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Abstract 
Generalized zero-shot learning (GZSL) is a challenging task 
that aims to recognize not only unseen classes unavailable 
during training, but also seen classes used at training stage. 
It is achieved by transferring knowledge from seen classes 
to unseen classes via a shared semantic space (e.g. attribute 
space). Most existing GZSL methods usually learn a cross-
modal mapping between the visual feature space and the 
semantic space. However, the mapping model learned only 
from the seen classes will produce an inherent bias when 
used in the unseen classes. In order to tackle such a prob-
lem, this paper integrates a deep embedding network (DE) 
and a modified variational autoencoder (VAE) into a novel 
model (DE-VAE) to learn a latent space shared by both im-
age features and class embeddings. Specifically, the pro-
posed model firstly employs DE to learn the mapping from 
the semantic space to the visual feature space, and then uti-
lizes VAE to transform both original visual features and the 
features obtained by the mapping into latent features. Final-
ly, the latent features are used to train a softmax classifier. 
Extensive experiments on four GZSL benchmark datasets 
show that the proposed model significantly outperforms the 
state of the arts. 

 Introduction   
In recent years, deep learning techniques have developed 
rapidly, partly thanks to the widespread availability of 
large-scale labeled datasets. For example, in image classi-
fication, learning an excellent classification model always 
requires a sufficiently large number of manually labeled 
samples per category as a training set. However, the object 
categories in reality follow a long-tailed distribution. For 
some rare objects, only a limited number of labeled sam-
ples can be provided or even no samples available. In addi-
tion, new object categories may emerge dynamically. In 
this case, the performance of the deep neural network is 
significantly degraded. Therefore, how to train the classifi-
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cation model with a limited number of labeled samples or 
even no samples has attracted considerable interest in aca-
demia in recent years, which motivates the emergence of 
few-shot learning (Fei-Fei, Fergus, and Perona 2006) and 
zero-shot learning (ZSL) (Larochelle, Erhan, and Bengio 
2008; Lampert, Nickisch, and Harmeling 2009), respec-
tively.  
 ZSL aims to identify novel (unseen) classes that do not 
provide any training samples. In ZSL, the seen classes and 
the unseen classes are taken to train and test, respectively. 
However, the seen and unseen classes are completely dif-
ferent categories. The performance of ZSL depends entire-
ly on the classification accuracy on the unseen classes, as 
shown in Figure 1(a). Since the objects that need to be rec-
ognized in real scenario may come from the unseen classes 
or from the seen classes instead of just from the unseen 
classes, ZSL is extended to GZSL (Scheirer et al. 2013). 
Like ZSL, only the seen classes are available while training 
for GZSL. Unlike ZSL, GZSL classifies not only the un-
seen classes but also the seen classes, as shown in Figure 
1(b). The performance of GZSL depends on the harmonic 
mean of the seen and unseen classes’ classification accura-
cy. Therefore, GZSL is more realistic and challenging than 
ZSL and this paper is dedicated to GZSL task. Since the 
images of the unseen classes cannot be obtained during the 
training phase, the semantic information, such as attributes 
(Farhadi et al. 2009; Ferrari and Zisserman 2008), word 
vectors (Mikolov et al. 2013) and sentence descriptions 
(Reed et al. 2016), shared between the classes is usually 
used to transfer knowledge from the seen classes to the 
unseen classes for realizing the unseen classes recognition. 
The semantic information is also called semantic embed-
ding, class embedding or class prototype. 

Most of the existing GZSL methods focus on building 
an embedding model that first learns the mapping between 
visual feature space and semantic space (Akata et al. 2013; 
Frome et al. 2013; Lampert, Nickisch, and Harmeling 
2014; Romera-Paredes and Torr 2015; Reed et al. 2016; 
Zhang, Xiang, and Gong 2017; Sung et al. 2018; Wei et al. 
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2019). Then a nearest neighbor (NN) search is performed 
in the embedding space shared by image features and class 
embeddings to predict class labels. Since the seen classes 
and the unseen classes are completely different categories, 
the embedding model learned only from the seen classes 
will generate a bias when used in the unseen classes, that 
is, the projection domain shift (Fu et al. 2015). The essen-
tial cause of the bias problem is the lack of unseen sam-
ples.  

Recently, some works have already regarded GZSL as a 
missing data problem (Mishra et al. 2018; Verma et al. 
2018; Xian et al. 2018b; Li et al. 2019). In order to solve 
this problem, generative adversarial networks (GAN) 
(Goodfellow et al. 2014) or VAE (Kingma and Welling 
2013) are firstly utilized to generate synthetic features of 
unseen classes from class embeddings to control the ratio 
between the seen and unseen samples. This process is 
called feature generation. Then the synthetic features along 
with the original features of the seen classes are taken to 
train a linear classifier. This way transforms GZSL into a 
traditional classification task, which alleviates data imbal-
ance between the seen and unseen classes and achieves 
better performance than learning an embedding model. 
Due to the instability of GAN during training (Gulrajani et 
al. 2017), VAE become a better choice. Among those fea-
ture generation methods, a CADA-VAE model proposed 
by Schonfeld et al. (2019) transforms the class embeddings 
and visual features into a latent space of the VAE, which 
alleviates the projection domain shift and improve GZSL 
performance. However, it fails to lear  the mapping be-
tween class embeddings and image features, there is still a 
large bias between latent features transformed from differ-
ent embedding space. 

In order to solve the problems mentioned above, this 
paper proposes a new model that combines a deep embed-
ding network (DE) and a modified VAE (Named as DE-

VAE), as shown in Figure 3. The proposed DE-VAE mod-
el firstly learns a mapping from semantic space to visual 
feature space via the deep embedding network. Secondly, 
both the features obtained by the mapping from class em-
beddings, and the original image features are input into the 
VAE to carry out cross-modal alignment. Thirdly, the class 
embeddings and image features are transformed into latent 
features by the trained deep embedding network and the 
encoder of VAE. Finally, a simple softmax classifier is 
trained using these latent features to implement GZSL. 
 The contributions are as follows: (1) A DE-VAE model 
is proposed for GZSL. This model combines a deep em-
bedding with a modified VAE to learn a latent space 
shared by multi-modal data, and then employs the discrim-
inative latent features to train a powerful GZSL classifier. 
(2) To the best of our knowledge, the proposed model is 
the first to combine the classic GZSL model with the re-
cently emerging feature generation model. This integration 
is simple, effective, easy to implement, and can be trained 
in an end-to-end manner. (3) Extensive experiments are 
carried out on four GZSL benchmark datasets, the results 
show that the proposed model significantly outperforms 
the state of the arts. 

Related Work 
In this section, we summarize the classic GZSL methods 
and the feature generation methods and explain their rela-
tionship to the proposed model. 

Classic GZSL Methods 
The classical GZSL methods first learns a mapping be-
tween the semantic space (S) and the visual feature space 
(V), as shown in Figure 2(a). The mapping direction can be 
divided into three main categories as follow:  

 
Figure 1: Comparison of zero-shot learning and generalized zero-shot learning. 
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(1) V→S. These methods use traditional regression, 
ranking models (Akata et al. 2013; Lampert, Nickisch, and 
Harmeling 2014) or deep neural network regression or 
ranking models (Frome et al. 2013; Reed et al. 2016) to 
learn the mapping function from the visual feature space to 
the semantic space. 

 (2) S→V. Selecting visual feature space as the embed-
ding space: the mapping from the semantic space to the 
visual feature space (Zhang, Xiang, and Gong 2017; Sung 
et al. 2018). Among them, Zhang, Xiang, and Gong (2017) 
argues that the key to make ZSL models succeed is to 
choose the right embedding space. The Mapping from the 
semantic space to the visual space can alleviate the hub-
ness problem (Radovanović, Nanopoulos, and Ivanović 
2010). We adopt this conclusion, thus the deep embedding 
network of the proposed DE-VAE model learns a mapping 
from the semantic space to the visual feature space. 

(3) V, S→M. The third direction is to map the semantic 
space and visual feature space to a common intermediate 
space (M) (Romera-Paredes and Torr 2015; Wei et al. 
2019). 

After training, a nearest neighbor (NN) search in the 
mapped space, i.e. embedding space, is performed to pre-
dict the class label. Specifically, given a test image x, the 
mapping model searches for the class embedding with the 
highest compatibility score, as follow: 

 

Where F is the mapping model, y represents the class label, 
(y) represents the class embedding and w represents the 

parameters of the mapping model.  

Feature Generation Methods 
For the classic GZSL methods mentioned above, only the 
features of the seen classes are available during training, so 
the recognition accuracy of the seen classes is often much 

higher than that of the unseen classes. This large accuracy 
difference leads to a low harmonic mean H. Therefore, 
some researchers recently utilize GAN or VAE to generate 
synthetic features of the unseen classes from class embed-
dings, which we called feature generation methods, as 
shown in Figure 2(b). The feature generation methods can 
be divided into three steps as follows: (1) Training a fea-
ture generation model with image features and class em-
beddings of the seen classes. (2) Using the trained feature 
generation models to generate synthetic features of unseen 
classes from class embeddings. (3) The synthetic features 
of the unseen classes and the original features of the seen 
classes are used to train a linear classifier. The generation 
of the unseen class synthetic features mitigates the data 
imbalance between the seen and unseen classes and im-
proves the recognition accuracy of the unseen classes, thus 
obtains a higher H. 
 GAN consists of a generator and a discriminator that 
compete in a turn-wise min-max game. The generator at-
tempts to fool the discriminator via generating fake data 
that look like real data, and the discriminator determines 
the probability that the data is real or fake. VAE contains 
an encoder and a decoder (Kingma and Welling 2013). The 
encoder represents the input x as a latent variable z with 
Gaussian distribution assumption, and the decoder recon-
structs the input from the latent variable as follows: 

 

 

where E represents the encoder and D represents the de-
coder. The VAE loss can be formulated as: 

 

where the first term is the reconstruction error (REC) and 
the second term is the Kullback-Leibler divergence (KL-
divergence) between q(z|x) and p(z). Let , 
so that the encoder learns μ and Σ, from which the latent 
vector z is generated by the reparameterization trick 
(Kingma and Welling 2013). 
 Among these feature generation methods, Xian et al. 
(2018b) and Li et al. (2019) use GAN, Mishra et al. (2018) 
and Verma et al. (2018) employs VAE from class embed-
ding synthesizing CNN features of the unseen classes to 
solve GZSL task, which achieves better performance than 
classic GZSL methods. However, the training process of 
GAN is relatively unstable (Gulrajani et al. 2017). Instead 
of GAN, we employ VAE. 

In this paper, the proposed DE-VAE model combines a 
deep embedding network with a modified VAE to learn a 
discriminative latent space to help classify, as shown in 
Figure 3. In other words, the proposed model combines the 
advantages of the classic GZSL methods with the feature 

 
Figure 2: The basic framework of classic GZSL methods and 
feature generation methods. The classic GZSL methods learn a 
mapping between semantic space and visual feature space, and 
the feature generation methods transform GZSL into a tradition-
al classification task by generating synthetic features of the 
unseen class. V denotes visual feature space, S denotes semantic 
space and M denotes intermediate space. 
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generation methods  Experimental results and ablation 
study in this paper demonstrate its effectiveness.  

The Proposed DE-VAE Model 
Assume and  are the image features of seen classes 
and unseen classes, respectively. The image feature set: 

.  and  are the labels of the seen classes 
and the unseen classes, respectively. We have 

that is, the training classes and the test classes are dis-
joint. Given a train set of images:   
and their class embedding set: . 
In ZSL, the goal is to learn an image classifier 

, while in GZSL, the task is to learn a classifier 
.  

The architecture of the proposed DE-VAE model is 
shown in Figure 3. It consists of a deep embedding net-
work  and a cross-modal alignment VAE with an encoder 
(E) and two decoders (D1 and D2).  

Deep Embedding Network 
The first component of the proposed DE-VAE model is a 
deep embedding network, whose purpose is to learn the 
mapping from semantic space to visual feature space. Spe-
cifically, it takes the semantic embedding vector of the 
corresponding class as input, and after passing through two 
fully connected (FC) linear + Rectified Linear Unit (ReLU) 
layers, outputs a visual embedding vector , which 
has the same dimensions as the visual feature vector of this 
class, optimizing: 

 

where  is the visual feature vector of the  training im-
age and  is the semantic embedding vector of the  
training image. 

Cross-Modal Alignment VAE  
The modified VAE in the proposed DE-VAE model is 
made of an encoder and two decoders, which aims to align 
data from two different modalities (i.e. image feature and 
class embedding) in the latent space. As shown in Figure 3. 
After mapping class embedding into the visual feature 
space by the deep embedding network, the encoder E trans-
forms the original image feature x and the feature obtained 
from class embedding vector φ(c(y)) into low-dimensional 
latent vectors  and , respectively. Then, through de-
coders D1 and D2,  and  are reconstructed into  
and , which are the same dimensions as the input 
image feature and class embedding, respectively. In this 
process, optimizing: 

 

                    

where  is a hyperparameter to control the weighting of 
the KL-Divergence (Higgins et al. 2017). There are two 
kinds of data modalities: image feature and semantic em-
bedding, so M=2,    

In addition, we minimize the Wasserstein distance be-
tween the latent multivariate Gaussian distributions of the 
two modal data, called Distribution-Alignment (DA) 
(Schonfeld et al. 2019). The DA loss is: 

 

In order to make the modality-specific autoencoder fur-
ther learn similar representations across modalities, we also 
perform a Cross-Reconstruction (CROSS-REC). That is, 
every modality-specific decoder obtains reconstructions by 
decoding the latent feature vector of a sample from another 
modality (but the same class), called Cross-Alignment 
(CA). The CA loss is: 

 

where M = 2, and  is the decoder of  modality. When i 
= 1 and  j = 2, ; when i = 2 and  j = 
1, . 

 The overall loss of the proposed DE-VAE model is de-
fined as: 

 

where  are the weighting factors of the deep em-
bedding network, distribution-alignment and cross-
alignment loss, respectively. 

 
Figure 3: The proposed DE-VAE model contains a deep embed-
ding network ( ) and a cross-modal alignment VAE. The VAE 
consists of an encoder (E) and two decoders (D1 and D2). 
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Comparison of Baseline VAE and DE-VAE Model 
CADA-VAE (Schonfeld et al. 2019) takes image feature 
and class embedding as the input of VAE directly, so it 
requires two different encoder(E1 and E2) instead of our E. 
CADA-VAE achieves stable training and excellent GZSL 
performance. However, it fails to learn the mapping be-
tween class embeddings and visual features before input-
ting them into encoders of VAE. Although cross-alignment 
and distribution-alignment are performed, there is still a 
large bias problem. Specifically, at the softmax classifier 
training stage, the seen classes latent features are obtained 
from the image features of the seen classes using E1, and 
the unseen classes latent features are obtained from the 
class embeddings of the unseen classes using E2. However, 
at test time, the latent features are all obtained from image 
features (whether seen classes or unseen classes) by E1. 
Therefore, the latent features obtained from two different 
embedding space will result in an inherent bias, as shown 
in Figure 4.  

The proposed DE-VAE model effectively alleviates this 
problem. Before the image features and class embeddings 
are fed into the VAE, the proposed DE-VAE model first 
maps them to the same embedding space. Therefore, the 
DE-VAE model only uses one encoder E. This improve-
ment is simple and effective, and can narrow the inherent 
bias between seen and unseen classes latent features, thus 
make the generated latent features more discriminative.  

Implementation Details 
The deep embedding network (φ), encoder (E) and decod-

ers (D1 and D2) in the proposed model are implemented as 
multilayer perceptron (MLP) with one hidden layer. We 
use 1200 and 1560 hidden units for the deep embedding 
network and the encoder, respectively. In addition, the D1 
and D2 have 1450 and 660 hidden units, respectively. λ is 

set to 0.9, α and follow the settings in (Schonfeld et al. 
2019). The size of the latent feature is 70 (CUB), 80 (SUN), 
65 (AWA1 and AWA2), respectively. The model is trained 
for 100 epochs using the Adam optimizer, and the batch 
size is 50. We uses the L2 distance to construct the loss of 
the deep embedding network, and all other losses use the 
L1 distance. After the model training, the image features 
and class embeddings from the seen and unseen classes are 
transformed into the latent space via the trained deep em-
bedding network φ and the encoder E, then the training 
and testing of the final Softmax classifier is performed 
using the latent features. 

Experiments  
In this section, we first detail the benchmark datasets and 
the evaluation protocol used in the experiments, then pre-
sent the result of the proposed model and compare it with 
other models. Finally, we conduct an ablation study and 
compare performance of ZSL to further verify the effec-
tiveness of our model. 

Datasets 
The proposed model is evaluated on four widely used 
ZSL/GZSL benchmark datasets, namely Caltech-UCSD-
Birds 200-2011 (CUB) (Wah et al. 2010), SUN Attribute 
(SUN) (Patterson et al. 2012), Animals with Attributes 1 
(AWA1) (Lampert et al. 2014) and Animals with Attrib-
utes 2 (AWA2) (Xian et al. 2018a). CUB is a medium-
scale fine-grained dataset with 312 attributes. Among the 
total number of 200 classes, there are 150 seen classes and 
50 unseen classes. SUN is a fine-grained and medium-
scale dataset with 102 attributes, which contains 645 seen 
classes and 72 unseen classes, a total of 717 classes. 
AWA1 is a medium-scale coarse-grained dataset with 85 
attributes. Its image comes from 50 animal categories, 40 
of which are seen classes and the other 10 are unseen clas-
ses. Images of the AWA1 dataset are unavailable due to 
copyright restrictions. In order to visually study the catego-
ries in the AWA1 dataset, Xian et al. (2018a) introduced 
the AWA2 dataset, which has the same 50 animal catego-
ries and 85 attributes as AWA1 dataset. 

 
Figure 4: Comparison of the proposed model (DE-VAE) with 
CADA-VAE when using trained model to transform information 
from two different modalities in seen and unseen classes into 
low-dimensional latent features for training and testing of the 
softmax classifier. E1 and E2 represent the two encoders of 
CADA-VAE,  represents the deep embedding network and E 
represents the encoder of the proposed DE-VAE model. 

Table 1: Details of the number of seen and unseen classes 
images at training time and test time. S represents the number 
of seen classes images and U represents the number of unseen 
classes images. 

Number of Images Train Test 
Dataset Total S U S U 
CUB  11788 7057 0 1764 2967 
SUN  14340 10320 0 2580 1440 
AWA1  30475 19832 0 4958 5685 
AWA2  37322 23527 0 5882 7913 
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Setting and Evaluation Protocol 
For all datasets in our experiment, the DE-VAE model uses 
attribute vectors as class embeddings. In addition, all im-
age features are extracted using the 2048-dim top pooling 
units of ResNet101 (He et al. 2016) pre-trained on 
ImageNet 1K (Deng et al. 2009) and not fine-tuned. In 
order to make fair comparisons with other methods and 
avoid violating the zero-shot assumption (i.e. test classes 
need to be disjoint with the classes in ImageNet 1k), we 
follow the splits and evaluation protocol proposed by Xian 
et al. (2018a). In the splits proposed by Xian et al. (2018a), 
the details of the number of seen and unseen classes imag-
es at training and test time are shown in Table 1. Since we 
don’t use the original image features of the unseen classes 
during training, our method is inductive rather than trans-
ductive (Fu et al. 2015; Guo et al. 2018). Xian et al. 
(2018a) believe that the use of harmonic mean H in the 
GZSL task can take into account the performance of both 
the seen classes and the unseen classes. Define  as the 
average per class top-1 accuracy of the seen classes,  
as the average per-class top-1 accuracy of the unseen clas-
ses, then the harmonic mean: 

 

Comparing with the State-of-the-Art 
In the GZSL setting, we compare the proposed DE-VAE 
model with 13 the best performing recent methods. The 
results are shown in Table 2. Among them, the classic 
GZSL methods ALE (Akata et al. 2013), DeViSE (Frome 

et al. 2013), SJE (Akata et al. 2015), ESZSL (Paredes and 
Torr 2015), LATEM (Xian et al. 2016), SAE (Kodirov, 
Xiang, and Gong 2017), DEM (Zhang, Xiang, and Gong 
2017) and SP-AEN (Chen et al. 2018) learn a linear or 
nonlinear mapping between semantic space and image fea-
ture space. On the other hand, the feature generation meth-
ods CVAE-ZSL (Mishra et al. 2018), SE-GZSL (Verma et 
al. 2018), f-CLSWGAN (Xian et al. 2018b), LisGAN (Li 
et al. 2019) and CADA-VAE (Schonfeld et al. 2019) treat 
GZSL as a missing data problem, and use VAE or GAN to 
generate synthetic features of unseen classes from class 
embeddings. DE-VAE combines the strengths of these two 
approaches. The results show that DE-VAE is superior to 
all other models on all datasets. It can also be seen that the 
feature generation methods outperform the classic GZSL 
methods obviously. Since f-VAEGAN-D2 (Xian et al. 
2019) operates in transductive zero-shot setting and fine-
tune RseNet-101 on each benchmark dataset, so we don’t 
compare with it in Table 2. However, under the same set-
tings (inductive and no fine-tuning), our performance is 
better than the results reported in the paper of f-VAEGAN-
D2, as follows: 54.3% vs 53.6% on CUB, 40.9% vs 41.3% 
on SUN,  66.9% vs 63.5% on AWA1. 

Our method is based on CADA-VAE (Schonfeld et al. 
2019), for fair comparisons, we re-implemented it in the 
same environment as ours. In this paper, the CADA-VAE 
results we re-implemented are called Baseline. The accu-
racy difference between our model and the Baseline is as 
follows: 54.3% vs 52.5% on CUB, 40.9% vs 39.9% on 
SUN, 66.9% vs 63.6% on AWA1, 67.4% vs 64.1% on 
AWA2. This is because our model projects class embed-
dings into the visual feature space before inputting class 

Table 2: Comparing DE-VAE with the state of the art (GZSL). Top: classic GZSL methods; Middle: feature generation methods. We 
report average per-class top-1 accuracy for unseen (U) and seen (S) classes and their harmonic mean (H) - all results are shown in percent-
age. The best results are highlighted with bold numbers. Since the results on AWA2 dataset were not reported in the papers of f-
CLSWGAN and LisGAN, we implemented them using the author’s codes, the results are highlighted with italic numbers. 

Methods  CUB SUN AWA1 AWA2 
 U           S           H  U           S           H   U           S           H   U           S           H 

ALE (Akata et al. 2013)                      
DeViSE (Frome et al. 2013)           
SJE (Akata et al. 2015) 
ESZSL (Paredes and Torr 2015) 
LATEM (Xian et al. 2016) 
SAE (Kodirov, Xiang, and Gong 2017) 
DEM (Zhang, Xiang, and Gong 2017) 
SP-AEN (Chen et al. 2018) 

23.7      62.8      34.4 
23.8      53.0      32.8 
23.5      59.2      33.6 
12.6      63.8      21.0 
15.2      57.3      24.0 
7.8        54.0      13.6 
19.6      57.9      29.2 
34.7      70.6      46.6 

21.8      33.1      26.3 
16.9      27.4      20.9 
14.7      30.5      19.8 
11.0      27.9      15.8 
14.7      28.8      19.5 
8.8        18.0      11.8 
20.5      34.3      25.6 
24.9      38.6      30.3 

16.8      76.1      27.5 
13.4      68.7      22.4 
11.3      74.6      19.6 
6.6        75.6      12.1 
7.3        71.7      13.3 
1.8        77.1       3.5 
32.8      84.7      47.3 

-            -            - 

14.0      81.8      23.9 
17.1      74.7      27.8 
8.0        73.9      14.4 
5.9        77.8      11.0 
11.5      77.3      20.0 
1.1        82.2       2.2 
30.5      86.4      45.1 
23.3      90.9      37.1 

CVAE-ZSL (Mishra et al. 2018) 
SE-GZSL (Verma et al. 2018) 
f-CLSWAGAN (Xian et al. 2018b) 
LisGAN (Li et al. 2019) 
CADA-VAE (Schonfeld et al. 2019) 

-            -         34.5 
41.5      53.3      46.7 
43.7      57.7      49.7 
46.5      57.9      51.6 
51.6      53.5      52.4 

-            -         26.7 
40.9      30.5      34.9 
42.6      36.6      39.4 
42.9      37.8      40.2 
47.2      35.7      40.6 

-            -         47.2 
56.3      67.8      61.5 
57.9      61.4      59.6 
52.6      76.3      62.3 
57.3      72.8      64.1 

-            -         51.2 
58.3      68.1      62.8 
53.8      68.2      60.2 
54.3      68.5      60.6 
55.8      75.0      63.9 

Baseline (Schonfeld et al. 2019) 
DE-VAE (ours) 

50.8      54.4      52.5 
52.5      56.3      54.3 

44.4      36.2      39.9 
45.9      36.9      40.9 

55.5      74.5      63.6 
59.6      76.1      66.9 

54.3      78.1      64.1 
58.8      78.9      67.4 
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embeddings and image features into VAE, which narrows 
the inherent bias between seen classes and unseen classes 
latent features, and further alleviates the projection domain 
shift. The latent features we generate are more discrimina-
tive and more conducive to classification. 

Ablation Study 
The key strength of our model comes from the combina-
tion of the classic GZSL model and the feature generation 
model. In order to evaluate how important this integration 
is, we conduct an ablation study. Specifically, we use the 
deep embedding network (DE), the variational autoencod-
ers (VAE) and the DE-VAE to train a classifier for GZSL, 
respectively. The results in Table 3 show that our DE-VAE 
achieves the highest accuracy on all four GZSL benchmark 
datasets compared to DE and VAE. It confirms that our 
model is effective and can significantly improve GZSL 
performance. In addition, compared with DE, the harmonic 
mean (H) significantly increases when using VAE. This is 
because the unseen classes latent features are generated by 
VAE, which leads to a more balanced data distribution and 
the learned classifier is not heavily biased to seen classes. 

We also perform ablation experiments for the hyper-
parameter λ. That is, we fixed the others hyper-parameters 
and only changed the value of λ to perform experiments on 

CUB dataset. The results are as follows: λ=0.01(H=51.99), 
λ=0.1 (H=53.10), λ=1 (H=54.23), λ=10 (H=53.94), λ=100 
(H=52.60). In this paper, λ = 0.9 (H = 54.36). 

Performance of ZSL 
Although this work focused on the more practical and chal-
lenging GZSL, to further verify the effectiveness of the 
proposed DE-VAE model, we also experiment in the lega-
cy ZSL setting. The results in Table 4 show that DE-VAE 
model provides competitive ZSL performance. 

Conclusion 
In this paper, a novel GZSL model is proposed, which in-
tegrates a deep embedding network with a modified cross-
modal alignment VAE. The key to the proposed DE-VAE 
model is to embed image features and class embeddings 
into a same space before transforming them into latent fea-
ture through the encoder. Extensive experiments show that 
the proposed DE-VAE model achieves the most advanced 
performance on four widely used GZSL benchmark da-
taset, which confirms its effectiveness in learning discrimi-
native latent features and further mitigating the bias prob-
lem. In the future, we will consider extending the proposed 
DE-VAE model to other cross-modal problems or transfer 
learning tasks. 
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