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Abstract

Multi-person pose estimation aims to detect human keypoints
from images with multiple persons. Bottom-up methods for
multi-person pose estimation have attracted extensive atten-
tion, owing to the good balance between efficiency and accu-
racy. Recent bottom-up methods usually follow the principle
of keypoints localization and grouping, where relations be-
tween keypoints are the keys to group keypoints. These re-
lations spontaneously construct a graph of keypoints, where
the edges represent the relations between two nodes (i.e.,
keypoints). Existing bottom-up methods mainly define rela-
tions by empirically picking out edges from this graph, while
omitting edges that may contain useful semantic relations.
In this paper, we propose a novel Dynamic Graph Convo-
lutional Module (DGCM) to model rich relations in the key-
points graph. Specifically, we take into account all relations
(all edges of the graph) and construct dynamic graphs to tol-
erate large variations of human pose. The DGCM is quite
lightweight, which allows it to be stacked like a pyramid ar-
chitecture and learn structural relations from multi-level fea-
tures. Our network with single DGCM based on ResNet-50
achieves relative gains of 3.2% and 4.8% over state-of-the-art
bottom-up methods on COCO keypoints and MPII dataset,
respectively.

Introduction

Multi-person human pose estimation aims to recognize hu-
man keypoints from images, which usually involve multi-
ple persons. An efficient and accurate human pose estima-
tion approach can benefit extensive real-life applications,
including activity recognition (Yan, Xiong, and Lin 2018),
human-computer interaction, virtual or augmented reality,
Al Coach(Wang et al. 2019), and so on. Although large
progress has been seen in recent years, the challenges of
large variations in occlusion, truncation, and viewpoints re-
main.

Two mainstream approaches are prevalent in the field of
multi-person pose estimation, including fop-down (Newell,
Yang, and Deng 2016; Chen et al. 2018; Xiao, Wu, and
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Figure 1: Illustration of the hand-crafted graph and a dy-
namic graph generated by our model. Left: the hand-crafted
graph where each edge represents a physical relationship
between two keypoints. Right: a dynamic graph which can
model rich relations. Take the right shoulder for example.
The hand-crafted graph only models the relations with the
neck and right elbow. The dynamic graph can further model
the relations with left shoulder and pelvis, which is more ro-
bust to occlusion or complex actions. [Best viewed in color].

Wei 2018; Sun et al. 2019; Qiu et al. 2019) and bottom-
up (Cao et al. 2017; Kreiss, Bertoni, and Alahi 2019;
Papandreou et al. 2018) manners. The former first detect hu-
mans with bounding boxes and then perform single-person
pose estimation for each bounding box. The latter directly
localize all keypoints from multi-instances and then group
keypoints into persons. Bottom-up pose estimation methods
attract increasing attention, especially in the industry com-
munity, owing to the good balance between efficiency and
accuracy.

Since bottom-up methods are box-free, human contextual
relations are the keys to identify the keypoints belonging to
one instance and distinguish different instances. These re-
lations spontaneously construct a graph, which consists of
nodes (keypoints) and edges (relations between keypoints).
These edges are extensively used to group keypoints into
persons. However, recent bottom-up methods mainly define
relations by picking out edges from this graph with hand-



crafted rules, while the unpicked edges may also contain
useful semantic information for pose estimation, as shown
in Figure 1.

In this paper, we propose a novel network, named Dy-
namic Graph Convolutional Network (DGCN), to learn con-
textual relations of the graph for bottom-up pose estimation.
To model rich relations of human keypoints, we construct
a graph which contains all the edges between keypoints.
Based on the prior that keypoints have strong relations when
they are close to each other, we construct a soft graph where
the value of each edge is related to the distance of the two
keypoints. Note that, this soft graph is obtained by aver-
aging distances between keypoints on the training dataset.
Thus this soft graph serves as a static graph. However, the
relations of human keypoints dynamically change accord-
ing to the variations in occlusion, truncation, viewpoints and
so on. A static graph is insufficient to model the dynamic
relations of human pose. To relieve this problem, we pro-
pose to construct dynamic graphs to improve the robustness
of networks. Specifically, each element in a dynamic graph
conforms to a Bernoulli distribution, where the element at
the same location in the soft graph serves as the probability.
This dynamic graph changes in each iteration during train-
ing, which largely increase the capacity of the network to
cover variations of human poses. During inference, DGCM
is frozen to produce consistent output. The DGCM is quite
lightweight, allowing it to be stacked like a pyramid archi-
tecture to further improve performances.

We conduct extensive ablation studies and comparison
experiments on two widely-used datasets, including COCO
keypoints and MPII, to demonstrate the effectiveness of our
DGCN. Compared with state-of-the-art bottom-up meth-
ods, our network with single DGCM based on ResNet-50
achieves relative gain of 3.2% and 4.8% on the two datasets.

Related work

In recent years, benefited from the powerful representa-
tion of the convolutional neural network, the pose esti-
mation methods based on CNN bring a great process in
2D pose estimation. Compared with traditional methods
(Dantone et al. 2013), which rely on hand-craft features
and pictorial structures, recent methods (Cao et al. 2017;
Papandreou et al. 2018; Xiao, Wu, and Wei 2018; Kreiss,
Bertoni, and Alahi 2019; Sun et al. 2019; Li et al. 2019;
Moon, Chang, and Lee 2019) extract deep features by con-
volutional neural networks and decode features into key-
point heatmaps. Good feature representations with structural
information are important to recognize human keypoints
(Tang and Wu 2019). Some attention-based methods(Ma et
al. 2018; Fu, Zheng, and Mei 2017; Qiu et al. 2019) have
been used for capturing good pose feature. Since human
pose is a kind of graph with strong structural information,
recent works (Yan, Xiong, and Lin 2018; Zhao et al. 2019;
Ge et al. 2019) build human pose graph neural networks to
deal with skeleton-based task.

Multi-Person Pose Estimation

All of these methods based on CNN for multi-person pose
estimation can be grouped into fop-down methods and
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bottom-up methods. The performance of top-down meth-
ods relies on the human detector. Bottom-up methods are
box-free and thus usually run fast than top-down methods.
Therefore, bottom-up methods are widely used in the indus-
try community. The method of (Cao et al. 2017) can run in
real-time, which designs a model to learn keypoint heatmaps
and part association fields (PAF) simultaneously. It develops
a greedy algorithm to group keypoints into persons. Other
methods (Papandreou et al. 2018; Kreiss, Bertoni, and Alahi
2019; Newell, Huang, and Deng 2017) design more fine-
grained supervisions to learn better heatmaps and PAF.

Graph Convolutional Network

In order to deal with the data with the graph structure,
graph neural network (GCN) is introduced in (Gori, Mon-
fardini, and Scarselli 2005; Scarselli et al. 2008; Kipf and
Welling 2017). Spectral perspective and spatial perspective
are two mainstreams to construct GCN. Spectral analysis
are performed in the former methods (Duvenaud et al. 2015;
Li et al. 2016; Kipf and Welling 2017). For the spatial do-
main, the methods of (Bruna et al. 2014; Niepert, Ahmed,
and Kutzkov 2016) construct graph CNN filters, which can
be applied to the graph nodes and their neighbors. Inspired
by the second stream, we construct dynamic graph convolu-
tional networks to learn relations of human keypoints.

Approach

Bottom-up pose estimation methods try to localize keypoints
and group keypoints into persons using the relations between
keypoints. Recent works mainly rely on modeling limb rela-
tions between keypoints pairs to group keypoints, while the
body relations among keypoints graph are neglected. The
fact that human body keypoints construct a graph naturally
motivates us to design novel graph convolutional network
(GCN) to model body relations among keypoints graph.

In this section, we first introduce the whole pipeline for
bottom-up pose estimation. Then, we describe how to lever-
age GCN to model relations among keypoints graph. Last,
we propose DGCN which constructs dynamic keypoints
graphs based on the spatial relations of keypoints to toler-
ate human pose variations.

Bottom-up Pose Estimation Pipeline

Bottom-up pose estimation methods try to learn two kinds
of heatmaps from the deep neural network, including key-
point heatmaps and relation heatmaps. From the keypoint
heatmaps, keypoints can be localized by searching for the
local peaks. Using the relation heatmaps (usually in the form
of limb relation), keypoints can be grouped into persons. In
recent years, various ideas are explored to optimize the su-
pervisions for heatmaps and grouping strategies.

We follow the state-of-the-art bottom-up method (Kreiss,
Bertoni, and Alahi 2019) to construct supervisions for train-
ing keypoint heatmaps and relation heatmaps (called PIF and
PAF in this paper). Specifically, keypoint heatmaps consist
of confidence maps H, and offsets maps {H,, H,}, while
relation heatmaps consist of limb confidence maps A, and
limb offset maps {A,, A,}. Binary cross-entropy loss is
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Figure 2: The architecture of pyramid DGCN. Given an image, we extract deep features F (s denotes stride, s = 4,8, 16)
from the backbone (e.g. ResNet). For a feature with the shape of C' x H x W, DGCM first reduce the number of channels
to K (K denotes the number of predefined keypoints), and then construct a dynamic graph A, with the shape of K x K
to model relations between these K channels. W, is learnable relation weights with the shape of K x K. The outputs of
DGCM are decoded into keypoint heatmaps and relation heatmaps. C'onv denotes the convolution layer. ©® denotes element-
wise multiplication. ® denotes matrix multiplication. & denotes element-wise sum. We randomly select one of A9 ... A% in

each iteration during training.

used for learning confidence maps and Smooth — L loss
is used for learning offsets maps.
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where ¢ is total loss. £y and ¢4 are keypoint heatmaps
loss and relation heatmaps loss. ¢ and ¢ are binary cross-
entropy loss and Smooth — L loss, respectively. «, 6, 3,6
denote loss weights. K and M denote the number of hu-
man keypoints and human defined relations, respectively.
H} Hy,, A7, A3, are groundtruth.

The grouping strategy follows the greedy decoding idea
to group keypoints into persons, which is not the focal point
of this paper, for more details refer to (Kreiss, Bertoni, and
Alahi 2019). The framework of our DGCN is shown in Fig-

ure 2.

GCN for Keypoints Graph Modeling

The fact that human keypoints construct a graph naturally
motivates us to design novel graph convolutional network
(GCN) to model body relations among keypoints graph. K
human keypoints construct a graph, which contains K ver-
texes and K2 edges. Each edge models the relation between
two keypoints. These K2 edges can be formed to an adja-
cency matrix. We use this adjacency matrix to model rela-
tions over keypoint features.

We first introduce a basic GCN for modeling keypoints
relations, which is also described in (Zhao et al. 2019).
The keypoints graph G = (V| E) consists of the keypoints
set V.= {v;]i = 1,..., K} and limbs set E = {e;|i
1,..., M}, where M denotes the number of hand-crafted
limbs. Let X! denote the representation of keypoint v; in
the Ith layer. We define A € [0, 1]**¥ as the adjacency ma-
trix of graph G, where a;; = 1 when the ith keypoint has
connection with jth keypoint, and a;; = 1 for all <. Then,
the graph convolution operation can be formulated as

X = g(WX'A)

“4)

where A is symmetrically normalized from A. o denotes
non-linear function (e.g. ReLU). To reduce computation
cost, we define W as convolution with kernel size of 1.

Dynamic Graph Convolutional Network

The basic GCN is able to learn relations on the human-
defined edges (where a;; = 1) of the keypoints graph
(here the human-defined adjacency matrix is denoted as Ay),
while it may miss important information on the undefined
edges (where a;; = 0). To solve this problem, we propose
to use a soft adjacency matrix where a;; is related to the
spatial distance of two keypoints. Specifically, this soft ad-
jacency matrix exploits the prior that keypoints are closer to
each other have stronger relations. Experiments in the next
section show the superiority of this soft adjacency matrix
over basic GCN.

Since the relations between human keypoints change dy-
namically according to the viewpoints, occlusion, and trun-
cation, we propose DGCN to further improve the capacity
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Figure 3: Different adjacency matrixes for GCN. The shape of A is K x K, which represents the relation among keypoints. Aj
is diagonal matrix. Ay, is hand-crafted adjacency matrix. A; is soft adjacency matrix. A4 is dynamic adjacency matrix generated

by DGCM.

of our model to tolerate human pose variations. Specifically,
we adopt a sampling strategy to construct dynamic graph
based on the soft adjacency matrix. We construct dynamic
graph during training and freeze it during inference, just like
Dropout (Srivastava et al. 2014).

Soft Adjacency Matrix The distance matrix M, is de-
rived from the training dataset. The distance M’ between
two keypoints V' and V7 is

1 a1
1 7 ]
My = > V=V
n=0

where s,, denotes the scale of the person and N denotes the

numbers of all persons in training dataset. The diagonal val-
ues of M are 0.

The soft adjacency matrix A, is obtained by a softmax

function over distance matrix M, with a scale parameter ~y.

) (6)

(&)

Ay =o(

’}/ —
MY
where so ftmax function o is applied on the rows (diagonal

values are ignored). Then we set A¥ = 1 for all diagonal
elements.

Dynamic Adjacency Matrix Dynamic adjacency matrix
Ay is constructed based on the soft adjacency matrix Ag.
Specifically, each element Agj conforms to a Bernoulli dis-
tribution, where the corresponding soft adjacency value A%
serves as the probability

A ~ B(x, AY) ™
where B is Bernoulli distribution. During training, Ay
dynamically changes in each iteration, according to the
Bernoulli distribution. For inference, A} = 1 for all ele-
ments.

We also study the influence of different adjacency matrix.

As shown in Figure 3, different adjacency represents differ-
ent pose graph.
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Table 1: The Results on COCO Keypoints val2017. The in-
put size of an image is 641 x 641. Backbone is ResNet-
50. The baseline is the model without adding GCN mod-
ules (Kreiss, Bertoni, and Alahi 2019). I means unit diago-
nal matrix and use in equation 4, which is a simple version
of the GCN model. A, means a fixed human keypoints ad-
jacency matrix constructed by prior knowledge and use in
equation 8. A and A, are introduced in section methods.
We use Fig only.

Method | baseline
AP 0.626

GCN-A4;
0.636

GCN-4,,
0.639

GCN-A,
0.641

DGCN-A4,
0.646

Dynamic Graph Convolution Module After obtaining
the dynamic adjacency matrix Ay, we recap the GCN mod-
ule from equation 4 as dynamic version:

XH = (WX (W, © A)) (8)

where W; € RE*XK is a learnable weights matrix accom-
panied with dynamic adjacency matrix A. © is element-wise
multiplication. 3 is a so ftmax operation performed on each
row of (W ® A). o is a ReLU layer. During training, Wy is
updated by the supervision of the loss function and learn to
model the weight of each limb relation.

Equation 8 is designed to learn relations between key-
points. We also follow (Zhao et al. 2019) to add a non-local
layer to learn spatial relations from features. For simplicity,
this module is named as DGCM. More details are shown in
Figure 2.

Pyramid DGCN Since the scales of instances are differ-
ent, multi-scale features are useful for improving the adap-
tive ability of the network. To further explore the capacity of
DGCN, we design and implement the pyramid DGCN.

As shown in Figure 2, we extract features from multiple
stages of the ResNet backbone. Let F denotes the feature
extracted from the stage that has a stride of s based on the in-
put image. We use three features from the ResNet backbone



Table 2: The performance of DGCN based on ResNet-50
on COCO Keypoints val2017 with different weights scale
parameter . We use A, as adjacency matrix. We use Fig

only.
y 0.01 0.1 0.5 1 5 100
AP | 0.638 | 0.639 | 0.641 | 0.641 | 0.641 | 0.639

Table 3: The results of pyramid DGCN on COCO Keypoints
val2017. Input size of an image is 641 x 641. DGCN-50
denotes the DGCN model is based on ResNet-50. F; denotes
the DGCN head(one DGCN head consists of two DGCMs)
used in model.

Method A DGCN-Head AP

baseline - - 0.626
DGCN-50 | Ay Fig 0.646
DGCN-50 | 4, Fig & Fy 0.651
DGCN-50 | A, | Fi6 & Fs & Fy | 0.652

to form a pyramid, including Fy, Fg and Fig. Each feature
goes through a DGCM and the outputs are downsampled to
the same size and combined by an addition operation:

Fy= Y ¢(F)
s€{4,8,16}

where ¢ denotes the DGCM. The output feature of pyramid
DGCN is used for predicting keypoint heatmaps and limb
heatmaps.

©)

Experiments

In this section, we introduce the details of implement-
ing DGCN and experiments. We use two pose estimation
datasets: MS COCO and MPII. We conduct ablation studies
on COCO and report comparison results on two datasets.

Implement details

As Figure 2 shown, the channels of deep features F are re-
duced to K which represents the number of keypoints of one
person. Then, intermediate supervisions of keypoints confi-
dence maps are used after reducing channels. The weight of
intermediate supervision is ; for training and N represents
the number of DGCM. «, 6, /5 and § equal 30, 2, 50 and 3, re-
spectively. We set y as 0.5 for all experiments, except for the
ablation experiments on . ResNet pre-trained on ImageNet
is used. During training, we employ SGD for optimization
with an initial learning rate of 0.001. We freeze the weights
of ResNet in the first epoch and the total epoch is 100. Two
NVIDIA Tesla V100 GPUs are used and batch size is 8.

We init Aj, for graph convolutional network following the
human skeleton knowledge in the basic GCN version. Ay, is
fixed for testing. However, A, is dynamic in training. There-

fore, we set A;j = 1 for testing.

Dataset & Evaluation

We conduct experiments on MS COCO (Lin et al. 2014),
MPII (Andriluka et al. 2014), and CrowdPose (Li et al.
2019) datasets.
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Table 4: Comparison of model params with the baseline
model of Pifpaf (Kreiss, Bertoni, and Alahi 2019) with dif-
ferent backbones.

Method DGCN heads | params (MB) | AP
baseline-50 - 96 0.626
DGCN-50 1 102 0.646
DGCN-50 2 121 0.651
DGCN-50 3 127 0.652
baseline-101 - 169 0.657
DGCN-101 1 174 0.673
baseline-152 - 229 0.674
DGCN-152 1 234 0.688

Table 5: Results of Pifpaf and DGCN with different back-
bones on COCO and crowdpose(Li et al. 2019) dataset.

Method DGCN heads Dataset AP
baseline-ResNext50 - 0.638
DGCN-ResNext50 1 0.651
baseline-DensNet121 - Coco 0.618
DGCN-DensNet121 1 0.636
baseline-ResNet50 - CrowdPose 0.563
DGCN-ResNet50 1 ) 0.591

COCO is a large database with more than 200k images.
More than 150k human instances are annotated in the train
and validation dataset. The annotation of the COCO dataset
contains 17 keypoints for a person, and the invisible key-
points will be annotated specifically. The evaluation metric
on the COCO dataset is mAP based on object keypoints sim-
ilarity(OKS). We evaluate on COCO validation dataset and
test-dev dataset.

MPII dataset includes over 25k images. More than 40k
human instances are annotated and each person is annotated
with 16 keypoints. The evaluation metric is PCKh which
calculates the precision of correct keypoints with respect to
head.

CrowdPose consists of 20k images, containing about
80k persons. Each person is annotated with 14 keypoints.
CrowdPose dataset follows the evaulation metric of COCO,
but more persons in an same image, which is more difficult.

Ablation Study

We demonstrate the effectiveness of DGCN on the COCO
keypoints dataset. And we study the impact of different soft
adjacency matrix Ag. Then, based on DGCN, we also show
the performance of the pyramid DGCN on COCO keypoints
dataset.

GCN & DGCN Our baseline is the bottom-up method
(Kreiss, Bertoni, and Alahi 2019) for 2D multi-person pose
estimation with ResNet backbone. Two heads are connected
on backbone for generating keypoints confidence maps and
keypoints association maps. This method has the state-of-
the-art performance (mAP of 62.6 based ResNet-50 back-
bone) in bottom-up methods on COCO keypoints dataset.
Following the settings of the experiment of baseline, we con-
duct ablation studies on the COCO validation dataset.



Table 6: Comparison with stat-of-the-art bottom-up methods on COCO Keypoints val2017. Only one DGCN head is used on
the F¢. Results of Pifpaf are cited from (Kreiss, Bertoni, and Alahi 2019). Results of Personlab are cited from (Papandreou
et al. 2018). They just provide the results on ResNet-101 in those paper.

Method Backbone | Input Size | AP | AP0 | AP [ APM [ APT | AR | AR | AR™ | ARM | ART
Pifpaf R-50 641 0.626 | 0.851 | 0.687 | 0.599 | 0.674 | 0.686 | 0.884 | 0.741 | 0.639 | 0.751
DGCN-50(ours) 0.646 | 0.853 | 0.708 | 0.615 | 0.695 | 0.702 | 0.886 | 0.756 | 0.656 | 0.765
Personlab 601 0.541 | 0.764 | 0.577 | 0.406 | 0.733 | 0.577 | 0.787 | 0.613 | 0.435 | 0.774
Personlab 1001 0.646 | 0.854 | 0.698 | 0.576 | 0.753 | 0.684 | 0.873 | 0.735 | 0.608 | 0.793
Personlab R-101 1401 0.665 | 0.862 | 0.719 | 0.623 | 0.732 | 0.707 | 0.887 | 0.757 | 0.656 | 0.779
Pifpaf 641 0.657 | 0.866 | 0.719 | 0.619 | 0.718 | 0.712 | 0.895 | 0.768 | 0.660 | 0.785
DGCN-101(ours) 641 0.673 | 0.867 | 0.741 | 0.638 | 0.727 | 0.722 | 0.894 | 0.781 | 0.676 | 0.788
Pifpaf R-152 641 0.674 | 0.869 | 0.738 | 0.631 | 0.741 | 0.726 | 0.898 | 0.781 | 0.672 | 0.800
DGCN-152(ours) 0.688 | 0.875 | 0.755 | 0.653 | 0.744 | 0.737 | 0.902 | 0.794 | 0.690 | 0.802

Table 7: Results on of our single DGCN model on COCO Keypoints test-dev2017. Input size of image is 641 x 641. Only one
DGCN head is used on Fig. The results of other methods are cited from (Cao et al. 2017), (Newell, Huang, and Deng 2017),
(Papandreou et al. 2018) and (Kreiss, Bertoni, and Alahi 2019), respectively.

Method AP | AP0 [ AP [ APM | APL | AR | AR®® | AR | ARM | ARE

CMU-Pose 0.618 | 0.849 | 0.675 | 0.571 | 0.682 | 0.665 | 0.872 | 0.718 | 0.606 | 0.746
AE 0.630 | 0.857 | 0.689 | 0.580 | 0.704 - - - - -

AE (refine) 0.655 | 0.868 | 0.723 | 0.606 | 0.726 | 0.702 | 0.895 | 0.760 | 0.646 | 0.781

Personlab 0.665 | 0.880 | 0.726 | 0.624 | 0.723 | 0.710 | 0.903 | 0.766 | 0.661 | 0.777

Pifpaf 0.667 | 0.878 | 0.736 | 0.624 | 0.729 | 0.722 | 0.909 | 0.783 | 0.664 | 0.800

DGCN-152(ours) | 0.674 | 0.880 | 0.744 | 0.636 | 0.730 | 0.732 | 0.913 | 0.792 | 0.680 | 0.802

First, we add a simple GCN head on features Fjg with

A = [ following the equation 4. As shown in Table 1
method GCN-A47, the simple GCN modules lead to a rela-
tive improvement of 1.6%, which verifies the effectiveness
of the GCN model.

Second, we change GCN modules as equation 8§, and set
A as Aj, which is generated by human skeleton knowledge
and freeze Aj. Compared with method GCN-A;, method
GCN-A4, brings more potential keypoints relations by key-
points adjacency matrix Ap. As shown in Table 1 method
DGCN- A}, the GCN model with a fixed keypoints relation
matrix Ay, leads to a relative improvement of 2.1% based on
ResNet-50.

Third, as mentioned in the last section, it’s difficult to
decide which keypoint should connect with the other key-
points, which results in the different keypoints adjacency
matrix Ay from different researchers. Therefore, we design
dynamic GCN to handle this problem. We conduct an ab-
lation study about GCN with a soft adjacency matrix. Fol-
lowing the equation 8, we set A = A, (As come from equa-
tion 6). A% represents the probability of keypoint i related to
keypoints j. As shown in Table 1 method GCN-A,, the GCN
model with soft keypoints adjacency matrix A, leads to a
relative improvement of 2.4%. Then, we change the fixed
soft keypoints adjacency matrix A to dynamic adjacency
matrix Ay, which leads to a relative improvement of 3.2%.

In addition, there is a parameter  for generating key-
points relation probability matrix Ag, which controls the
scales of relation weights between keypoints and keypoints.
We also study the impact of different . As shown in Table
2, there is a little difference in performance with different ~.
We think that the learning weights matrix W, counteract the
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influence of different +. But we find that a small or a large ~
will influence the stability of the training model from exper-
iments. Therefore, we set v = 0.5 for other experiments.

Pyramid DGCN Multi-scale features are useful for multi-
person pose estimation in bottom-up methods, because of
the different scales of people in an image. To explore the ca-
pacity of the proposed DGCN models, we design a pyramid
DGCN model to learn multi-scale graph features. According
to the different feature map size in Fjs (s represents stride),
we build a graph feature pyramid network based on ResNet-
50. We firstly only add one DGCN head on F}¢, then obtain
graph features I, which further used to generate keypoint
heatmaps and relation heatmaps. The DGCN-50 model with
one DGCN head obtains an mAP of 64.6 (shown in Ta-
ble 3). After adding graph heads on Fjg and Fg, we sum
the features Fj16 and F,g. Then we just decode the sum of
multi-scale features, which leads to a relative improvement
of 4.0% compared with baseline. Finally, we add three graph
heads on Fig, Fs and F), respectively. Then, we also decode
the sum of these multi-scale features. We find that there are
a little improvement from 2 DGCN heads to 3 DGCN heads.
The performance of the pyramid DGCN is saturated with 3
DGCN heads.

In addition, we make a comparison on COCO and Crowd-
Pose dataset with different backbones. As shown in table
5, DGCN outperform the baseline methods on ResNext
and DensNet backbones. On the more difficult CrowdPose
dataset, DGCN leads a relative improvement of 5.0%.

Comparison of Parameters

Compared with the state-of-the-art method (Kreiss, Bertoni,
and Alahi 2019) in bottom-up methods, as shown in Table



Figure 4: Visualization of the results produced by our DGCN. It shows that DGCN performs well even for challenging cases.

Table 8: Comparison with bottom-up methods on MPII. The results of Joint-Graph, Arttrack, CMU-Pose, RMPE and AE are
cited from (Levinkov et al. 2017; Insafutdinov et al. 2017; Cao et al. 2017; Fang et al. 2017; Newell, Huang, and Deng 2017).

Our DGCN-50 has one DGCN head on Fg.

Method Head | Shoulder | Elbow | Wrist | Hip | Knee | Ankle | Mean
Joint-Graph 89.8 85.2 71.8 59.6 | 71.1 | 63.0 53.5 70.6
Arttrack 88.8 87.0 75.9 649 | 742 | 688 60.5 74.3
CMU-Pose 91.2 87.6 77.7 66.8 | 754 | 68.9 61.7 75.6
RMPE 88.4 86.5 78.6 704 | 744 | 73.0 65.8 76.7
AE 92.1 89.3 78.9 69.8 | 76.2 | 71.6 64.7 71.5
DGCN-50(ours) | 95.6 92.5 83.1 76.5 | 815 | 73.1 65.1 81.2

4, we get a relative improvement of 3.2% AP with adding
one DGCN head based on ResNet-50, which just increases
6M B params. From 1 DGCN head to 2 DGCN head, there
are more about 200/ B params. The reason is that there are
more downsampling layers from Fg to Fjg. In summary, our
DGCN model gains the stat-of-the-art results with small ex-
tra params.

Comparison Experiments on COCO Dataset

COCO Keypoints Validation On the COCO val2017
dataset, we follow the standard experiment settings as the-
state-of-arts approaches (Kreiss, Bertoni, and Alahi 2019),
we report our results with a single scale graph GCN model
based on ResNet-50, ResNet-101 and ResNet-152, respec-
tively. As Table 6 shown, compared with Personlab (Papan-
dreou et al. 2018), we outperform their best results with large
input size. Compared the Pifpaf (Kreiss, Bertoni, and Alahi
2019) (They didn’t provide the results in different metrics
scales, so just comparing on the final AP), we outperform
their results with relative 3.2%, 2.4% and 2.1% AP based
on the different backbone. All the results of our DGCN are
gained with only one DGCN head.

COCO Keypoints Test-dev We also report our results on
the COCO keypoints test-dev dataset. We conduct a compar-
ison with other bottom-up methods for multi-person pose es-
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timation. As shown in Table 7, compared with the-stat-of-art
method (Kreiss, Bertoni, and Alahi 2019), we gain relative
1% overall AP increasing. Visualization results are shown in
Figure 4.

Comparison Experiments on MPII Dataset

As shown in Table 8, the PCKh on symmetric keypoints
(such as shoulders, elbows ...) is the average of left key-
points and right keypoints. Our DGCN also achieves the
state-of-the-art performance in bottom-up methods on the
MPII dataset.

Conclusion

In this paper, we present a novel DGCN for 2D multi-person
pose estimation. DGCN aims to learn rich relations be-
tween human keypoints and tolerate large variations of hu-
man pose. Extensive ablation studies and comparison exper-
iments on two widely-used datasets demonstrate the effec-
tiveness of DGCN. We also notice some limitations of this
work. First, DGCN is only used for learning relations from
features in this paper, while it should also work for grouping
keypoints into persons. Second, a keypoints graph related to
human action may work better than the current DGCN. We
leave these for future exploration.
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