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Abstract

Modern object detectors can rarely achieve short training
time, fast inference speed, and high accuracy at the same
time. To strike a balance among them, we propose the
Training-Time-Friendly Network (TTENet). In this work, we
start with light-head, single-stage, and anchor-free designs,
which enable fast inference speed. Then, we focus on short-
ening training time. We notice that encoding more training
samples from annotated boxes plays a similar role as increas-
ing batch size, which helps enlarge the learning rate and ac-
celerate the training process. To this end, we introduce a novel
approach using Gaussian kernels to encode training samples.
Besides, we design the initiative sample weights for better in-
formation utilization. Experiments on MS COCO show that
our TTFNet has great advantages in balancing training time,
inference speed, and accuracy. It has reduced training time by
more than seven times compared to previous real-time detec-
tors while maintaining state-of-the-art performances. In ad-
dition, our super-fast version of TTFNet-18 and TTFNet-53
can outperform SSD300 and YOLOV3 by less than one-tenth
of their training time, respectively. The code has been made
available at https://github.com/ZJULearning/ttfnet.

Introduction

Accuracy, inference speed, and training time of object de-
tectors have been widely concerned and continuously im-
proved. However, little work can strike a good balance
among them. Intuitively, detectors with faster inference
speed should have a shorter training time. Nevertheless, in
fact, most real-time detectors require longer training time
than non-real-time ones. The high-accuracy detectors can be
roughly classified into one of the two types — those suffer
from slow inference speed, and those require a large amount
of training time.

The first type of networks (Ren et al. 2015; Lin et al.
2017b; Tian et al. 2019) generally rely on the heavy detec-
tion head or complex post-processing. Although these de-
signs are beneficial for accuracy improvement and fast con-
vergence, they significantly slow down the inference speed.
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Therefore, this type of network is typically not suitable for
real-time applications.

To speed up the inference, researchers strive to simplify
the detection head and post-processing while retaining ac-
curacy (Liu et al. 2016; Redmon and Farhadi 2018). In a re-
cent study named CenterNet (Zhou, Wang, and Krihenbiihl
2019), the inference time is further shortened — almost the
same as the time consumed by the backbone network. How-
ever, all these networks inevitably require long training time.
This is because these networks are difficult to train due to
the simplification, making them heavily dependent on the
data augmentation and long training schedule. For example,
CenterNet needs 140-epochs training on public dataset MS
COCO (Lin et al. 2014). In contrast, the first type of network
usually requires 12 epochs.

In this work, we focus on shortening the training time
while retaining state-of-the-art real-time detection perfor-
mances. Previous study (Goyal et al. 2017) has reported that
a larger learning rate can be adopted if the batch size is
larger, and they follow a linear relationship under most con-
ditions. We notice that encoding more training samples from
annotated boxes is similar to increasing the batch size. Since
the time spent on encoding features and calculating losses is
negligible compared with that of feature extraction, we can
safely attain faster convergence basically without additional
overhead. In contrast, CenterNet, which merely focuses on
the object center for size regression, loses the opportunity to
utilize the information near the object center. This design is
confirmed to be the main reason for the slow convergence
according to our experiments.

To shorten the training time, we propose a novel approach
using Gaussian kernels to encode training samples for both
localization and regression. It allows the network to make
better use of the annotated boxes to produce more super-
vised signals, which provides the prerequisite for faster con-
vergence. Specifically, a sub-area around the object center is
constructed via the kernel, and then dense training samples
are extracted from this area. Besides, the Gaussian probabil-
ities are treated as the weights of the regression samples to
emphasize those samples near the object center. We further
apply appropriate normalization to take advantage of more
information provided by large boxes and retain the infor-



mation given by small boxes. Our approach can reduce the
ambiguous and low-quality samples without requiring any
other components, e.g., Feature Pyramid Network (FPN)
(Lin et al. 2017a). Moreover, it does not require any offset
predictions to aid in correcting the results, which is effective,
unified, and intuitive.

Together with the light-head, single-stage, and anchor-
free designs, this paper presents the first object detector
that achieves a good balance among training time, infer-
ence speed, and accuracy. Our TTFNet reduces training time
by more than seven times compared to CenterNet and other
popular real-time detectors while retaining state-of-the-art
performances. Besides, the super-fast version of TTFNet-18
and TTFNet-53 can achieve 25.9 AP / 112 FPS only after
1.8 hours and 32.9 AP / 55 FPS after 3.1 hours of train-
ing on 8 GTX 1080Ti, which is the shortest training time
to reach these performances on MS COCO currently as far
as we know. Furthermore, TTFNet-18 and TTFNet-53 can
achieve 30.3 AP / 113 FPS after 19 hours and 36.2 AP /
55 FPS after 32 hours when training from scratch, and the
long-training version of TTENet-53 can achieve 39.3 AP /
57 FPS after 31 hours of training. These performances are
very competitive compared to any other state-of-the-art ob-
ject detectors.

Our contributions can be summarized as follows:

We discuss and validate the similarity between the batch
size and the number of encoded samples produced by an-
notated boxes. Further, we experimentally verify the main
reason for the slow convergence of advanced real-time de-
tector CenterNet.

We propose a novel and unified approach which uses
Gaussian kernels to produce training samples for both
center localization and size regression in anchor-free de-
tectors. It shows great advantages over previous designs.

Without bells and whistles, our detector has reduced train-
ing time by more than seven times compared to previ-
ous real-time detectors while keeping state-of-the-art real-
time detection performance. Besides, the performances of
from-scratch-training and long-training version are also
very significant.

The proposed detector is friendly to researchers, espe-
cially for who only have limited computing resources. Be-
sides, it is suitable for training time-sensitive tasks such as
Neural Architecture Search (NAS).

Related Works

Single Stage Detectors. YOLO (Redmon et al. 2016) and
SSD (Liu et al. 2016) achieve satisfying performances and
make the single-stage network gain attention. Since focal
loss is proposed (Lin et al. 2017b) to solve the imbalance
between positive and negative examples, single-stage detec-
tors are considered promising to achieve similar accuracy as
two-stage ones. However, after that, the accuracy of single-
stage ones stagnates for a long time until CornerNet (Law
and Deng 2018) is introduced. CornerNet is a keypoint-
based single-stage detector, which outperforms a range of
two-stage detectors in accuracy. Its design opens a new door
for the object detection task.
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Anchor Free Design. DenseBox (Huang et al. 2015) is
the first anchor-free detector, and then UnitBox (Yu et al.
2016) upgrades DenseBox for better performance. YOLO
is the first successful universal anchor-free detector. How-
ever, anchor-based methods (Ren et al. 2015; Liu et al. 2016)
can achieve higher recalls, which offers more potential for
performance improvement. Thus, YOLOv2 (Redmon and
Farhadi 2017) abandons the previous anchor-free design and
adopts the anchor design. Yet, CornerNet brings the anchor-
free designs back into spotlight. Recently proposed Center-
Net (Duan et al. 2019) reduces the false detection in Cor-
nerNet, which further improves the accuracy. Apart from
corner-based anchor-free design, many anchor-free detec-
tors relying on FPN are proposed such as FCOS (Tian et
al. 2019) and FoveaBox (Kong et al. 2019). GARPN (Wang
et al. 2019a) and FSAF (Zhu, He, and Savvides 2019) also
adopt the anchor-free design in their methods. On the con-
trary, CenterNet (Zhou, Wang, and Krihenbiihl 2019) does
not rely on complicated decoding strategies or heavy head
designs, which can outperform popular real-time detectors
(Liu et al. 2016; Redmon and Farhadi 2018) while having
faster inference speed.

Motivation

We notice that encoding more training samples plays a sim-
ilar role as increasing the batch size, and both of them can
provide more supervised signals for each training step. The
training samples refer to the features encoded by the anno-
tated box. Reviewing the formulation of Stochastic Gradient
Descent (SGD), the weight updating expression can be de-
scribed as:

1
Wiy = Wy — N— iz, wy
+ - ZGZ]; (z,wy)
where w is the weight of the network, B is a mini-batch
sampled from the training set, n = |B] is the mini-batch
size, 7 is the learning rate and [(z, w) is the loss computed
from the labeled image .

As for object detection, the image x may incorporate mul-
tiple annotated boxes, and these boxes will be encoded to
training sample s € S,.. m, = |S,| indicates the number of
samples produced by all the boxes in image x. Therefore (1)
can be formulated as:

1 1
Wiy = we =0~ > oo > Vils,wy)

zEB x SESy

(D

2)

For simplify, suppose m,, is same for each image = in a
mini-batch B. Focusing on the individual training sample s,
(2) can be rewritten as:

1
W1 = We =0 ; Vi(s,wt)
Linear Scaling Rule is empirically found in (Goyal et al.
2017). It claims that the learning rate should be multiplied
by k if the batch size is multiplied by k&, unless the network
is rapidly changing, or very large mini-batch is adopted.
Namely, executing k iterations with small mini-batches B;
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Figure 1: Experiments on CenterNet-R18. We increase the
learning rate by 1.5x and then remove the complex data aug-
mentation. (a) Increasing learning rate will lead to a consis-
tent decline in AP while (b) eliminating data augmentation
will lead to obvious overfitting.

and learning rate 7 is basically equivalent to executing 1 it-
eration with large mini-batches U;¢o,) B; and learning rate
kn, only if we can assume 7l(z,w;) ~ i(z,wiyj) for
j < k. This condition is usually met under large-scale, real-
world data.

Instead of focusing on the labeled images x as in (Goyal
et al. 2017), we focus on the training samples s here. The
mini-batch size can be treated as | B| = nim according to (3).
Although the encoded samples s € S, have a strong correla-
tion, they are still able to contribute information with differ-
ences. We can qualitatively draw a similar conclusion: when
the number of encoded training samples in each mini-batch
is multiplied by k, multiply the learning rate by [, where
1<I<E.

CenterNet (Zhou, Wang, and Krihenbiihl 2019), which
is several times faster than most detectors in inference, suf-
fers from long training time. It uses complex data augmen-
tations in training. Although the augmentations allow mod-
els to have stable accuracy improvements, they cause slow
convergence. To rule out their impact on convergence speed,
we increase the learning rate and remove the augmentations.
As shown in Figure 1, the larger learning rate cannot help
CenterNet converge faster, and removing the augmentations
leads to a bad performance. According to our conclusion
above, we believe that it is because CenterNet merely en-
codes a single regression sample at the object center during
training. This design makes CenterNet heavily rely on the
data augmentations and long training schedule, leading to
unfriendly training time.

To reduce the network’s dependence on data augmenta-
tion while reducing training time, we presume that a better
strategy of encoding regression samples is needed. Under
the guidance of this motive, we propose our approach in the
next section. More comprehensive experiments in our ab-
lation study can further validate the superiority of our ap-
proach.
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Figure 2: Architecture and Pipeline of TTFNet. Features are
extracted by a backbone network and then up-sampled to
1/4 resolution of the original image. Then, the features are
used for localization and regression tasks. For localization,
the network can produce higher activations near the object
center. For regression, all samples inside the Gaussian-area
of the object can directly predict the distance to four sides of
the box.

Our Approach
Background

CenterNet treats object detection as consisting of two parts
— center localization and size regression. For localization,
it adopts the Gaussian kernel as in CornerNet to produce a
heat-map, which enables the network to produce higher ac-
tivations near the object center. For regression, it defines the
pixel at the object center as a training sample and directly
predicts the height and width of the object. It also predicts
the offset to recover the discretization error caused by the
output stride. Since the network can produce higher activa-
tions near the object center in inference, the time-consuming
NMS can be replaced by other components with negligible
overhead.

In order to eliminate the need for the NMS, we adopt a
similar strategy for center localization. Specifically, we fur-
ther consider the aspect ratio of the box in the Gaussian ker-
nel since the strategy that does not consider it in CenterNet
is obviously sub-optimal.

As for size regression, mainstream approaches treat pix-
els in the whole box (Tian et al. 2019) or the sub-rectangle
area of the box (Kong et al. 2019) as training samples. We
propose to treat all pixels in a Gaussian-area as training sam-
ples. Besides, weights calculated by object size and Gaus-
sian probability are applied to these samples for better infor-
mation utilization. Note that our approach does not require
any other predictions to help correct the error, as shown in
Figure 2, which is more simple and effective.

Gaussian Kernels for Training

Given an image, our network separately predicts feature
H € RN*OxTx and § € RN*4xTx%" The former
is used to indicate where the object center may exist, and the
latter is used to attain the information related to the object
size. N, C, H, W, r are batch size, number of categories,
the height and width of the input image, and output stride.
We set C' = 80 and » = 4 in our experiments, and we omit
N later for simplify. Gaussian kernels are used in both local-
ization and regression in our approach, and we define scalar
« and [ to control the kernel size, respectively.
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Figure 3: Different strategies for defining training samples.
Each pixel in the dark area corresponds to a training sample.
In (d), the darker the color, the greater the sample weight.

Object Localization. Given m-th annotated box belongs
to ¢;,-th category, firstly it is linearly mapped to the
feature-map scale. Then, 2D Gaussian kernel K,,,(z,y) =

P 2

exp(—(mgff) — <y;gg> ) is adopted to produce H,, €
H W h H

R X5 where 0, = %, oy = . Finally, we up-

date c,,-th channel in H by applying element-wise maxi-
mum with H,,. The produced H,, is decided by the param-
eter «, center location (g, Yo )m, and box size (h, w),,. We
use (| %], [ 2]) to force the center to be in the pixel as in Cen-
terNet. w = 0.54 is set in our network, and it’s not carefully
selected.

The peak of the Gaussian distribution, also the pixel at the
box center, is treated as the positive sample while any other
pixel is treated as the negative sample. We use modified focal
loss as (Law and Deng 2018; Zhou, Wang, and Krihenbiihl
2019).

Given the prediction H and localization target H, we have

1 (1 — Hyje) log(Hyje) if Hijo=1
P (1 — Hje) Hijclog(l — H;jc) else
4

where ay and 3¢ are hyper-parameters in focal loss (Lin et
al. 2017b) and its modified version (Law and Deng 2018;
Zhou, Wang, and Krihenbiihl 2019), respectively. M stands
for the number of annotated boxes. We set oy = 2 and 55 =
4.

Size Regression. Given m-th annotated box on the
feature-map scale, another Gaussian kernel is adopted to

produce S, € R* 7% The kernel size is controlled by
as mentioned above. Note that we can use the same kernel to
save computation when « and /3 are the same. The non-zero
part in S;,, is named Gaussian-area A,,, as shown in Figure
3. Since A,, is always inside the m-box, it is also named
sub-area in the rest of the paper.

Each pixel in the sub-area is treated as a regression sam-
ple. Given pixel (4,7) in the area A,, and output stride r,
the regression target is defined as the distances from (ir, jr)
to four sides of m-th box, represented as a 4-dim vector
(wi, b, wy, hy)f} . The predicted box at (i, j) can be repre-
sented as:

Ty =ar —wys, Y1 = jJr — iLts,
©)

To =1 + Wy, Yo =jJr+ hys.
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where s is a fixed scalar used to enlarge the predicted results
for easier optimization. s = 16 is set in our experiments.
Note that the predicted box (&1, 91, Z2, J2) is on image scale
rather than feature-map scale.

If a pixel is not contained in any sub-areas, it will be ig-
nored during training. If a pixel is contained in multiple sub-
areas — an ambiguous sample, its training target is set to the
object with the smaller area.

Given the prediction S and regression target .S, we gather
training targets S’ € RNres>*4 from S and corresponding
prediction results S" € RNres*4 from § , where N4 stands
for the number of regression samples. For all these samples,
we decode the predicted boxes and corresponding annotated
boxes of samples as in (5), and we use GloU (Rezatofighi et
al. 2019) for loss calculation.

1
Lreg I

"9 (i,5)€Am

GIOU(BU‘, Bm) X Wij (6)

where Bij stands for the decoded box (Z1, §1, L2, Y2)i; and
B,, = (x1,y1,%2,Y2)m is the corresponding m-th anno-
tated box on image scale. W;; is the sample weight, which
is used to balance the loss contributed by each sample.

Due to the large scale variance of objects, large objects
may produce thousands of samples, whereas small objects
may only produce a few. After normalizing the loss con-
tributed by all samples, the losses contributed by small ob-
jects are even negligible, which will harm the detection per-
formance on small objects. Therefore, sample weight W;;
plays an important role in balancing losses. Suppose (i, j) is
inside the sub-area A,,, of m-th annotated box, we have:

 Gulid)
Z(m,y)GAm G (z,y)

(ia .7) € Am

(i,4) ¢ A

(N
where G, (i, ) is the Gaussian probabilities at (7, j) and a,
is the area of the m-th box. This scheme can make good
use of more annotation information contained in large ob-
jects and preserve that of small objects. It also can empha-
size these samples near the object center, reducing the effect
of ambiguous and low-quality samples, which will be dis-
cussed in our ablation study.

log(am,)

0

Total Loss The total loss L is composed of localization
loss L;,. and regression loss L,.. 4, weighted by two scalar.
Specifically, L = wiocLioe + WregLiyreg, Where wio. = 1.0
and wy.y = 5.0 in our setting.

Overall Design

The architecture of TTFNet is shown in Figure 2. We use
ResNet and DarkNet (Redmon and Farhadi 2018) as the
backbone in our experiments. The features extracted by the
backbone are up-sampled to 1/4 resolution of the original
image, which is implemented by Modulated Deformable
Convolution (MDCN) (Zhu et al. 2019) and up-sample layer.



MDCN layers are followed by Batch Normalization (BN)
(Ioffe and Szegedy 2015) and ReL.U.

The up-sampled features then separately go through two
heads for different goals. The localization head produces
high activations on those positions near the object center
while the regression head directly predicts the distance from
those positions to the four sides of the box. Since the ob-
ject center corresponds to the local maximum at the fea-
ture map, we can safely suppress non-maximum values with
the help of 2D max-pooling as in (Law and Deng 2018;
Zhou, Wang, and Krihenbiihl 2019). Then we use the po-
sitions of local maximums to gather regression results. Fi-
nally, the detection results can be attained.

Our approach makes efficient use of annotation informa-
tion contained in large and medium-sized objects, but the
promotion is limited for small objects that contain little in-
formation. In order to improve the detection performance
on small objects in a short training schedule, we add the
shortcut connections to introduce high-resolution but low-
level features. The shortcut connections introduce the fea-
tures from stage 2, 3, and 4 of the backbone, and each con-
nection is implemented by 3 x 3 convolution layers. The
number of the layers are set to 3, 2, and 1 for stage 2, 3, and
4, and ReL.U follows each layer except for the last one in the
shortcut connnection.

Experiments
Experimental Setting

Dataset. Our experiments are based on the challenging
MS COCO 2017 benchmark. We use the Train split (115K
images) for training and report the performances on Val split
(5K images).

Training Details. We use ResNet and DarkNet as the
backbone for experiments. We resize the images to 512x 512
and do not keep the aspect ratio. Only the random flip is
used for data augmentation in training unless the long train-
ing schedule is adopted. We use unfrozen BN but freeze all
parameters of stem and stage 1 in the backbone. For ResNet,
the initial learning rate is 0.016, and the mini-batch size is
128. For DarkNet, the initial learning rate is 0.015, and the
mini-batch size is 96. The learning rate is reduced by a fac-
tor of 10 at epoch 18 and 22, respectively. Our network is
trained with SGD for 24 epochs. For the super-fast version,
the training schedule is halved. For the long-training ver-
sion, the training schedule is increased by five times(i.e.,
120-epochs training in total). Weight decay and momentum
are set as 0.0004 and 0.9, respectively. For bias parameters
in the network, their weight decay is set to 0, and their learn-
ing rate is doubled. Warm-up is applied for the first 500
steps. We initialize our backbone networks with the weights
pre-trained on ImageNet (Deng et al. 2009) unless specified.
Our experiments are based on open source detection toolbox
mmdetection (Chen et al. 2019) with 8 GTX 1080Ti.

Ablation Study

We use the super-fast TTNet-53 in our ablation study. The
AP is reported on COCO 5k-val, and the inference speed is
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measured on the converged model with 1 GTX 1080Ti.

+ Norm v v v v v
+ Sqrt v v

+ Log v v
+ Gaussian v v
AP 272 | 31.7 | 31.2 | 32.0 | 31.6 | 329

Table 1: Different settings of regression weights W ;. Norm
stands for equally treating n batches of samples produced
by n objects, Sqrt and Log stand for multiplying the sam-
ple weight by square root or logarithm of the box area, and
Gaussian stands for using Gaussian probabilities in sample
weights. [ is set to 0.54 in the experiments.

Regression Weight W;;. Each annotated box produces
multiple training samples in training, so how to balance the
losses produced by samples becomes a problem. Treating all
samples equally will lead to poor precision, as shown in Ta-
ble 1. The poor result is caused by the number of samples
produced by large objects is hundreds of times larger than
that of small objects, which makes the losses contributed by
small objects almost negligible.

Another straightforward method is to normalize the losses
produced by each annotated box. Namely, all these samples
have same weight i if m-th annotated box produces n,,
samples. Still, it leads to sub-optimal results since it loses
the chance to utilize the more information contained in large
boxes.

To address this problem, we adopt the logarithm of the
box area together with the normalized Gaussian probability
as the sample weight. The results are listed in Table 1, which
show that our strategy can greatly handle the issues above.
Note that introducing Gaussian probability in the weight can
bring other benefits, which will be discussed next.

Benefits of Gaussian Design in Regression. We intro-
duce the Gaussian probability in the regression weight,
which can reduce the impact of ambiguous samples and low-
quality samples more elegantly and efficiently. The ambigu-
ous sample refers to the sample located in the overlapped
area, and the low-quality sample refers to the sample that is
far away from the object center.

Specifically, multiple objects are spatially overlapped
sometimes, and thus it is hard for anchor-free detectors to
decide the regression target in the overlapping area, which is
called ambiguity. To alleviate it, previous work either places
object of different scale in different level by using FPN (Tian
et al. 2019; Kong et al. 2019), or produces just one train-
ing sample based on the annotated box (Zhou, Wang, and
Krihenbiihl 2019), as shown in Figure 3. Previous work
(Tian et al. 2019) also has noticed the impact of low-quality
sample, and it suppresses low-quality samples by introduc-
ing the “center-ness” prediction. However, these solutions
can only reduce the ambiguous samples or the low-quality
samples. Besides, they have some side effects, such as lead-
ing to slow convergence speed or inference speed.



] 0.01 | 0.1 02 ] 03 | 05 0.7 0.9

Agnostic AP 272 | 31.0 | 32.1 | 32.5 | 322 | 309 | 295
Ratio | 0.40 | 1.14 | 2.17 | 3.65 | 6.81 | 11.30 | 17.27

Aware Al? 26.7 | 30.9 | 32.1 | 32.0 | 30.9 | 30.1 22.6
Ratio [ 0.05 [ 0.09 | 0.22 | 0.42 | 1.18 | 249 | 4.34

Table 2: Results of changing 8 from 0.01 to 0.9 and adopt-
ing class-aware regression. Note that the sub-area here is a
rectangle, and Norm+Log is used as the sample weights in
the experiments. Ratio stands for the relative number of am-
biguous samples in the training set.

I} w/ Gaussian | w/ Aspect Ratio | AP | Ratio %
0.3 322 3.66
0.3 v 325 3.65

0.54 v 32.0 8.01
0.54 v 32.7 7.57
0.54 v v 329 7.13

Table 3: Results of different kernels for producing samples.
Gaussian stands for producing the regression samples using
Gaussian kernel, and Aspect Ratio stands for considering the
aspect ratio of the box in the kernel. 5 = 0.54 is set to be
consistent with o« = 0.54, which allows us to share the same
Gaussian kernel for both localization and regression. Ratio
stands for the relative number of ambiguous samples in the
training set.

Stage 2 0 1 2 2 3 3

Stage 3 0 1 1 2 2 3

Stage 4 0 1 1 1 1 1
AP 29.0 | 32.0 | 32.8 | 32.8 | 329 | 332
FPS 58.7 | 555 | 54.8 | 54.6 | 544 | 54.3

Table 4: Speed-Accuracy tradeoffs when using different set-
tings in shortcut connection.

LR 6e-3 1.2e-2 1.8e-2
Schedule 1x 2X 1x 2xX Ix 2X
£1=0.01 1299 | 334 | 29.2 | 33.1 | 29 6.0
[ =10.03 | 30.1 | 33.5 | 294 | 33.1 | 7.4 | 20.2
£z =0.1 | 309 | 33.7 | 30.0 | 33.8 | 28.1 | 32.7
£y =0.2 | 31.0 | 33.8 | 31.8 | 344 | 30.6 | 34.0
Bs=0.4 | 31.8 | 343 | 32.6 | 350 | 32.2 | 35.2
Be=0.54 | 31.9 | 34.1 | 32.5 | 35.0 | 32.6 | 35.3

Table 5: Results of different kernel size 5. & = 0.54 and
Gaussian kernel is used to produce regression samples. 1x
stands for 12-epochs training and 2x stands for 24-epochs
training.

Our Gaussian design can reduce both of the two types of
samples without any side effects. It produces a sub-area in-
side the box, and the relative size of the sub-area is affected
by the hyper-parameter /3. Larger /3 utilizes more annotated
information but also brings more ambiguous samples and
low-quality samples.

Firstly, we use a more mundane form, i.e., rectangle as
the sub-area to analyze the relationship between precision
and (. In particular, 5 = 0 means only the box center is
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. Backbone
Schedule | w/Pre-Train RIS T R34 T D53
2X v 28.1 | 31.3 | 35.1
10x 30.3 | 333 | 36.2
10x v 31.8 | 353 | 39.3

Table 6: AP after adopting long training schedule. We use
data augmentation to prevent overfitting.

treated as a regression sample as in CenterNet, while § = 1
means all pixels in the rectangle box are treated as regres-
sion samples. We train a series of networks with changing
[ from 0.01 to 0.9. As shown in Table 2, the AP first rises
and then falls as 3 increases. The rise indicates the anno-
tated information near the object center also matters — the
AP when 8 = 0.3 is much higher than that when 8 = 0.01.
Therefore, the strategy of CenterNet that merely considers
the object center is sub-optimal. The decline is caused by
the increased ambiguous samples and low-quality samples.
To find out the main factor, we conduct experiments with the
class-aware regression. Results show that we still meet the
obvious accuracy degradation even the class-aware regres-
sion has reduced the impact of the ambiguity. It reveals that
the main reason of the decline is caused by those low-quality
samples.

So, then, we propose the approach that uses Gaussian ker-
nel to produce sub-area for training samples. Our approach
not only emphasizes the samples near the object center but
also alleviates the ambiguity. As shown in Table 3, using the
Gaussian sub-area achieves better results than using rectan-
gular sub-area.

Considering the Aspect Ratio of the Box in Gaussian
Kernel. CenterNet adopts the same strategy as CornetNet
to produce heat-map without considering the aspect ratio of
the box. According to our experiments, considering the ratio
can improve precision consistently, as shown in Table 3.

Shortcut Connection. We introduce the shortcut connec-
tion for achieving higher precision. The results when using
different settings are listed in Table 4. We choose the com-
bination of 3, 2, 1 for stage 2, 3, 4, and it is not carefully
selected.

The Effect of Sample Number on the Learning Rate. To
verify the similarity between the batch size and the number
of training samples encoded by the annotated boxes, we con-
duct experiments by changing  and learning rate.

As shown in Table 5, we can observe that larger 3 guaran-
tees a larger learning rate and better performance. Besides,
the trend is more noticeable when /3 is smaller since there are
fewer ambiguous and low-quality samples. In other words,
having more samples is like enlarging the batch size, which
helps to increase the learning rate further.

Training from Scratch. The from-scratch-training usu-
ally requires a longer training schedule. We set the total



Method Backbone  Size FPS TT(h) AP AP5y APz APs APy APp
RetinaNet (Lin et al. 2017b) * RI8-FPN  1330,800 163 6.9 309 496 327 158 339 419
RetinaNet (Lin et al. 2017b) * R34-FPN  1330,800 15.0 8.3 347 540 373 182 38.6 459
RetinaNet (Lin et al. 2017b) R50-FPN  1330,800 12.0 11.0 358 554 382 195 397 46.6
FCOS (Tian et al. 2019) * RI8-FPN  1330,800 20.8 5.0 269 432 279 139 289 36.0
FCOS (Tian et al. 2019) * R34-FPN  1330,800 163 6.0 322 495 340 172 352 421
FCOS (Tian et al. 2019) RS50-FPN  1330,800 150 7.8 366 558 389 20.8 403 48.0
SSD (Liu et al. 2016) VGGI16 300,300 440 214 257 439 262 69 277 426
SSD (Liu et al. 2016) VGG16 512,512 284  36.1 29.3 492 308 11.8 341 447
YOLOV3 (Redmon and Farhadi 2018) D53 320,320 557 264 282 - - - - -
YOLOV3 (Redmon and Farhadi 2018) D53 416,416  46.1 31.6 31.0 - - - - -
YOLOV3 (Redmon and Farhadi 2018) D53 608,608 303  66.7 33.0 579 344 183 254 419
CenterNet (Zhou, Wang, and Krihenbiihl 2019) R18 512,512 128.5 269 28.1 449 296 - - -
CenterNet (Zhou, Wang, and Krihenbiihl 2019) R101 512,512 447 493 346 530 369 -

CenterNet (Zhou, Wang, and Krihenbiihl 2019) DLA34 512,512 550 46.8 374 551 408 - - -
TTFNet (fast) RI8 512,512 1122 1.8 259 413 279 107 27.1 386
TTFNet RI18 512,512 1123 3.6 28.1 438 302 11.8 295 415
TTFNet R34 512,512 86.6 4.1 31.3 483 33.6 135 340 457
TTFNet (fast) D53 512,512 548 3.1 329 502 359 153 36.1 452
TTFNet D53 512,512 544 6.1 351 525 378 170 385 495
TTFNet (/0x) D53 512,512 57.0 306 393 56.8 425 206 433 543

Table 7: TTFNet vs. other state-of-the-art one-stage detectors. TT stands for training time. * indicates that the result is not
presented in the original paper. fast stands for the super-fast version and /0x stands for the long-training version. All the training
time is measured on 8 GTX 1080Ti, and all the inference speed is measured using converged models on 1 GTX 1080Ti.

Method | Backbone | Schedule | w/Augmentation | AP
CenterNet R18 2x NV 20.0
CenterNet R18 2x 20.8

TTFNet R18 2X 28.1
CenterNet RI18 11.67x NV 28.1

TTFNet R18 10x v 31.8
CenterNet DLA34 2X NV 26.2
CenterNet DLA34 2X 31.6

TTFNet DLA34 2x 34.9
CenterNet DLA34 11.67x v 37.4

TTFNet DLA34 10x v 38.2

Table 8: TTENet vs. CenterNet.

training epochs to 120 here. As shown in Table 6, from-
scratch-training models can achieve performances compara-
ble to those having a pre-trained backbone. Moreover, much
better performance can be achieved when using a long train-
ing schedule, but it takes much longer training time.

Compared with State-of-the-Arts Detectors

Our TTFNet adopts ResNet-18/34 and DarkNet-53 as the
backbone, and they are marked as TTFNet-18/34/53. As
shown in Table 7, our network can be more than seven times
faster than other real-time detectors in training time while
achieving state-of-the-art results with real-time inference
speed. Compared with SSD300, our super-fast TTFNet-18
can achieve slightly higher precision, but our training time
is ten times less, and the inference is more than two times
faster. As for YOLOV3, our TTFNet-53 can achieve 2 points
higher precision in just one-tenth training time, and it is al-
most two times faster than YOLOvV3 in inference. The super-
fast TTFNet-53 can reach the precision of YOLOV3 in just
one-twentieth training time.

As for the recently proposed anchor-free detector, our
TTFNet shows great advantages. FCOS can achieve high
precision without requiring long training time, but its slow
inference speed will limit its mobile application. We list
the performance of adopting lighter backbone such as
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ResNet18/34 in advanced RetinaNet and FCOS. Unfortu-
nately, they can not achieve comparable performance due
to the heavy head design. As for the real-time detector Cen-
terNet, it has very fast inference speed and high precision,
but it requires long training time. Our TTFNet only needs
one-seventh training time compared with CenterNet, and it
is superior in balancing training time, inference speed, and
accuracy.

More Comparisons with CenterNet. CenterNet achieves
37.4 AP after being trained for 140 epochs when using
DLA34(2018) as the backbone. We notice that CenterNet
uses specially customized up-sampling layers for DLA34.
For comparison between CenterNet and TTFNet when us-
ing DLA34, we replace the up-sampling layers in TTFNet
with the ones in CenterNet, and therefore our changes in net-
work structures cannot be applied. We use the same training
hyper-parameters as TTFNet-53. The results in Table 8 show
that our approach can bring significant improvements.

Conclusion

We empirically show that more training samples help en-
large the learning rate and propose the novel method of using
the Gaussian kernel for training. It is an elegant and efficient
solution for balancing training time, inference speed, and ac-
curacy, which can provide more potentials and possibilities
for training-time-sensitive tasks(Zoph and Le 2017; Zoph
et al. 2018; Ghiasi, Lin, and Le 2019; Wang et al. 2019b;
Gao et al. 2019).
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