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Abstract

We present a first attempt for stereoscopic image super-
resolution (SR) for recovering high-resolution details while
preserving stereo-consistency between stereoscopic image
pair. The most challenging issue in the stereoscopic SR is
that the texture details should be consistent for correspond-
ing pixels in stereoscopic SR image pair. However, existing
stereo SR methods cannot maintain the stereo-consistency,
thus causing 3D fatigue to the viewers. To address this issue,
in this paper, we propose a self and parallax attention mecha-
nism (SPAM) to aggregate the information from its own im-
age and the counterpart stereo image simultaneously, thus re-
constructing high-quality stereoscopic SR image pairs. More-
over, we design an efficient network architecture and effec-
tive loss functions to enforce stereo-consistency constraint.
Finally, experimental results demonstrate the superiority of
our method over state-of-the-art SR methods in terms of both
quantitative metrics and qualitative visual quality while main-
taining stereo-consistency between stereoscopic image pair.

Introduction

With the increasing attention and popularity of stereo-
scopic 3D industry, stereoscopic image/video processing
techniques have been spotlighted in a wide range of fields
such as image inpainting (Wang et al. 2008), video stabiliza-
tion (Guo et al. 2016), and style transfer (Chen et al. 2018).
These 3D contents are presented via 3D displays such as
AR/VR devices and 3D televisions by creating the illusion
of depth from the stereo images. As the 3D devices have ad-
vanced, they demand high-resolution stereoscopic images,
thus requiring stereoscopic super-resolution (SR) technique.
The most important point for the stereoscopic SR is pre-
serving the consistency between super-resolved stereo im-
age pair to provide the illusion of depth. Otherwise, the in-
consistent stereo images would cause 3D fatigue to the view-
ers.

Super-resolution (SR) is a fundamental problem in low-
level vision tasks aiming to enhance the spatial resolu-
tion of low-resolution (LR) image by reconstructing high-
resolution (HR) image. Recently, following the seminal
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Figure 1: The result of 4× super-resolved stereo left (top)
and right (bottom) image using VDSR (Kim, Lee, and Lee
2016), PASSRnet (Wang et al. 2019a), and our proposed
method. These results are achieved on “Validation 57” of
Flickr 1024 dataset (Wang et al. 2019b). Our result shows
consistent texture details different with others.

work of Dong et al. (2015), numerous single image SR
methods have leveraged convolutional neural networks
(CNNs). They adopt advanced CNN techniques such as
residual architecture (Kim, Lee, and Lee 2016; Zhang et
al. 2018c) and perceptual loss (Johnson, Alahi, and Fei-Fei
2016; Ledig et al. 2017) to achieve the enhanced perfor-
mance, but due to significant information loss in LR image,
it is still extremely challenging.

To alleviate this limitation, some SR methods have been
proposed using multiple LR images such as stereo im-
age pairs (Jeon et al. 2018; Wang et al. 2019a) and video
frames (Liao et al. 2015; Caballero et al. 2017; Tao et
al. 2017). By taking advantage of additional information
from multiple LR images, they show the superior SR per-
formance. However, the disparity (motion) exists between
stereo images (video frames), so conducting disparity (mo-
tion) compensation is a essential process to integrate them.
However, since they focus on generating the target HR im-
age by incorporating additional LR images, they do not con-
sider the consistent property. As shown in Figure 1, the SR
images reconstructed by conventional single and stereo SR
methods (Kim, Lee, and Lee 2016; Wang et al. 2019a) show
inconsistent texture details across stereo images, thus pro-
viding a visual discomfort from blurry details.

In this paper, we present a novel stereoscopic super-
resolution method for overcoming the aforementioned lim-
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itations of current SR methods. We propose a self and par-
allax attention mechanism (SPAM), which captures self at-
tention map and parallax-attention map simultaneously. The
self-attention map considers similarity within its own image,
which helps to supplement information from similar points
within itself. The parallax-attention map estimates the cor-
respondence between stereo image pair, and is utilized to
integrate information from LR stereo images. The proposed
SPAM generates features implying abundant and compre-
hensive clues for reconstructing the HR images. In addi-
tion, disparity map derived from parallax-attention is ap-
plied on both proposed architecture and our objective func-
tions to force the SR stereo images be consistent. To evalu-
ate our method, we conduct extensive experiments on Mid-
dlebury (Scharstein and Pal 2007), Flickr 1024 (Wang et
al. 2019b), KITTI 2012 (Geiger, Lenz, and Urtasun 2012),
and KITTI 2015 (Menze and Geiger 2015) datasets com-
pared to the state-of-the-art SR methods. We also conduct
an ablation study to analyze the contribution of our atten-
tion mechanism. We demonstrate that our method achieves
for reconstructing competitive SR quality while maintaining
the stereo-consistency through qualitative and quantitative
evaluations.

Overall, our contributions are three-fold: First, we pro-
pose the first stereoscopic super-resolution method by im-
posing stereo-consistency constraint on integrating stereo
information and training the network simultaneously. Sec-
ondly, we propose self and parallax attention mechanism
to aggregate the information for reconstructing high-quality
stereoscopic SR image. Lastly, the proposed method shows
the state-of-the-art SR performance compared to the conven-
tional stereo SR method while preserving stereo-consistency
on various datasets.

Related Work

Single Image Super-Resolution. The seminal work of
Dong et al. (2015) was proposed super-resolution convolu-
tional neural network (SRCNN), and achieved the superior
performance with simple three convolutional layers. Kim et
al. (2016) proposed a very deep network for SR (VDSR)
with twenty convolutional layers, and introduced residu-
als for facilitating training them. By increasing the depth,
VDSR achieved the better performance than SRCNN.

Later on, some methods have been proposed using var-
ious network architectures, such as Laplacian pyramid
structure (Lai et al. 2017), residual blocks (Wang et al.
2018), attention module (Zhang et al. 2018b), and dense
block (Zhang et al. 2018c). Since applying pixel-wise loss
(e.g. MSE) results in over-smoothed and less high-frequency
textures, some methods have been introduced diverse per-
ceptual loss, which makes the distance between HR and
SR in a feature space minimized, such as combined pixel-
wise and perceptual loss (Ledig et al. 2017) and adversarial
loss (Johnson, Alahi, and Fei-Fei 2016). Even though the
state-of-the-art single image SR methods achieve dramatic
improvements, in terms of utilizing information from single
LR image only to recover HR image, they still have shown
limited performance.

Multiple Image Super-Resolution. Since multiple im-
ages (e.g., video frames, stereo images) can provide plenty
of information from additional images, the SR performance
can be improved. However, it is very challenging to incor-
porate them due to temporal or spatial discrepancy, so the
alignment between them should be handled.

Liao et al. (2015) proposed the first work of the video
frame SR. By compensating motions using conventional op-
tical flow algorithms (Brox et al. 2004; Xu, Jia, and Mat-
sushita 2011), they generates the SR image from combined
adjacent video frames. Tao et al. (2017) proposed jointly
learning frameworks for estimating motion and recovering
SR images, and enhanced the video SR performance.

Jeon et al. (2018) first introduced stereo image SR (Stere-
oSR), which estimates a parallax prior from stereo images
through networks, and then generates the SR image by tak-
ing the concatenated image of left and sifted right image by
its parallax as input. Because it cannot deal with large dis-
parity variations, Wang et al. (2019a) proposed a parallax-
attention stereo super-resolution network (PASSRnet). By
introducing a parallax-attention module, which estimates
global stereo correspondence along the epipolar line, it re-
moves the limitation of disparity range.

Those multiple image SR methods utilize additional LR
images to enrich the information for recovering HR details
only. As a result, they leave out consideration of the con-
sistent property that the correspondence points between SR
images should possess consistent texture details, so they are
not proper for enhancing the spatial resolution for the stereo-
scopic images.

Attention Mechanism. To perform the computer vision
tasks, such as image classifications, segmentations, and gen-
erations, many deep generative models rely on the stack
of convolution layers, which has the limited local recep-
tive field. Since convolution is conducted within only lo-
cal region, it cannot consider whole image at once, thus
showing the limited performance. To alleviate this limita-
tion, self-attention module (Zhang et al. 2018a) and non-
local neural (Wang et al. 2018) network were proposed by
modeling long-range dependency. By calculating the corre-
lation of intermediate feature responses in all position and
taking weighted sum of them, the long-range dependency is
modeled, which presents the relations of any two positions
within the whole images. Based on its performance improve-
ment, several methods in various low-level vision applica-
tions has been adopted the long-range dependency, such as
de-raning (Li et al. 2018) and image SR (Liu et al. 2018;
Dai et al. 2019).

Proposed Method

The objective of our method is to estimate a stereo-
scopic super-resolution image pair (IlSR, I

r
SR) from a given

stereoscopic low-resolution image pair (IlLR, I
r
LR), recov-

ering high-resolution details while preserving the stereo-
consistency. For achieving the high-quality SR result for
each LR image using stereoscopic images together, our
method establishes stereo correspondence pair (Dl,Dr) and
valid mask pair (V l,Vr) using novel attention mechanisms,
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Figure 2: The architecture of proposed method. Stereo images are fed into the feature extraction part for generating highly
discriminative features to find stereo correspondence. Then, the feature aggregation part produces view-symmetric and rich
informative features for stereoscopic SR using a self and parallax attention mechanism (SPAM). The up-scale part outputs the
SR image of each view.

and gives stereo-consistent constraints using them on not
only intermediate features directly but also loss functions.
As a result, the proposed method yields the stereoscopic SR
image pair (IlSR, I

r
SR), which possesses the consistent HR

details between the corresponding points in image pair, thus
enhancing the illusion of depth.

Network Architecture

Our proposed method consists of three stage as shown in
Figure 2: feature extraction, feature aggregation, and up-
scale part.

Given (IlLR, I
r
LR), we extract a discriminative feature

pair (Fl,Fr), which is utilized for establishing the reliable
(Dl,Dr) and (V l,Vr), denoted as

Fl = Hfeat(I
l
LR), Fr = Hfeat(I

r
LR), (1)

where Hfeat stands for the feature extraction part, which is
composed of 3 residual blocks and 2 residual Atrous Spa-
tial Pyramid Pooling (ASPP) blocks (Wang et al. 2019a).
Note that the configuration of our feature extraction module
is same as PASSRnet (Wang et al. 2019a) to compare the SR
performance with respect to the attention module fairly.

The features (Fl,Fr) are used for estimating the stereo
correspondence pair (Dl,Dr) and the valid mask pair
(V l,Vr) in the feature aggregation part. Note that Dl is de-
noted as stereo correspondence fields from IlLR to IrLR and
V l is denoted as the overlapping (non-occluded) regions in
IlLR with IrLR, and vice versa. To obtain them, we propose a
self and parallax attention mechanism (SPAM). By extract-
ing self and parallax attention maps via SPAM, the feature
aggregation part generates highly informative and stereo-
symmetric feature pair (Gl

agg,G
r
agg) for stereoscopic SR.

We will explain in details how those attention maps are uti-
lized to produce the rich context stereo-symmetric features
in the following section.

Finally, the stereo-symmetric features (Gl
agg,G

r
agg) are

up-scaled to generate the stereoscopic SR image pair. To re-
cover the HR details, the up-scale part consists of sub-pixel

convolution layer, which generates the SR stereoscopic im-
ages as follows:

IlSR = Hup(G
l
agg), IrSR = Hup(G

r
agg), (2)

where Hup stands for the up-scale part.

Feature Aggregation Part

In order to create features, which is abundant for SR, and
symmetric for imposing stereo-consistency for stereoscopic
SR, we propose a self and parallax attention mechanism
in the feature aggregation part. It consists of three mecha-
nisms: parallax-attention, self-attention, and fusion mecha-
nism. The framework is illustrated in Figure 3.

Since the main purpose of the feature extraction part is
to extract the features (Fl,Fr), which are the optimal for
estimating the stereo correspondence, we construct an ad-
ditional transition residual block to obtain the intermediate
features, which are the optimal features for reconstructing
SR images, denoted as

Fl∗ = HRes−a(F
l), Fr∗ = HRes−a(F

r). (3)

Using (Fl,Fr) and (Fl∗,Fr∗), we will explain more details
how these asymmetric features are translated to the informa-
tive symmetric features.

Parallax-Attention Mechanism. Inspired by PASSR-
net (Wang et al. 2019a), we modified the parallax-attention
mechanism (PAM), which is more suitable for stereoscopic
SR. Through the PAM, the global correspondence in stereo
image is captured to integrate the rich context information
from (IlLR, I

r
LR). For simplification, we abbreviate the tar-

get view as u and the opposite view as v, e.g., when u is left
view, v is right view and vice versa. The features Fu and Fv

are fed into different 1×1 convolution layers α and β respec-
tively. Then, the correlation between row vector of α(Fu)
and β(Fv) are computed, and then the softmax-normalized
correlation plays a role as parallax-attention Pu→v for target
to opposite view.
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Figure 3: Illustration of a self and parallax attention mechanism (SPAM). The discriminative features (Fl,Fr) enter the SAM
and PAM for finding self-attention and parallax-attention. The optimal features for SR are generated by additional residual
block. With the self and parallax attention, more abundant but asymmetric features are generated. By warping the features
of one view to the other view with the disparity maps (Dl,Dr) derived from the parallax-attention maps, stereo-symmetric
features (Gl

agg,G
r
agg) are produced.

In order to enable the feature to possess the plenty of in-
formation from its own Fu∗ and the opposite Fv∗ simultane-
ously, we conduct forward waping of Fv∗ using the parallax-
attention map Pv→u as follows:

Fu
PAM = WPAM (Pv→u,Fv∗), (4)

where WPAM is the forward warping operation, conducted
by matrix multiplication of Pv→u and Fv∗ for the each row.

Self-Attention Mechanism. In addition, we adopt the
self-attention mechanism to create abundant features by ex-
ploiting the self-similarities. However, calculating the self-
similarity over whole pixels causes the expensive compu-
tational burden, which is impractical for implementation.
Therefore, we conduct self-similarity measurement at the
region-level (Tao et al. 2017). The feature map is divided
into several k × k regions. Then, the self-similarity map
Su is obtained by softmax operation on the self-correlation
map over the 1x1 convolution output γ(Fv) and δ(Fv) in
the region-level. The additional features enriching SR using
SAM are as follows:

Fu
SAM = WSAM (Su,Fu∗), (5)

wherw WSAM is the warping operation, conducted by ma-
trix multiplication of Su and Fu∗ at the region-level.

Fusion Mechanism. To produce the aggregated feature
Gu, which contains the rich context features from its
own image and its counterpart image, we let the concate-
nated features (Fu∗,Fu

PAM ,Fu
SAM ) pass through the sev-

eral residual blocks HRes−b, denoted as

Gu = HRes−b(concat(F
u∗,Fu

PAM ,Fu
SAM )). (6)

Even though these aggregated features (Gl,Gr) are abun-
dant for SR, they are not symmetric according to the inherent
disparity in stereoscopic images, which results in the stereo-
inconsistent SR images.

To alliviate the asymmetric problem, we aggregate the
features using the disparity obtained by the parallax-
attention maps (Pu→v,Pv→u). First, we find the disparity
Du using an argmax operation on Pu→v as

Du(i, j) = j − argmax
k

Pu→v (i , j , k). (7)

Here, Pu→v(i, j, k) represents the attention of pixel (i, j) of
view u to pixel (i, k) of view v. Also, we obtain the valid
mask Vu by checking the left-right consistency between the
disparity maps (Du,Dv) as follows

Vu(i, j) =

{
1, if ‖Du(i, j)−Dv(i, j −Du(i, j))‖1 < τ
0, otherwise,

(8)

where τ is a threshold, which determines how much errors
between left and right disparities able to be accepted. Here,
we set the τ to 2.

With these disparity maps (Du,Dv) and valid masks
(Vu,Vv), we make the stereo-symmetric features as

Gu
agg =

Gu +Wdisp(Dv,Gv)

2
�Vu+Gu�(1−Vu), (9)

where Wdisp is the forward warping operation based on
the disparity. As a result, the stereo-symmetric features
(Gl

agg,G
r
agg) are fed into the reconstruct module to gen-

erate stereoscopic SR images.

Training Loss

In this section, we introduce three loss functions that are ap-
plied for training our network: reconstruction loss, parallax-
attention loss and stereo-consistency loss.

Reconstruction Loss. Similar with other conventional
CNN-based SR methods, we use mean square error (MSE)
to produce the reconstructed SR image identical to the
groundtruth HR image pixel-wisely, thus achieving higher
PSNR.

Lrec = ‖IuSR − IuHR‖22. (10)
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Parallax-Attention Loss. Since our method does not use
the groundtruth disparity to train the SPAM, we obtain the
stereo correspondence pair (Dl,Dr), which encodes the
disparity information of stereo images, in an unsupervised
manner. Following the unsupervised learning methods of
depth estimation (Godard, Mac Aodha, and Brostow 2017;
Wang et al. 2019a; Joung et al. 2019), we formulate the
parallax-attention loss consisting of photometric, smooth-
ness and cycle term for training the PAM, such as Lpa =
(Lphoto + Lsmooth + Lcyc)

First, we apply the photometric term to give the pixel-wise
photometric consistent constraints. In the ideal case, the left
and the warped right image to the left view should be iden-
tical. Based on the estimated parallax-attention map Pv→u,
it enforces the photometric consistency between input stereo
images, defined as

Lphoto = ‖IuLR −WPAM (Pv→u, IvLR)‖1, (11)

where (IuLR, I
v
LR) are the input LR stereo image.

To alleviate the unexpected noise value in the parallax-
attention maps, we adopt the smoothness term to make it
locally smooth as follows

Lsmooth =
∑

i,j,k

‖Pv→u(i, j, k)−Pv→u(i+ 1, j, k)‖1+

‖Pv→u(i, j, k)−Pv→u(i, j + 1, k + 1)‖1.
(12)

Lastly, we use the cycle-consistency term, which is the
widely used concept in diverse tasks (Zhou et al. 2016;
Zhu et al. 2017; Joung et al. 2019). The point in Iu is warped
to the v view via Pv→u, and then the warped point in the v
view is warpped again to the original view via Pu→v . Then,
it is natural that this point should be located in the start point.
Thus, we design the cycle term to regularize the PAM train-
ing as follows

Lcycle = ‖Pv→u→v − I‖1, (13)

where I is the identical matrix.

Stereo-consistency Loss. To enforce the stereo consis-
tency into a pair of stereo SR outputs, we propose a novel
stereo consistency loss. Preliminarily, Chen et al. (2018) de-
fined a disparity loss to obtain the stereo-consistent style
transfer results. It enforces the stylized result at one view
to be close to the warped result from the other view explic-
itly. The proposed stereo-consistency loss has the same goal
to the disparity loss in that the left and right SR results have
to be consistent in the corresponding regions. To do so, we
give the constraint that the warped SR image using the ob-
tained disparity map should be identical to the opposite HR
image, defined as

Lstereo =
∑

v

‖Vu
HR � (Wdisp(Dv

HR, I
v
SR)− IuHR)‖22

(14)
where � is the element-wise multiplication. Note that in or-
der to consider only valid region and exclude the rest region,
we apply the valid mask. In addition, Dv

HR is excluded for
testing the network.

Overall Loss Function. In summary, we optimize our
model in a unified and end-to-end manner. The total loss
function consists of three losses, expressed as follows:

Ltotal = Lrec + λpaLpa + λstereoLstereo, (15)

where λpa and λstereo control the relative weights between
them.

Experiments

Implementation Details

We used the Middlebury (Scharstein and Pal 2007), Flickr
1024 (Wang et al. 2019b), and KITTI 2012 (Geiger, Lenz,
and Urtasun 2012) and KITTI 2015 (Menze and Geiger
2015) dataset to train and evaluate our method. To be spe-
cific, we divide the 60 Middlebury datasets into 30 pairs
for training, 10 pairs for validation, and 20 pairs for evalu-
ation. Following StereoSR (Jeon et al. 2018), we downsam-
pled Middlebury by a factor of 2 to generate HR images.
As provided the Flickr 1024 dataset, we used 800 pairs for
trainining, 112 pairs for validation, and 112 pairs for evalua-
tion. We select 40 pairs from KITTI 2012 and 2015 datasets,
and they are used for only test. To make training patches, we
first downsampled HR images using bicubic interpolation.
Then we cropped 30 × 90 patches in the 4×downsampled
images to take them as LR inputs, and cropped correpond-
ing patches in HR images to use it as HR groundtruth.

Our network was implemented using PyTorch and trained
on NVIDIA GeForce GTX TitanX GPU. The weights of
networks are initialized by a Gaussian distribution with
mean 0 and standard deviation 0.01, and the Adam opti-
mizer (Kingma and Ba 2014) was employed for optimiza-
tion, where β1 = 0.9, β2 = 0.999, and ε = 10−8. Addi-
tionally, for region-level SAM, we set k = 4. The initial
learning rate is 10−4 and halved at every 30 epochs, and the
batch size is 2. We set the parameters of the loss functions,
such as λpa = 0.005, λstereo = 1.

Comparison with State-of-the-Art Methods

We evaluated our method with the state-of-the-art single im-
age SR methods, SRCNN (Dong et al. 2015), VDSR (Kim,
Lee, and Lee 2016), DRRN (Tai, Yang, and Liu 2017), and
LapSRN (Lai et al. 2017), and stereo image SR methods,
StereoSR (Jeon et al. 2018), and PASSRnet (Wang et al.
2019a) both quantitatively and qualitatively.

Quantitative Evaluation. We measure the SR perfor-
mance using three error metrics, Peak Signal-to-Noise Rate
(PSNR), Structural Similarity (SSIM), and Warping error.
The quality of SR image can be analyzed using the PSNR
and SSIM, where higher is better. Also, since the stereo im-
age SR methods (Jeon et al. 2018; Wang et al. 2019a) are
trained to infer SR left image only, we measured PSNR and
SSIM on only SR left images for the fair comparison. The
stereo consistency property can be analyzed using the warp-
ing error, which measures the mean square error between SR
left and warped SR right images using the groundtruth dense
disparity, so it can be measured only in Middlebury dataset.

The quantitative comparisons were shown in Table 1. In
terms of PSNR and SSIM, compared to the single image
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Figure 4: Qualitative results (×4) on image “Shelves” from Middlebury 2014 dataset.

Figure 5: Qualitative results (×4) on image “Validation 19” from Flickr 1024 dataset.

SR methods, it is natural that the stereo image SR meth-
ods outperform because they can utilize additional informa-
tion. Among the stereo image SR methods, our method has
shown the state-of-the-art performance in PSNR and SSIM.
It demonstrates that our method can formulate the informa-
tion well to recover the HR details well. Moreover, in terms
of the warping error, our method shows the lowest score,
which means that the SR stereo images obtained by other
methods contain the inconsistent textures

Qualitative Evaluation. We qualitatively evaluate our
method in Figure 4 for Middlebury (Scharstein and Pal
2007) dataset and Figure 5 for Flickr 1024 (Wang et al.
2019b) dataset. In Figure 4 and 5, we show the SR results
of left image at the first row. In order to compare the quality
of stereo-consistency, we represent magnified red regions of
left SR results at second row, and corresponding blue re-
gions of right SR results at third row in Figure 4 and 5.
Super-resolved outputs of stereoSR and PASSRnet on right
view are obtained by inverting an order of left and right in-
puts. From Figure 4 and 5, we can see that most of other
SR models cannot generate consistent fine details of stereo
pairs. In contrast, our model shows more consistent results

and further recovers more accurate details closer to HR im-
ages. Specially, even if scale of texture in red and blue re-
gions in Figure 4 is so small that it is hard to recover the
texture, our model shows consistent results of left and right
SR image. Moreover, in Figure 6, it can be observed that our
model outperforms other methods on non-static scene like
KITTI dataset (Geiger, Lenz, and Urtasun 2012) as well.

Ablation Study

We perform an ablation study to analyze how the compo-
nent of SPAM works for the stereoscopic SR. From baseline
method, which excludes SPAM, we include the parallax-
attention map (+P), self-attention map (+P+S), and stereo
consistency loss (+P+S+C) step by step. As shown in Ta-
ble 2, by enriching the information using the parallax-
attention (+P), we can obtain more high-quality results be-
cause the information from its counterpart can be added.
However, by enforcing the parallax-attention in the feature-
level naively, it is difficult to preserve the stereo-consistent
property in SR stereo images. Also, adding the self-attention
(+S) helps to improve the SR performance, but still it can-
not produce the stereo-consistent results. Finally, we fig-
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Table 1: Quantitative results (4×) with single image SR methods and stereo image SR methods on various datasets.
Single Image SR Stereo Image SR

Error Metric Dataset SRCNN VDSR DRRN LapSRN StereoSR PASSRnet Ours

PSNR/SSIM

Middlebury 27.34 / 0.870 29.35 / 0.905 29.41 / 0.906 29.39 / 0.910 28.47 / 0.897 29.89 / 0.917 30.04 / 0.921
Flickr 1024 22.01 / 0.715 22.73 / 0.752 22.751 / 0.755 22.71 / 0.756 22.53 / 0.723 23.21 / 0.779 23.35 / 0.787
KITTI 2012 24.82 / 0.835 25.93 / 0.858 25.911 / 0.860 25.99 / 0.862 25.72 / 0.848 26.29 / 0.869 26.34 / 0.873
KITTI 2015 23.39 / 0.818 24.36 / 0.846 24.291 / 0.848 24.40 / 0.850 24.01 / 0.824 24.77 / 0.861 24.86 / 0.865

Warping Error Middlebury 0.000469 0.000433 0.000318 0.000321 0.000419 0.000291 0.000259

*Notes : The warping error is measured in only Middlebury dataset because it has the dense disparity groundtruth.
The higher PSNR and SSIM is better, and the lower warping error is better.

Figure 6: Qualitative results (×4) on image “testing 19” from KITTI 2015 dataset.

Table 2: Results (4×) of ablation study of SPAM on Middle-
bury dataset.

Baseline +P +P+S +P+S+C

PSNR 29.85 29.98 30.08 30.11
SSIM 0.901 0.919 0.924 0.925

Warping Error 0.000361 0.000328 0.000327 0.000259

ure out that applying our SPAM and stereo-consistency loss
(+P+S+C) shows not only the best SR performance but
also stereo-consistent SR images. It demonstrates that our
SPAM and loss function are well organized mechanism for
the stereoscopic SR tasks qualitatively. In Figure 7, we can
find that the results of SPAM (+P+S+C) presents the well-
reconstructed and stereo-consistent SR images.

Conclusion

We present a novel stereoscopic super-resolution method by
imposing stereo-consistency constraint on feature aggrega-
tion and training loss functions. Specifically, the proposed
self and parallax attention mechanism (SPAM) in the fea-
ture aggregation part enables not only generating rich infor-
mative features for SR, but also imposing view-symmetric
consistency on features for stereo-consistent SR. In addi-
tion, our method enforces the stereo-consistency in the loss
function using the disparity driven by the parallax-attention
mechanism in SPAM to produce the stereoscopic SR. We

Figure 7: Visual results of ablation studty. These results are
achieved on “Midd1” of Middlebury 2006 dataset.

evaluated our proposed method on various datasets, which
demonstrates that our method definitely outperforms other
CNN-based image super-resolution methods.
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