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Abstract

Image smoothing is a fundamental procedure in applications
of both computer vision and graphics. The required smooth-
ing properties can be different or even contradictive among
different tasks. Nevertheless, the inherent smoothing nature
of one smoothing operator is usually fixed and thus cannot
meet the various requirements of different applications. In
this paper, a non-convex non-smooth optimization framework
is proposed to achieve diverse smoothing natures where even
contradictive smoothing behaviors can be achieved. To this
end, we first introduce the truncated Huber penalty function
which has seldom been used in image smoothing. A robust
framework is then proposed. When combined with the strong
flexibility of the truncated Huber penalty function, our frame-
work is capable of a range of applications and can outperform
the state-of-the-art approaches in several tasks. In addition, an
efficient numerical solution is provided and its convergence is
theoretically guaranteed even the optimization framework is
non-convex and non-smooth. The effectiveness and superior
performance of our approach are validated through compre-
hensive experimental results in a range of applications.

Introduction

The key challenge of many tasks in both computer vision
and graphics can be attributed to image smoothing. At the
same time, the required smoothing properties can vary dra-
matically for different tasks. In this paper, depending on the
required smoothing properties, we roughly classify a large
number of applications into four groups.

Applications in the first group require the smoothing op-
erator to smooth out small details while preserving strong
edges, and the amplitudes of these strong edges can be re-
duced but the edges should be neither blurred nor sharp-
ened. Representatives in this group are image detail en-
hancement and HDR tone mapping (Farbman et al. 2008;
Fattal, Agrawala, and Rusinkiewicz 2007; He, Sun, and Tang
2013). Blurring edges can result in halos while sharpening
edges will lead to gradient reversals (Farbman et al. 2008).
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Figure 1: Our method is capable of (a) image detail enhance-
ment, (b) clip-art compression artifacts removal, (c) guided
depth map upsampling and (d) image texture removal.
These applications are representatives of edge-preserving
and structure-preserving image smoothing and require con-
tradictive smoothing properties.

The second group includes tasks like clip-art compres-
sion artifacts removal (Nguyen and Brown 2015; Xu et al.
2011), image abstraction and pencil sketch production (Xu
et al. 2011). In contrast to the ones in the first group, these
tasks require to smooth out small details while sharpening
strong edges. This is because edges can be blurred in the
compressed clip-art image and they need to be sharpened
when the image is recovered (see Fig. 1(b) for example).
Sharper edges can produce better visual quality in image ab-
straction and pencil sketch. At the same time, the amplitudes
of strong edges are not allowed to be reduced in these tasks.

Guided image filtering, such as guided depth map upsam-
pling (Park et al. 2011; Ferstl et al. 2013; Liu et al. 2017b)
and flash/no flash filtering (Kopf et al. 2007; Petschnigg et
al. 2004), is categorized into the third group. The structure
inconsistency between the guidance image and target image,
which can cause blurring edges and texture copy artifacts
in the smoothed image (Ham, Cho, and Ponce 2015; Liu et
al. 2017b), should be properly handled by the specially de-
signed smoothing operator. They also need to sharpen edges
in the smoothed image due to the reason that low-quality
capture of depth and noise in the no flash images can lead to
blurred edge (see Fig. 1(c) for example).

Tasks in the fourth group require to smooth the image in
a scale-aware manner, e.g., image texture removal (Xu et al.
2012; Zhang et al. 2014; Cho et al. 2014). This kind of tasks
require to smooth out small structures even when they con-
tain strong edges, while large structure should be properly

11620



preserved even the edges are weak (see Fig. 1(d) for exam-
ple). This is totally different from that in the above three
groups where they all aim at preserving strong edges.

To be more explicit, we categorize the smoothing proce-
dures in the first to the third groups as edge-preserving im-
age smoothing since they try to preserve salient edges, while
the smoothing processes in the fourth group are classified as
structure-preserving image smoothing because they aim at
preserving salient structures.

A diversity of edge-preserving and structure-preserving
smoothing operators have been proposed for various tasks.
Generally, each of them is designed to meet the requirements
of certain applications, and thus its inherent smoothing na-
ture is usually fixed. Therefore, there is seldom a smooth-
ing operator that can meet all the smoothing requirements
of the above four groups, which are quite different or even
contradictive. For example, the L0 norm smoothing (Xu et
al. 2011) can sharpen strong edges and is suitable for clip-
art compression artifacts removal, however, this will lead to
gradient reversals in image detail enhancement and HDR
tone mapping. The weighted least squares (WLS) smooth-
ing (Farbman et al. 2008) performs well in image detail en-
hancement and HDR tone mapping, but it is not capable of
sharpening edges and structure-preserving smoothing, etc.

In contrast to most of the smoothing operators in the lit-
erature, a new smoothing operator, which is based on a non-
convex non-smooth optimization framework, is proposed in
this paper. It can achieve different and even contradictive
smoothing behaviors and is able to handle the applications
in the four groups mentioned above. The main contributions
of this paper are as follows:

1. We introduce the truncated Huber penalty function
which has seldom been used in image smoothing. By
varying the parameters, it shows strong flexibility.

2. A robust non-convex non-smooth optimization frame-
work is proposed. When combined with the strong flexi-
bility of the truncated Huber penalty function, our model
can achieve various and even contradictive smoothing be-
haviors. We show that it is able to handle the tasks in
the four groups mentioned above. This has seldom been
achieved by previous smoothing operators.

3. An efficient numerical solution to the proposed optimiza-
tion framework is provided. Its convergence is theoreti-
cally guaranteed.

4. Our method is able to outperform the specially designed
approaches in many tasks and state-of-the-art perfor-
mance is achieved.

Related Work

Tremendous smoothing operators have been proposed in re-
cent decades. In terms of edge-preserving smoothing, bilat-
eral filter (BLF) (Tomasi and Manduchi 1998) is the early
work that has been used in various tasks such as image detail
enhancement (Fattal, Agrawala, and Rusinkiewicz 2007),
HDR tone mapping (Durand and Dorsey 2002), etc. How-
ever, it is prone to produce results with gradient reversals
and halos (Farbman et al. 2008). Its alternatives (Gastal and

Oliveira 2012; 2011) also share a similar problem. Guided
filter (GF) (He, Sun, and Tang 2013) can produce results free
of gradient reversals but halos still exist. The WLS smooth-
ing (Farbman et al. 2008) solves a global optimization prob-
lem and performs well in handling these artifacts. The L0

norm smoothing is able to eliminate low-amplitude struc-
tures while sharpening strong edges, which can be applied
to the tasks in the second group. To handle the structure in-
consistency problem, Shen et al. (Shen et al. 2015b) pro-
posed to perform mutual-structure joint filtering. They also
explored the relation between the guidance image and target
image via optimizing a scale map (Shen et al. 2015a), how-
ever, additional processing was adopted for structure incon-
sistency handling. Ham et al. (Ham, Cho, and Ponce 2015)
proposed to handle the structure inconsistency by combin-
ing a static guidance weight with a Welsch’s penalty (Hol-
land and Welsch 1977) regularized smoothness term, which
leaded to a static/dynamic (SD) filter. Gu et al. (Gu et al.
2017b) presented a weighted analysis representation model
for guided depth map enhancement.

In terms of structure-preserving smoothing, Zhang et al.
(Zhang et al. 2014) proposed to smooth structures of differ-
ent scales with a rolling guidance filter (RGF). Cho et al.
(Cho et al. 2014) modified the original BLF with local
patch-based analysis of texture features and obtained a bi-
lateral texture filter (BTF) for image texture removal. Kara-
can et al. (Karacan, Erdem, and Erdem 2013) proposed to
smooth image textures by making use of region covariances
that captured local structure and textural information. Xu
et al. (Xu et al. 2012) adopted the relative total variation
(RTV) as a prior to regularize the texture smoothing proce-
dure. Fan et al. (Fan et al. 2018; 2019) proposed to perform
various kinds of image smoothing through convolutional
neural networks. Chen et al. (Chan and Esedoglu 2005)
proved that the TV-L1 model (Chan and Esedoglu 2005;
Nikolova 2004) could smooth images in a scale-aware man-
ner, and it is thus ideal for structure-preserving smoothing
such as image texture removal (Buades et al. 2010).

Most of the approaches mentioned above are limited to
a few applications because their inherent smoothing na-
tures are usually fixed. In contrast, our method proposed in
this paper can have strong flexibility in achieving various
smoothing behaviors, which enables wider applications of
our method than most of them. Moreover, our method can
show better performance than these methods in several ap-
plications that they are specially designed for.

Our Approach

Truncated Huber Penalty Function

We first introduce the truncated Huber penalty function
which is defined as:

hT (x) =

{
h(x), |x| ≤ b
b− a

2
, |x| > b

s.t. a ≤ b, (1)

where a, b are constants. h(·) is the Huber penalty function
(Huber and others 1964) defined as:

h(x) =

{
1
2a
x2, |x| < a

|x| − a
2
, |x| ≥ a

, (2)
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(a) (b)

Figure 2: Plots of (a) different penalty functions and (b) the
truncated Huber penalty function with different parameter
settings.

hT (·) and h(·) are plotted in Fig. 2(a) with a = ε which is
a sufficient small value (e.g., ε = 10−7). h(·) is an edge-
preserving penalty function, but it cannot sharpen edges
when adopted to regularize the smoothing procedure. In con-
trast, hT (·) can sharpen edges because it is able to not penal-
ize image edges due to the truncation. The Welsch’s penalty
function (Holland and Welsch 1977), which was adopted in
the recent proposed SD filter (Ham, Cho, and Ponce 2015),
is also plotted in the figure. This penalty function is known
to be capable of sharpening edges, which is also because it
seldom penalizes strong image edges. The Welsch’s penalty
function is close to the L2 norm when the input is small,
while the hT (·) can be close to the L1 norm when a is set
sufficient small, which demonstrates hT (·) can better pre-
serve weak edges than the Welsch’s penalty function.

With different parameter settings, hT (·) can show strong
flexibility to yield different penalty behaviors. Assume the
input intensity values are within [0, Im], then the amplitude
of any edge will fall in [0, Im]. We first set a = ε. Then if we
set b > Im, hT (·) will be actually the same as h(·) because
the second condition in Eq. (1) can never be met. Because a
is sufficient small, hT (·) will be close to the L1 norm in this
case, and thus it will be an edge-preserving penalty func-
tion that does not sharpen edges. Conversely, when we set
b < Im, the truncation in hT (·) will be activated. This can
lead to having penalization on weak edges without penaliz-
ing strong edges, and thus the strong edges are sharpened.
To be short, b can act as a switch to decide whether hT (·)
can sharpen edges or not. Similarly, by setting a = b > Im
and a = b < Im, hT (·) can be easily switched between
the L2 norm and truncated L2 norm. Note that the truncated
L2 norm is also able to sharpen edges (Xu, Zheng, and Jia
2013). In contrast, the Welsch’s penalty function does not
enjoy this kind of flexibility. Different cases of hT (·) are il-
lustrated in Fig. 2(b).

Model

Given an input image f and a guidance image g, the
smoothed output image u is the solution to the following
objective function:

Eu(u) =
∑
i

⎛
⎝ ∑

j∈Nd(i)

hT (ui − fj) + λ
∑

j∈Ns(i)

ωi,jhT (ui − uj)

⎞
⎠ ,

(3)

where hT is defined in Eq.(1); Nd(i) is the (2rd + 1) ×
(2rd + 1) square patch centered at i; Ns(i) is the (2rs +
1) × (2rs + 1) square patch centered at i; λ is a parame-
ter that controls the overall smoothing strength. To be clear,
we adopt {ad, bd} and {as, bs} to denote the parameters of
hT (·) in the data term and smoothness term, respectively.
The guidance weight ωi,j is defined as:

ωi,j =
1

(|gi − gj |+ δ)α
, (4)

where α determines the sensitivity to the edges in g which
can be the input image, i.e., g = f . |·| represents the absolute
value. δ is a small constant being set as δ = 10−7.

The adoption of hT (·) makes our model in Eq. (3) to enjoy
a strong flexibility. As will be shown in the following prop-
erty analysis section, with different parameter settings, our
model is able to achieve different smoothing behaviors, and
thus it is capable of various tasks that require either edge-
preserving smoothing or structure-preserving smoothing.

Numerical Solution

Our model in Eq. (3) is not only non-convex but also
non-smooth, which arises from the adopted hT (·). Com-
monly used approaches (Lanckriet and Sriperumbudur
2009; Nikolova and Ng 2005; Wang et al. 2008; Zhang,
Kwok, and Yeung 2004) for solving non-convex optimiza-
tion problems are not applicable. To tackle this problem,
we first rewrite hT (·) in a new equivalent form. By defin-
ing ∇d

i,j = ui − fj and∇s
i,j = ui − uj , we have:

hT (∇∗
i,j) = min

l∗i,j

{
h(∇∗

i,j − l∗i,j) + (b∗ − a∗
2
)|l∗i,j |0

}
, (5)

where ∗ ∈ {d, s}, |l∗i,j |0 is theL0 norm of l∗i,j . The minimum
of the right side of Eq. (5) is obtained on the condition:

l∗i,j =

{
0, |∇∗

i,j | ≤ b∗
∇∗

i,j , |∇∗
i,j | > b∗

, ∗ ∈ {d, s}. (6)

The detailed proof of Eq. (5) and Eq. (6) is provided in our
supplementary file. These two equations also theoretically
validate our analysis in Fig. 2(b): we have |∇∗

i,j | ∈ [0, Im]
if the intensity values are in [0, Im]. Then if b > Im, based
on Eq. (5) and Eq. (6), we will always have hT (∇∗

i,j) =
h(∇∗

i,j) which means hT (·) degrades to h(·).
A new energy function is defined as:

Eul(u, l
d, ls) =

∑
i,j

(
h(∇d

i,j − ldi,j) + (bd − ad
2
)|ldi,j |0

)
+λ

∑
i,j

ωi,j

(
h(∇s

i,j − lsi,j) + (bs − as
2
)|lsi,j |0

) . (7)

Based on Eq. (5) and Eq. (6), we then have:

Eu(u) = min
l∗

Eul(u, l
d, ls), ∗ ∈ {d, s}. (8)

Given Eq. (6) as the optimum condition of Eq. (8) with
respect to l∗, optimizingEul(u, l

d, ls) with respect to u only
involves Huber penalty function h(·). The problem can thus
be optimized through the half-quadratic (HQ) optimization
technique (Geman and Yang 1995; Nikolova and Ng 2005).
More specifically, a variable μ∗(∗ ∈ {d, s}) and a function
ψ(μ∗

i,j) with respect to μ∗ exist such that:

h(∇∗
i,j − l∗i,j) = min

μ∗
i,j

{
μ∗
i,j(∇∗

i,j − l∗i,j)
2 + ψ(μ∗

i,j)
}
, (9)
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where the optimum is yielded on the condition:

μ∗
i,j =

{
1

2a∗ , |∇∗
i,j − l∗i,j | < a∗

1
2|∇∗

i,j−l∗i,j |
, |∇∗

i,j − l∗i,j | ≥ a∗ , ∗ ∈ {d, s}. (10)

The detailed proof of Eq. (9) and Eq. (10) is provided in our
supplementary file. Then we can further define a new energy
function:

Eulμ(u, l
d, ls, μd, μs) =∑

i,j

(
μdi,j(∇d

i,j − ldi,j)
2 + ψ(μdi,j) + (bd − ad

2
)|ldi,j |0

)
+

λ
∑
i,j

ωi,j

(
μsi,j(∇s

i,j − lsi,j)
2 + ψ(μsi,j) + (bs − as

2
)|lsi,j |0

)
.

(11)
Based on Eq. (9) and Eq. (10), we then have:

Eul(u, l
∗) = min

μ∗ Eulμ(u, l
∗, μ∗), ∗ ∈ {d, s}. (12)

Given Eq. (10) as the optimum condition of μ∗ for
Eq. (12), optimizing Eulμ(u, l

d, ls, μd, μs) with respect to
u only involves the L2 norm penalty function, which has
a closed-form solution. However, since the optimum condi-
tions in Eq. (6) and Eq. (10) both involve u, therefore, the
final solution u can only be obtained in an iterative man-
ner. Assuming we have got uk, then (l∗)k and (μ∗)k, (∗ ∈
{s, d}) can be updated through Eq. (6) and Eq. (10) with uk.
Finally, uk+1 is obtained with:

uk+1 = min
u
Eulμ

(
u, (l∗)k, (μ∗)k

)
, (13)

Eq.(13) has a close-form solution as:

uk+1 =
(
Ak − 2λWk

)−1 (
Dk + 2λSk

)
, (14)

where Wk is an affinity matrix with Wk
i,j = ωi,j(μ

s
i,j)

k,
Ak is a diagonal matrix with Ak

ii =
∑

j∈Nd(i)
(μd

i,j)
k +

2λ
∑

j∈Ns(i)
ωi,j(μ

s
i,j)

k, Dk is a vector with Dk
i =

∑
j∈Nd(i)

(μd
i,j)

k(fj + (ldi,j)
k) and Sk is also a vector with

Sk
i =

∑
j∈Ns(i)

ωi,j(μ
s
i,j)

k(lsi,j)
k.

The above optimization procedure monotonically de-
creases the value of Eu(u) in each step, its convergence is
theoretically guaranteed. Given uk in the kth iteration and
∗ ∈ {s, d}, then for any u, we have:

Eu(u) ≤ Eul(u, (l
∗)k), Eu(u

k) = Eul(u
k, (l∗)k), (15)

{
Eul(u, (l

∗)k) ≤ Eulμ(u, (l
∗)k, (μ∗)k)

Eul(u
k, (l∗)k) = Eulμ(u

k, (l∗)k, (μ∗)k)
. (16)

Given (l∗)k has been updated through Eq. (6), Eq. (15) is
based on Eq. (8) and Eq. (5). After (μ∗)k has been updated
through Eq. (10), Eq. (16) is based on Eq. (12) and Eq. (9).
We now have:

Eul(u
k+1, (l∗)k) ≤ Eulμ(u

k+1, (l∗)k, (μ∗)k)
≤ Eulμ(u

k, (l∗)k, (μ∗)k) = Eul(u
k, (l∗)k),

(17)

the first and second inequalities follow from Eq. (16) and
Eq. (13), respectively. We finally have:

Eu(u
k+1) ≤ Eul(u

k+1, (l∗)k) ≤ Eul(u
k, (l∗)k) = Eu(u

k),
(18)

Algorithm 1 Image Smoothing via Non-convex Non-
smooth Optimization

Require: Input image f , guide image g, iteration number
N , parameter λ, α, a∗, b∗, r∗, u0 ← f , with ∗ ∈ {d, s}

1: for k = 0 : N do
2: With uk, compute (∇∗

i,j)
k, update (l∗i,j)

k according
to Eq. (6)

3: With (l∗i,j)
k, update (μ∗

i,j)
k according to Eq. (10)

4: With (l∗i,j)
k and (μ∗

i,j)
k, solve for uk+1 according to

Eq. (13) (or Eq. (14))
5: end for

Ensure: Smoothed image uN+1

the first and second inequalities follow from Eq. (15) and
Eq. (17), respectively. Since the value of Eu(u) is bounded
from below, Eq. (18) indicates that the convergence of our
iterative scheme is theoretically guaranteed.

The above optimization procedure is iteratively per-
formedN times to get the output uN . In all our experiments,
we set u0 = f , which is able to produce promising results in
each application. Our optimization procedure is summarized
in Algorithm 1.

Property Analysis

With different parameter settings, the strong flexibility of
hT (·) makes our model able to achieve various smoothing
behaviors. First, we show that some classical approaches can
be viewed as special cases of our model. For example, by
setting ad = bd > Im, as = ε, bs > Im, α = 0, rd =
0, rs = 1, our model is an approximation of the TV model
(Rudin, Osher, and Fatemi 1992) which is a representative
edge-preserving smoothing operator. If we set α = 0.2, g =
f with other parameters the same as above, then the first iter-
ation of Algorithm 1 will be the WLS smoothing (Farbman
et al. 2008) which performs well in handling gradient rever-
sals and halos in image detail enhancement and HDR tone
mapping. With parameters ad = ε, bd > Im, as = ε, bs >
Im, α = 0, rd = 0, rs = 1, our model can yield very close
smoothing natures as the TV-L1 model (Buades et al. 2010)
which is classical for structure-preserving smoothing.

For different kinds of applications, our model can pro-
duce better results than the special cases mentioned above.
To be convenient, we first start with the tasks in the fourth
group which require structure-preserving smoothing. For
these tasks, the parameters are set as ad = ε, bd > Im, as =
ε, bs > Im, rd = rs, α = 0.5, g = f . This parame-
ter setting has the following two advantages: first, the set-
ting ad = ε, bd > Im, as = ε, bs > Im enables our
model to have the structure-preserving property similar to
that of the TV-L1 model; second, the guidance weight with
α = 0.5, g = f can make our model to obtain sharper edges
in the results than the TV-L1 model does. We illustrate this
with 1D smoothing results in Fig. 3(a) and (b). Fig. 6(b) and
(c) further show a comparison of image texture removal re-
sults. As shown in the figure, both the TV-L1 model and
our model can properly remove the small textures, however,
edges in our result are much sharper than that in the result of
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(a) (b) (c) (d) (e) (f)

Figure 3: 1D signal with structures of different scales and amplitudes. Smoothing result of (a) TV-L1 smoothing (Buades et al.
2010), (c) WLS (Farbman et al. 2008), (e) SD filter (Ham, Cho, and Ponce 2015), our results in (b), (d) and (f).

(a) (b) (c)

Figure 4: Image detail enhancement results of different approaches. (a) Input image. Result of (b) WLS (Farbman et al. 2008)
and (c) our method. The upper parts of each close-up in (b) and (c) correspond to the patches in the smoothed image.

(a) (b) (c) (d) (e) (f)

Figure 5: Clip-art compression artifacts removal results of different approaches. (a) Input image. (b) Our result. Close-ups of (c)
input image and results of (d) SD filter (Ham, Cho, and Ponce 2015), (e) our method with the structure-preserving parameter
setting, (f) our method with the edge-preserving and structure-preserving parameter setting.

(a) (b) (c)

Figure 6: Texture smoothing results of different approaches.
(a) Input image. Result of (b) TV-L1 smoothing (Buades et
al. 2010), and (e) our method.

the TV-L1 model. The typical values for rd = rs are 1 ∼ 3
depending on the texture size. λ is usually smaller than 1.
Larger rd, rs, λ can lead larger structures to be removed. The
iteration number is set as N = 10.

When dealing with image detail enhancement and HDR
tone mapping in the first group, one way is to set the pa-
rameters so that our model can perform WLS smoothing. In
contrast, we can further make use of the structure-preserving
property of our model to produce better results. The param-
eters are set as follows: ad = ε, bd > Im, as = ε, bs >
Im, rd = rs, α = 0.2, g = f . This kind of parameter set-
ting is based on the following observation in our experi-
ments: when we adopt N = 1 and set λ to a large value,
the amplitudes of different structures will decrease at differ-
ent rates, i.e., the amplitudes of small structures can have a

larger decrease than the large ones, as illustrated in Fig. 3(d).
At the same time, edges are neither blurred nor sharpened.
This kind of smoothing behavior is desirable for image de-
tail enhancement and HDR tone mapping. As a comparison,
Fig. 3(c) shows the smoothing result of the WLS smoothing.
As can be observed from the figures, our method can bet-
ter preserve the edges (see the bottom of the 1D signals in
Fig. 3(c) and (d)). Fig. 4(b) and (c) further show a compari-
son of image detail enhancement results. We fix rd = rs = 2
and vary λ to control the smoothing strength. λ for the tasks
in the first group is usually much larger than that for the
ones in the fourth group, for example, the result in Fig. 4(c)
is generated with λ = 20.

To sharpen edges that is required by the tasks in the sec-
ond and the third groups, we can set bs < Im in the smooth-
ness term. In addition, we further set other parameters as
ad = ε, bd < Im, as = ε. The truncation bd < Im in the
data term can help our model to be robust against the out-
liers in the input image, for example, the noise in the no flash
image and low-quality depth map. The truncation bs < Im
in the smoothness term can enable our model to be an edge-
preserving one. By setting ad = as = ε, our model can fur-
ther enjoy the structure-preserving property. With both edge-
preserving and structure-preserving smoothing natures, our
model has the ability to preserve large structures with weak
edges and small structures with strong edges at the same
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(a) (b) (c) (d) (e) (f)

Figure 7: HDR tone mapping results of different approaches. Result of (a) BF (Tomasi and Manduchi 1998), (b) GF (He, Sun,
and Tang 2013), (c) L0 norm smoothing (Xu et al. 2011), (d) WLS (Farbman et al. 2008), (e) SG-WLS (Liu et al. 2017a) and
(f) our method.

(a) (b) (c) (d) (e) (f)

Figure 8: Clip-art compression artifacts removal results of different methods. (a) Input compressed image. Result of (b) the
approach proposed by Wang et al. (Wang, Wong, and Heng 2006), (c) L0 norm smoothing (Xu et al. 2011), (d) region fusion
approach (Nguyen and Brown 2015), (e) BTF (Cho et al. 2014) and (f) our method.

time, which is challenging but is of practical importance.
Fig. 5(a) illustrates this kind of case with an example of
clip-art compression artifacts removal: both the thin black
circle around the “wheel” and the gray part in the center of
the “wheel” should be preserved. The challenge lies on two
facts. On one hand, if we perform edge-preserving smooth-
ing, the gray part will be removed because the correspond-
ing edge is weak. Fig. 5(d) shows the result of the SD filter
(Ham, Cho, and Ponce 2015). The SD filter can properly
preserve the thin black circle and sharpen the edges thanks
to the adopted Welsch’s penalty function, however, it fails to
preserve the weak edge between the black part and the gray
part. On the other hand, if we adopt structure-preserving
smoothing, then the thin black circle will be smoothed due
to its small structure size. Fig. 5(e) shows the corresponding
result of our method with the structure-preserving parame-
ter setting described above. In contrast, our method with the
edge-preserving and structure-preserving parameter setting
can preserve both these two parts and sharpen the edges,
as shown in Fig. 5(f). Fig. 3(e) and (f) also show a com-
parison of the SD filter and our method with 1D smoothing
results. We fix α = 0.5, rd = rs, N = 10 for the tasks
in both the second and the third groups. We empirically set
bd = bs = 0.05Im ∼ 0.2Im and rd = rs = 1 ∼ 5 depend-
ing on the applied task and the input noise level.

The structure inconsistency issue in the third group can
also be easily handled by our model. Note that μs

i,j in
Eq. (11) is computed with the smoothed image in each it-
eration, as formulated in Eq. (10), it thus can reflect the in-
herent natures of the smoothed image. The guidance weight

ωi,j can provide additional structural information from the
guidance image g. This means that μs

i,j and ωi,j can com-
plement each other. In fact, the equivalent guidance weight
of Eq. (11) in each iteration is μs

i,jωi,j , which can reflect the
property of both the smoothed image and the guidance im-
age. In this way, it can properly handle the structure incon-
sistency problem and avoid blurring edges and texture copy
artifacts. Similar ideas were also adopted in (Ham, Cho, and
Ponce 2015; Liu et al. 2017b).

Applications and Experimental Results

Our method is applied to various tasks in the first to the
fourth groups to validate the effectiveness. Comparisons
with the state-of-the-art approaches in each application are
also presented. Due to the limited space, we only show ex-
perimental results of four applications.

Our experiments are performed on a PC with an Intel Core
i5 3.4GHz CPU (one thread used) and 8GB memory. For an
RGB image of size 800 × 600 and N = 10 in Algorithm
1, the running time is 10.04/25.09/43.11/69.82/96.73 sec-
onds in MATLAB for rd = rs = 1/2/3/4/5. Note that
as described in the property analysis section, the value of
rd = rs is smaller than 3 in most cases except for guided
depth map upsampling. For the tasks in the first group which
require N = 1, the computational cost could be further re-
duced to 1

10 of that mentioned above.
HDR tone mapping is a representative task in the first

group. It requires to decompose the input image into a base
layer and a detail layer through edge-preserving smoothing.
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(a) (b) (c) (d) (e) (f) (g)

Figure 9: Guided depth map upsampling results of simulated ToF data. (a) Guidance color image. (b) Ground-truth depth map.
Result of (c) the approach proposed by Gu et al. (Gu et al. 2017b), (d) SGF (Zhang et al. 2015), (e) SD filter (Ham, Cho, and
Ponce 2015), (f) Park et al. (Park et al. 2011) and (g) our method.

(a) (b) (c) (d) (e) (f) (g)

Figure 10: Guided depth upsampling results of real ToF data. (a) Guidance intensity image. (b) Ground-truth depth map. Result
of (c) the approach proposed by Gu et al. (Gu et al. 2017b), (d) TGV (Ferstl et al. 2013), (e) SD filter (Ham, Cho, and Ponce
2015), (f) SGF (Zhang et al. 2015) and (g) our method.

(a) (b) (c) (d) (e) (f) (g)

Figure 11: Image texture removal results. (a) Input image. Result of (b) JCAS (Gu et al. 2017a), (c) RTV (Xu et al. 2012), (d)
FCN based approach (Chen, Xu, and Koltun 2017), (e) muGIF (Guo et al. 2018) (f) BTF (Cho et al. 2014) and (g) our method.

The challenge of this task is that if the edges are sharp-
ened by the smoothing procedure, it will result in gradi-
ent reversals, and halos will occur if the edges are blurred.
Fig. 7 shows the tone mapping results using different edge-
preserving smoothing operators. The results of BF (Tomasi
and Manduchi 1998) and GF (He, Sun, and Tang 2013) con-
tain clear halos around the picture frames and the light fix-
ture, as shown in Fig. 7(a) and (b). This is due to their lo-
cal smoothing natures where strong smoothing can also blur
salient edges (Farbman et al. 2008; He, Sun, and Tang 2013).
The L0 norm smoothing (Xu et al. 2011) can properly elim-
inate halos, but there are gradient reversals in its result as
illustrated in Fig. 7(c). This is because the L0 smoothing is
prone to sharpen salient edges. The WLS (Farbman et al.
2008) and SG-WLS (Liu et al. 2017a) smoothing perform
well in handling gradient reversals and halos in most cases.
However, there are slight halos in their results as illustrated

in the left close-up in Fig. 7(d) and (e). These artifacts are
properly eliminated in our results.

Clip-art compression artifacts removal. Clip-art im-
ages are piecewise constant with sharp edges. When they
are compressed in JPEG format with low quality, there will
be edge-related artifacts, and the edges are usually blurred
as shown in Fig. 8(a). Therefore, when removing the com-
pression artifacts, the edges should also be sharpened in
the restored image. We thus classify this task into the sec-
ond group. The approach proposed by Wang et al. (Wang,
Wong, and Heng 2006) can seldom handle heavy compres-
sion artifacts as shown in Fig. 8(b). The L0 norm smoothing
fails to preserve weak edges as shown in Fig. 8(c). The re-
gion fusion approach (Nguyen and Brown 2015) is able to
produce results with sharpened edges, however, it also en-
hances the blocky artifacts along strong edges as highlighted
in Fig. 8(d). The edges in the result of BTF (Cho et al. 2014)
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Table 1: Quantitative comparison on the noisy simulated ToF data. Results are evaluated in MAE. The best results are in bold.
The second best results are underlined.

Art Book Dolls Laundry Moebius Reindeer
2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16×

TGV(Ferstl et al. 2013) 0.8 1.21 2.01 4.59 0.61 0.88 1.21 2.19 0.66 0.95 1.38 2.88 0.61 0.87 1.36 3.06 0.57 0.77 1.23 2.74 0.61 0.85 1.3 3.41
AR(Yang et al. 2014) 1.17 1.7 2.93 5.32 0.98 1.22 1.74 2.89 0.97 1.21 1.71 2.74 1 1.31 1.97 3.43 0.95 1.2 1.79 2.82 1.07 1.3 2.03 3.34

SG-WLS(Liu et al. 2017a) 1.26 1.9 3.07 - 0.82 1.12 1.73 - 0.87 1.11 1.81 - 0.86 1.17 2 - 0.82 1.08 1.79 - 0.9 1.32 2.01 -
FGI(Li et al. 2016b) 0.9 1.37 2.46 4.89 0.66 0.85 1.23 1.96 0.74 0.95 1.41 2.13 0.71 0.99 1.59 2.67 0.67 0.82 1.2 1.87 0.75 0.94 1.55 2.73

SGF(Zhang et al. 2015) 1.42 1.85 3.06 5.55 0.84 1.11 1.76 3.03 0.87 1.2 1.88 3.26 0.74 1.1 1.96 3.63 0.81 1.13 1.84 3.16 0.93 1.25 2.03 3.67
SD Filter(Ham, Cho, and Ponce 2015) 1.16 1.64 2.88 5.52 0.86 1.1 1.57 2.68 1.04 1.27 1.73 2.76 0.96 1.25 1.94 3.54 0.93 1.14 1.68 2.75 1.05 1.31 1.99 3.43

FBS(Barron and Poole 2016) 1.93 2.39 3.29 5.05 1.42 1.55 1.76 2.48 1.33 1.45 1.69 2.26 1.32 1.49 1.77 2.67 1.16 1.29 1.61 2.44 1.63 1.76 2.01 2.69
muGIF(Guo et al. 2018) 1.00 1.26 2.00 3.46 0.73 0.89 1.35 2.15 0.85 1.04 1.50 2.45 0.64 0.87 1.36 2.57 0.67 0.85 1.35 2.25 0.78 0.94 1.39 2.52

Park et al.(Park et al. 2011) 1.66 2.47 3.44 5.55 1.19 1.47 2.06 3.1 1.19 1.56 2.15 3.04 1.34 1.73 2.41 3.85 1.2 1.5 2.13 2.95 1.26 1.65 2.46 3.66
Shen et al.(Shen et al. 2015b) 1.79 2.21 3.2 5.04 1.34 1.69 2.25 3.13 1.37 1.58 2.05 2.85 1.49 1.74 2.34 3.5 1.34 1.56 2.09 2.99 1.29 1.55 2.19 3.33

Gu et al.(Gu et al. 2017b) 0.61 1.46 2.98 5.09 0.52 0.95 1.87 2.98 0.63 1.02 1.89 2.92 0.58 1.14 2.21 3.58 0.53 0.96 1.89 2.99 0.52 1.07 2.17 3.59
Li et al.(Li et al. 2016a) - 3.77 4.49 6.29 - 3.21 3.28 3.79 - 3.19 3.28 3.79 - 3.34 3.61 4.45 - 3.23 3.35 3.92 - 3.39 3.65 4.54

Ours 0.69 1.07 1.65 2.96 0.55 0.81 1.22 1.78 0.62 0.9 1.27 1.84 0.61 0.89 1.28 2.12 0.51 0.75 1.12 1.71 0.56 0.87 1.27 2.08

Table 2: Quantitative comparison on real ToF dataset. The
errors are calculated as MAE to the measured ground-truth
in mm. The best results are in bold. The second best results
are underlined.

Books Devil Shark
Bicubic 16.23mm 17.78mm 16.66mm

GF(He, Sun, and Tang 2013) 15.55mm 16.1mm 17.1mm
SD Filter(Ham, Cho, and Ponce 2015) 13.47mm 15.99mm 16.18mm

SG-WLS(Liu et al. 2017a) 14.71mm 16.24mm 16.51mm
Shen et al.(Shen et al. 2015b) 15.47mm 16.18mm 17.33mm
Park et al.(Park et al. 2011) 14.31mm 15.36mm 15.88mm

TGV(Ferstl et al. 2013) 12.8mm 14.97mm 15.53mm
AR(Yang et al. 2014) 14.37mm 15.41mm 16.27mm

Gu et al.(Gu et al. 2017b) 13.87mm 15.36mm 15.88mm
SGF(Zhang et al. 2015) 13.57mm 15.74mm 16.21mm

FGI(Li et al. 2016b) 14.21mm 16.43mm 16.37mm
FBS(Barron and Poole 2016) 15.93mm 17.21mm 16.33mm

Li et al.(Li et al. 2016a) 14.33mm 15.09mm 15.82mm
Ours 12.49mm 14.51mm 15.02mm

are blurred in Fig. 8(e). Our result is illustrated in Fig. 8(f)
with edges sharpened and compression artifacts removed.

Guided depth map upsampling belongs to the guided
image filtering in the third group. The RGB guided im-
age can provide additional structural information to restore
and sharpen the depth edges. The challenge of this task
is the structure inconsistency between the depth map and
the RGB guidance image, which can cause blurring depth
edges and texture copy artifacts in the upsampled depth
map. We test our method on the simulated dateset provided
in (Yang et al. 2014). Fig. 9 shows the visual comparison
between our result and the results of the recent state-of-
the-art approaches. Our method shows better performance
in preserving sharp depth edges and avoiding texture copy
artifacts. Tab. 1 also shows the quantitative evaluation on
the results of different methods. Following the measurement
used in (Guo et al. 2018; Li et al. 2016b; Liu et al. 2017a;
Yang et al. 2014), the evaluation is measured in terms of
mean absolute errors (MAE). As Tab. 1 shows, our method
can achieve the best or the second best performance among
all the compared approaches.

We further validate our method on the real data introduced
by Ferstl et al. (Ferstl et al. 2013). The real dataset contains
three low-resolution depth maps captured by a ToF depth
camera and the corresponding highly accurate ground-truth
depth maps captured with structured light. The upsampling
factor for the real dataset is∼ 6.25×. The visual comparison

in Fig. 10 and the quantitative comparison in Tab. 2 shows
that our method can outperform the compared methods and
achieve state-of-the-art performance.

Image texture removal belongs to the tasks in the fourth
group. It aims at extracting salient meaningful structures
while removing small complex texture patterns. The chal-
lenge of this task is that it requires structure-preserving
smoothing rather than the edge-preserving in the above
tasks. Fig. 11(a) shows a classical example of image tex-
ture removal: the small textures with strong edges should
be smoothed out while the salient structures with weak
edges should be preserved. Fig. 11(b)∼(f) show the results
of the recent state-of-the-art approaches. The joint convo-
lutional analysis and synthesis sparse (JCAS) model (Gu et
al. 2017a) can well remove the textures, but the resulting
edges are also blurred. The RTV method (Xu et al. 2012),
muGIF (Guo et al. 2018), BTF (Cho et al. 2014) and FCN
based approach (Chen, Xu, and Koltun 2017) cannot com-
pletely remove the textures, in addition, the weak edges of
the salient structures have also been smoothed out in their
results. Our method can both preserve the weak edges of the
salient structures and remove the small textures.

Conclusion

We propose a non-convex non-smooth optimization frame-
work for edge-preserving and structure-preserving image
smoothing. We first introduce the truncated Huber penalty
function which shows strong flexibility. Then a robust
framework is presented. When combined with the flexibil-
ity of the truncated Huber penalty function, our framework
is able to achieve different and even contradictive smoothing
behaviors using different parameter settings. This is differ-
ent from most previous approaches of which the inherent
smoothing natures are usually fixed. We further propose an
efficient numerical solution to our model and prove its con-
vergence theoretically. Comprehensive experimental results
in a number of applications demonstrate the effectiveness of
our method.
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