao et al. (Zhao et al. 2018)
proposed a multi-stream bottom-top-bottom fully convolu-
tional network (BTBNet) which integrates low-level cues
and high-level semantic information for defocus blur detec-
tion. Since it uses two streams, i.e., a forward stream and
a backward stream, to integrate features from different lev-

els for multiple image scales, the computational complexity
for both network training and testing of BTBNet is high.
Meanwhile, some low-contrast focal areas still cannot be
differentiated. Tang et al. (Tang et al. 2019) proposed a de-
focus blur detection method via recurrently fusing and refin-
ing multi-scale deep features and obtained state-of-the-art
results. Zhao et al. (Zhao et al. 2019) broke the defocus blur
detection into multiple smaller defocus blur detectors and
proposed a cross-ensemble network to cancel out the esti-
mation errors of different detectors.

Proposed R2MRF

In this work, we aim to develop an efficient deep neural net-
work for defocus blur detection, which takes a still image as
input and output a defocus blur detection map with the same
resolution as the input image. Figure 2 shows the entire ar-
chitecture of our proposed network.

For an effective defocus blur detection deep neural net-
work, it should be capable of extracting both low-level cues
and high-level semantic information for generate the final
accurate detected defocus blur map. On the one hand, the
low-level features can help refine the sparse and irregular
detection regions; On the other hand, the high-level seman-
tic features can serve to locate the blurry regions as well
as suppress background clutter. In addition, there are of-
ten some smooth in-focus regions within an object, which
causes these regions to be mistakenly detected as blurry ones
due to the lack of rich structure. To this end, the high-level
semantic information produced by deep layers should be uti-
lized to avoid this problem. Furthermore, since the defocus
degree is sensitive to image scales, the network should be
able to make use of multi-scale features for improving the
final results. Finally, the network should be easily to be fine-
tuned because there are no sufficient labelled defocus blur
images for training such a deep network.

Specifically, we choose the ResNet structure (He et al.
2016) as our backbone feature extraction network and use
the pre-trained ResNeXt model to initialize our network,
which produces five basic feature extraction layers, i.e.,
conv1, conv2 x, conv3 x, conv4 x, conv5 x. Firstly, we use
the backbone network to extract a set of hierarchical fea-
tures which encode both the low-level details and high-level
semantic information with different scales of an image. On
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the one hand, since a series of spatial pooling and convolu-
tion operations progressively downsample the resolution of
the initial image, the fine details of image structure are in-
evitably damaged, which is harmful for densely separating
in-focus and out-of-focus image regions. On the other hand,
the high-level semantic features extracted by deep layers can
help to locate the defocus blur regions. Therefore, how to
exploit the complementary information of features extracted
from different layers to improve the final results is critical.
Since the residual learning has exhibited better performance
than common plain network in many computer vision tasks,
we design an RRM to learn the residual between the inter-
mediate prediction and the ground truth and construct a re-
current residual refinement branch for each layer by embed-
ding multiple RRMs into it. In order to sufficiently utilize
the complementary information of features extracted from
different layers of the backbone network, we aggregate the
multi-level features and use it to refine the residual learning
process of each RRM. Particularly, we generate Aggregated
Multi-level Deep Features (AMDF) by upsampling the fea-
ture maps of the last four layers to the size of the feature
maps extracted from the first layer, concatenating them to-
gether, and applying a convolution operation to merge these
feature maps and reduce the feature dimensions, this process
can be mathematically formulated as:

AMDF = σ(W ∗ (Cat(F1,F
up
2 , · · · ,F

up
5 )) + b), (1)

where F1 ∈ W1 × H1 × C1 is the feature map of the
first layer of ResNeXt, F

up
i |i=2,3,4,5 ∈ W1 × H1 × Ci de-

notes the enlarged feature map from the i-th layer with Ci

channels; W1 × H1 is the resolution of the feature map of
the first layer; Cat represents the concatenation operation
across channels; ∗ represents convolution operation; W and
b are the weights and bias of the convolution need to be
learned during training; σ is the activation function and we
use ReLU (Krizhevsky, Sutskever, and Hinton 2012) in our
work. Hu et al. (Hu et al. 2018) used a similar feature aggre-
gation strategy for salient object detection. However, they
didn’t focus the scale information which is very important
for defocus blue detection.

By using Eq.(1), we can integrate multi-level features to
enhance the capability for separating defocus regions from
in-focus regions. The shallow layers are more effective to
extract subtly fine features to represent delicate image struc-
tures, which can improve the accuracy of the defocus blur
detection map. Meanwhile, the deep layers can capture high-
level semantic features, which well describe the attributes of
image contents so as to distinguish smooth in-focus regions
from blurry ones as well as locate defocus regions and sup-
press background clutter. Both of them are utilized to boost
the blur detection results.

Since the defocus degree is sensitise to image scales while
different layers just extract features with different scales,
we construct a recurrent feature refinement branch for each
layer and obtain the final detection results by fusing the side
output of each branch. Instead of using common plain net-
work for feature learning, we design an RRM to learn the
residual between the intermediate prediction and the ground
truth by considering that the residual learning has exhibited

better performance than traditional plain network in many
computer vision tasks. In order to capture the scale informa-
tion of original input image, the learned residual output of
each RRM from each layer is added to the input of RRM
of its previous layer in a hierarchical manner at each re-
current step. Multiple RRMs are embedded into each net-
work branch in a recurrent manner for feature refining and
the generated AMDF is used to refine the residual learning
process in each RRM.

Residual Refinement Module

Compared to common plain network, residual learning has
achieved better performance in many computer vision tasks,
such as image classification (He et al. 2016) and super-
resolution (Zhang et al. 2018b), Therefore, in this work,
we design a residual refinement module (RRM) at each re-
current step to correct prediction errors. Figure 3 briefly
demonstrates the architecture of the proposed RRM. Specif-
ically, RRM takes the aggregated multi-level deep features
(AMDF), the predicted result at the previous step and the
residual output of the next layer at the same recurrent step as
inputs, and outputs a refined prediction by adding the previ-
ous result with a learned residual map. For each side output
branch at the l-th layer, the residual map at the t-th recurrent
step (Rl

t) can be calculated as:

Rl
t =

{F(F1,AMDF ), t=1

F(Cat(Ol
t−1,AMDF )), t>1

}
, l = 5, (2)

and

Rl
t=

{
F(Cat(F1,O

l+1
t ,AMDF )), t=1

F(Cat(Ol
t−1,O

l+1
t ,AMDF )), t>1

}
, l < 5, (3)

where Ol
t is the output of the t-th recurrent step at the l-

th layer and F is a mapping function which consists of a
series of convolution an ReLU operations. Then the output
of current recurrent step at the l-th layer can be obtained by
adding Rl

t with Ol
t−1 in an element-wise manner, which is

computed as:
Ol

t = Rl
t ⊕ Ol

t−1. (4)
In order to further exploit the image features at different

scales at a fine-grained level, we construct a dual path net-
work in each RRM and different paths use different convo-
lutional kernel (as shown on the top of Figure 3). In such
a manner, the information between the two paths can be
shared with each other so that able to detect the image fea-
tures at different scales. In addition, in order to improve the
prediction accuracy of each intermediate output at each re-
current step, the supervision signal (Xie and Tu 2015) is
imposed to each RRM for computing the loss between the
ground truth and each intermediate prediction during the
training process.

There are three advantages by proposing and embedding
RRM into R2MRF. Firstly, better prediction results can be
obtained than using traditional plain network. Secondly, the
generated AMDF which can capture the complementary in-
formation of deep features extracted from different layers is
easily integrated into each RRM to refine the residual learn-
ing process. Thirdly, since learning residual is much easier,
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Figure 3: The architecture of the proposed residual refine-
ment module (RRM) at the t-th recurrent step of the l-th
layer.

the proposed RRM can ease the learning task with a faster
convergence at early stages, and both the training error and
time cost can be effectively reduced. We will validate these
advantages in the experiments section.

Defocus Maps Fusing

Since the degree of defocus blur is sensitive to image scales,
we need to capture multi-scale information for improving fi-
nal defocus blur detection results. In (Zhao et al. 2018), Zhao
et al. proposed to use a multi-stream strategy to fuse the de-
tection results from different image scales. However, this
inevitably increase the computational burden of the whole
network. In this work, by considering that different layers
of neural network just extract image features with different
scales, we fuse the side outputs of all the recurrent branches
at the last step to generate the final defocus blur map.

Specifically, we first concatenate the side output results
predicted from the 5 different recurrent branches, then a con-
volution layer with a ReLU activation is imposed on the con-
catenated maps to obtain the final output defocus blur map
B, which can be formulated as:

B = σ(WB ∗ Cat(O1
t ,O2

t , · · · ,O5
t ) + bB), (5)

where Oi
t denotes the intermediate prediction of the t-th step

in the i-th recurrent branch; WB and bB are the weight and
bias of the convolution layer on the concatenated side out-
puts to learn their relationship.

Model Training and Testing

Our network uses the ResNet architecture (He et al. 2016) as
backbone and we implement it by using the Pytorch frame-
work. The well trained ResNeXt network on ImageNet (Xie
et al. 2016) is used to initialize the parameters of feature
extraction network. Therefore, we have five feature extrac-
tion layers including conv1, conv2 x, conv3 x, conv4 x, and
conv5 x (He et al. 2016; Xie et al. 2016). More details will
be found in the released code.
Training: The cross-entropy loss is used for each intermedi-
ate output of our network during the training process. For the
i-th side output branch at the t-th recurrent step, the pixel-
wise cross entropy loss between Oi

t and the ground truth blur
mask G is calculated as:

Li
t(θ) = −

W∑
x=1

H∑
y=1

∑
l∈{0,1}

{
log Pr(Oi

t(x,y)=l|θ)
·1(G(x,y)=l)

}
, (6)

where 1(·) is the indicator function. The notation l ∈ {0, 1}
indicates the out-of-focus or in-focus label of the pixel at
location (x, y) and Pr(Oi

t(x, y) = l|θ) represents its cor-
responding probability of being predicted as blurry pixel or
not. θ denotes the parameters of all network layers.

Based on Eq. (6), the final loss function is defined as the
loss summation of all intermediate predictions:

L = λfLf +

5∑
i=1

T∑
t=1

λi
tL

i
t(θ), (7)

where Lf is loss for the final fusion layer; Lf is the weight
for the fusion layer and λi

t represents the weight of the i-th
side output branch at the t-th recurrent step. In our experi-
ment, we empirically set all the weights to 1.

Our R2MRF is initialized by the well trained ResNeXt
network on ImageNet (Xie et al. 2016). For fair comparison
in the experiments, we fine tune R2MRF on part of Shi et
al.’s public blurred image dataset (Shi, Xu, and Jia 2014) as
done in the work of BTBNet (Zhao et al. 2018). The dataset
consists of 1,000 blurred images and their manually anno-
tated ground truths. 704 of these images are partially defo-
cus blurred and the rest 296 ones are motion blurred. We di-
vide the 704 defocus blurred images into two parts, i.e., 604
for training and the remaining 100 ones for testing. Since
the number of training images is not enough to train a deep
neural network, we perform data augmentation by randomly
rotating, resizing and horizontally flipping all of the images
and their corresponding ground truths, and finally the train-
ing set is enlarged to 9,664 images. We train our model on
a machine equipped with an Intel 3.4GHz CPU with 32G
memory and a Nvidia GTX 1080Ti GPU. We optimize the
whole network by using Stochastic gradient descent (SGD)
algorithm with the momentum of 0.9 and the weight decay
of 0.0005. The learning rate is adjusted by the “poly” pol-
icy with the power of 0.9. The training batch size is set to
4 and the whole learning process stops after 6k iterations.
The training process is completed after approximately 0.75
hours.
Inference: In the testing phase, for each input image, we
feed it into our network and obtain the final defocus blur
map.

Experiments

Datasets

Similar to previous works, two datasets are used in our ex-
periments for evaluating the performance of our proposed
network, they are: Shi et al.’s dataset (Shi, Xu, and Jia
2014), which contains the rest 100 defocus blurred images
as mentioned above. DUT (Zhao et al. 2018), which is a new
defocus blur detection dataset which consists of 500 images
with pixel-wise annotations. This dataset is very challeng-
ing since numerous images contain homogeneous regions,
low contrast focal regions and background clutter.
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Table 1: Quantitative comparison of F-measure and MAE scores. The best two results are shown in red and blue colors,
respectively.

Datasets Metric ASVB SVD JNB DBDF SS LBP KSFV DHDE HiFST BTBNet DeFusionNET R2MRF

Shi et al.’s dataset Fβ 0.731 0.806 0.797 0.841 0.787 0.866 0.733 0.850 0.856 0.892 0.917 0.927
MAE 0.636 0.301 0.355 0.323 0.298 0.186 0.380 0.390 0.232 0.105 0.116 0.119

DUT Fβ 0.747 0.818 0.748 0.802 0.784 0.874 0.751 0.823 0.866 0.887 0.922 0.950
MAE 0.651 0.301 0.424 0.369 0.296 0.173 0.399 0.408 0.302 0.190 0.115 0.088
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Figure 4: Comparison of precision-recall curves and F-measure curves of different methods on Shi et al.’s dataset ((a) and (b)),
and DUT dataset ((c) and (d)).

Evaluation Metrics

Four widely-used metrics are used to quantitatively evalu-
ate the performance of the proposed model: precision-recall
(PR) curves, F-measure curves, F-measure scores (Fβ) and
mean absolute error (MAE) scores.

Comparison with the state-of-the-art methods

We compare our method against other 11 state-of-the-art
algorithms, including 3 deep learning-based methods, i..e,
DHDE (Park et al. 2017), BTBNet (Zhao et al. 2018) and
DeFusionNET (Tang et al. 2019), and 8 classic defocus blur
detection methods, including ASVB (Chakrabarti, Zickler,
and Freeman 2010), SVD (Su, Lu, and Tan 2011), JNB (Shi,
Xu, and Jia 2015), DBDF (Shi, Xu, and Jia 2014), SS (Tang
et al. 2016), LBP (Yi and Eramian 2016), KSFV (Pang et
al. 2016) and HiFST (Alireza Golestaneh and Karam 2017).
For all of these methods except BTBNet, we use the authors’
original implementations with recommended parameters. As
to BTBNet, we directly download the results from the au-
thors’ project website since they have not released their im-
plementation.
Quantitative Comparison. Table 1 presents the compared
results of MAE and F-measure scores. It is observed that
our method consistently performs favourably against other
methods on the two datasets, which indicates the superiority
of our R2MRF over other approaches. In Figure 4, we plot
the PR curves and F-measure curves of different methods
on different datasets. From the results, we observe that our
method also consistently outperforms other counterparts.
Qualitative Comparison. Due to the page limitation, we
show the visual comparison of our method and other ones
in the supplementary. As can be seen from the results, our
method generates more accurate defocus blur maps when
the input image contains in-focus smooth regions and back-
ground clutter. In addition, the boundary information of the

in-focus objects can be well preserved in our results. It
should be noted that when the background is in-focus and
foreground regions are blurred, our R2MRF also works well.
Running Efficiency Comparison. In addition to the ap-
pealing results, our proposed R2MRF is also efficient for
both training and testing. The whole training process of our
R2MRF takes only about 0.75 hours. As to the testing phase,
we use only one Nvidia GTX 1080Ti GPU. The average run-
ning time for an image of different methods on the two dif-
ferent datasets are shown in Table 2. As can be seen, when
our R2MRF is well trained, it is faster than all of other meth-
ods for detecting the defocus blur regions from an input
image. Although the implementation platforms of the com-
pared methods are different (i.e., traditional hand-crafted
features based methods are implemented on CPU, while
deep learning based methods are implemented on GPU),
R2MRF is significantly faster than other compared methods
including two deep learning based ones. As to BTBNet, we
cannot evaluate its running time since its implementation has
not been released. However, as claimed in the authors’ pa-
per, nearly 5 days needed for training BTBNet and approx-
imately 25 seconds is needed to generate the defocus blur
map for a testing image with 320 × 320 pixels. By contrast,
our R2MRF takes only about 0.75 hours for training by us-
ing the same training dataset and platform as BTBNet. As to
testing, we also use only one Nvidia GTX 1080Ti GPU and
the average running time on the two datasets is also much
less than other methods (see Table 2).

Ablation Analysis

Effectiveness of RRM. In order to validate the efficacy
of the proposed RRM, we remove all of the RRMs in
R2MRF and directly refine the intermediate side output
without residual learning (denoted as R2MRF no RRM).
The F-measure and MAE scores of R2MRF no RRM on
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Table 2: Average running time (seconds) for an image of different methods on different datasets.

Methods ASVB SVD JNB DBDF SS LBP KSFV DHDE HiFST BTBNet DeFusionNET R2MRF

Datasets Shi et al.’s dataset 2.04 21.09 11.47 214.83 2.76 57.34 32.748 47.06 2576.24 – 0.103 0.096
DUT 1.59 10.91 5.12 110.37 1.20 30.38 20.139 21.51 1169.57 – 0.087 0.061
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Figure 5: The training loss of R2MRF with/without RRM.

the two datasets are shown in Table 3. As can be seen, our
R2MRF with RRM module performs significantly better
than R2MRF no RRM, which shows that R2MRF with
residual learning is superior to the case without residual
learning, demonstrating the effectiveness of the proposed
RRM. In addition, R2MRF no RRM also performs better
than other previous methods, which also validates the
efficacy of the AMDF for feature refining. We also plot
the training loss of R2MRF with/without RRM in Figure
5. As shown in Figure 5, the residual learning can ease
the optimization process with a faster convergence at early
stages as well as reduce the training error over directly
refining the intermediate side outputs.

Effectiveness of the Times of Recurrent Steps. In our
R2MRF, we refine the features of each side output branch in
a recurrent manner, the feature maps can be improved step
by step. In order to validate whether the features can be im-
proved in a recurrent manner, we report the F-measure and
MAE scores by using different times of recurrent step in Ta-
ble 3. As can be seen, the more times of recurrent step, the
better results can be obtained. In addition, it should be noted
that R2MRF can obtain relatively stable results after 6 times
of recurrent step. Therefore, we empirically set 6 times of
recurrent step in our experiments for the tradeoff between
effectiveness and efficiency. Some visual results with differ-
ent times of recurrent step can be found in the supplementary
file.
Effectiveness of the Final Side Outputs Fusion. By con-
sidering that the degree of defocus in an image is sensitive
to image scales, we fuse the side outputs of different recur-
rent branches at the last step to form the final result. We also
perform ablation experiments to evaluate the effectiveness
of the final fusing step. The final outputs of all the recur-
rent branches are represented as R2MRF O1, R2MRF O2,
R2MRF O3, R2MRF O4, and R2MRF O5. We also show
the F-measure, MAE scores in Table 3. It can be observed
that the fusing mechanism effectively improves the final re-

Table 3: Ablation analysis using F-measure and MAE
scores.

Methods Shi et al.’s dataset DUT

Fβ MAE Fβ MAE
R2MRF 0.927 0.104 0.950 0.088

R2MRF no RRM 0.905 0.165 0.918 0.126
R2MRF Step 1 0.907 0.163 0.921 0.124
R2MRF Step 2 0.913 0.155 0.924 0.115
R2MRF Step 3 0.918 0.148 0.931 0.107
R2MRF Step 4 0.921 0.140 0.936 0.102
R2MRF Step 5 0.926 0.126 0.947 0.090
R2MRF Step 6 0.927 0.119 0.950 0.088
R2MRF Step 7 0.928 0.119 0.952 0.088
R2MRF Step 8 0.928 0.118 0.952 0.087

R2MRF O1 0.793 0.216 0.834 0.184
R2MRF O2 0.893 0.142 0.873 0.181
R2MRF O3 0.924 0.135 0.936 0.092
R2MRF O4 0.921 0.136 0.927 0.105
R2MRF O5 0.915 0.140 0.932 0.113

R2MRF VGG 0.918 0.128 0.932 0.114
R2MRF DenseNet 0.920 0.125 0.934 0.112

sults. We also give some visual results of different side out-
puts in the supplementary file.
Effectiveness of Different Backbone Network Architec-
tures. In order to demonstrate the affect of different back-
bone network architectures on the final results. Another two
models (denoted as R2MRF VGG and R2MRF DenseNet),
which use the pre-trained VGG-16 (Simonyan and Zis-
serman 2015) and DenseNet-161 (Gao et al. 2017) to re-
place the ResNeXt, respectively, are used to compare with
R2MRF. The results shown in Table 3 indicate that R2MRF
equipped with ResNeXt has a better performance.

Conclusions

In this work, we propose a deep convolutional network for
efficient and accurate defocus blur detection via recurrently
refine multi-layer residual features (R2MRF). A residual re-
finement module is designed and embedded into different
recurrent feature refining branches for residual learning. In
order to capture the scale information of input image, the
learned residual output of each residual refinement mod-
ule from each layer is added to the input of residual refine-
ment module of its previous layer in a hierarchical manner
at each recurrent step, and we finally fuse the side output
of each branch to obtain the final blur detection map. Ex-
tensive experiments with ablation studies are conducted to
demonstrate the superiority of R2MRF in both accuracy and
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efficiency.
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