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Abstract

Temporal action detection is a challenging task due to vague-
ness of action boundaries. To tackle this issue, we propose an
end-to-end progressive boundary refinement network (PBR-
Net) in this paper. PBRNet belongs to the family of one-stage
detectors and is equipped with three cascaded detection mod-
ules for localizing action boundary more and more precisely.
Specifically, PBRNet mainly consists of coarse pyramidal de-
tection, refined pyramidal detection, and fine-grained detec-
tion. The first two modules build two feature pyramids to per-
form the anchor-based detection, and the third one explores
the frame-level features to refine the boundaries of each ac-
tion instance. In the fined-grained detection module, three
frame-level classification branches are proposed to augment
the frame-level features and update the confidence scores of
action instances. Evidently, PBRNet integrates the anchor-
based and frame-level methods. We experimentally evalu-
ate the proposed PBRNet and comprehensively investigate
the effect of the main components. The results show PBR-
Net achieves the state-of-the-art detection performances on
two popular benchmarks: THUMOS’14 and ActivityNet, and
meanwhile possesses a high inference speed.

Understanding human actions in videos is a fundamental
issue in computer vision, including action recognition (Car-
reira and Zisserman 2017; Zhou et al. 2018), temporal ac-
tion detection (Shou et al. 2017; Chao et al. 2018), actor-
action analysis (Yan et al. 2017; Gavrilyuk et al. 2018), etc.
Currently these research topics have been active as they are
one of important components in extensive applications, e.g.,
video analysis, video surveillance and human computer in-
teraction. In recent years, action recognition has made great
progress benefited from the advances of deep learning (Le-
Cun, Bengio, and Hinton 2015). Compared with action
recognition, temporal action detection is still lagging behind
in technique and performance due to possessing much larger
challenges. Temporal action detection is required to not only
identify the class but also localize the start and end time of
each action instance in long untrimmed videos.

Temporal action detection, like object detection, belongs
to the visual detection family. While object detection aims to
produce spatial bounding boxes to precisely surround object
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instances, temporal action detection aims to identify pairs of
temporal frames to precisely segment action instances. Due
to such similarity, many efforts (Xu, Das, and Saenko 2017;
Lin, Zhao, and Shou 2017a) in action detection take ad-
vantage of the frameworks of image object detectors (Ren
et al. 2015; Liu et al. 2016). In previous works of tempo-
ral action detection, the two-stage methods (Bai et al. 2018;
Chao et al. 2018) are usually superior in performance. Com-
paratively the one-stage approaches (Buch et al. 2017a)
are generally more efficient due to eliminating the time-
consuming proposal generation. Actually, the one-stage ar-
chitecture can also achieve good detection performance if
we can inherit the merits of two-stage methods.

Compared to the objects which have solid internal consis-
tency, the boundary of an action is vague, because the vari-
ations of the consecutive frames are subtle. As addressed
in (Alwassel et al. 2018), incorrect localization of action
boundaries is the most impactful error which significantly
impedes the performances of current approaches. To han-
dle this issue, one thread of methods (Xu, Das, and Saenko
2017; Gao, Yang, and Nevatia 2017; Bai et al. 2018; Chao
et al. 2018; Gao, Chen, and Nevatia 2018) apply boundary
regression to refine the boundaries. Among them, cascaded
boundary regression is a classic yet effective paradigm to
improve the localization accuracy. For example, CBR (Gao,
Yang, and Nevatia 2017) is proposed to apply boundary re-
gression in an iterative manner–the output boundaries are
fed back as input to the network for the next time of re-
finement. But CBR uses the same structures and features
in different steps of boundary regression, which is incon-
sistent with the requirements for progressive learning. Some
other regression-based works (Xu, Das, and Saenko 2017;
Bai et al. 2018; Chao et al. 2018) directly adapt the two-stage
object detector Faster R-CNN (Ren et al. 2015) to solve
the task of action detection, and thus are inborn two-stage
cascaded. However, all these methods fail to obtain precise
boundaries in a fine granularity. Besides, the additional pro-
posal stage severely slows down the detection speed. An-
other line of works (Shou et al. 2017; Zhao et al. 2017;
Lin et al. 2018; Liu et al. 2019) propose to densely evalu-
ate frame-level scores, and then apply the thresholds on the
scores to determine the boundaries of action candidates. As
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a result, the boundaries of these proposals are supposed to be
fine-grained. Nevertheless, these frame-level methods heav-
ily rely on selection metric or preset threshold, which de-
cides the precision of the action boundaries.

In this paper, we propose a progressive boundary refine-
ment network (PBRNet) to improve the accuracy and speed
of temporal action detection. Different from most of pre-
vious works, the whole network including the feature ex-
tractor is jointly trained. For the procedure of detection, a
pipeline of three-step cascaded regression is proposed to re-
fine the boundaries from coarse to fine. Specifically, PBR-
Net contains three main detection modules: coarse pyrami-
dal detection (CPD), refined pyramidal detection (RPD) and
fine-grained detection (FGD). CPD and RPD are anchor-
based detection systems, where two symmetric feature pyra-
mids are employed to detect different scales of actions. FGD
aims to refine the boundaries of action candidates by exploit-
ing a frame-level feature. Besides, three branches with dif-
ferent kinds of frame-level supervision are used to enrich
the frame-level feature and update the classification scores
of each action instance. Specially, some learning strategies
(e.g., progressive matching strategy and preliminary anchor
discarding) are used to corporate with the progressive learn-
ing. Hence, the anchors are delivered between the adja-
cent modules for cascaded regression, and confidence scores
from different modules are fused for retrieval.

Our contributions are summarized as follows: (1) We
propose an end-to-end temporal action detection network
PBRNet, which belongs to the one-stage methods but are
equipped with three-step cascaded boundary refinement.
(2) PBRNet mainly contains three main detection modules
which combine the anchor-based and frame-level methods.
The first two modules build two inter-connected temporal
pyramids for two-step anchor-based detection. The last mod-
ule further refine the boundaries by utilizing the fine-grained
features, and update the classification score of each anchor
through the frame-level predictions. (3) Extensive experi-
ments show that PBRNet can achieve significantly better ac-
tion detection performance than other state-of-the-art meth-
ods, with a remarkable inference speed in the meantime.

Related Work
Most of existing temporal action detection methods can be
categorized into two groups as follows.

The first group of methods (Caba Heilbron, Car-
los Niebles, and Ghanem 2016; Shou, Wang, and Chang
2016; Buch et al. 2017b; Gao et al. 2017; Shou et al. 2017;
Zhao et al. 2017; Qiu et al. 2018; Gao, Chen, and Neva-
tia 2018; Lin et al. 2018; Liu et al. 2019; Lin et al. 2019)
adopt a two-stage scheme consisting of proposal and clas-
sification, which is fairly popular now. Among them, some
works (Caba Heilbron, Carlos Niebles, and Ghanem 2016;
Gao et al. 2017; Buch et al. 2017b; Gao, Chen, and Neva-
tia 2018; Lin et al. 2018; Liu et al. 2019; Lin et al. 2019)
mainly focus on generating high-quality proposals, and a
few works explore how to better classify the proposals (Shou
et al. 2017; Zhao et al. 2017; Yang et al. 2018). However,
most of them train the two-stage networks separately. Re-
cently, there are some attempts (Xu, Das, and Saenko 2017;

Bai et al. 2018; Chao et al. 2018) to jointly train the two-
stage networks in a unified framework by following image
object detector Faster R-CNN (Ren et al. 2015).

The second group of methods (Yeung et al. 2016; Buch et
al. 2017a; Lin, Zhao, and Shou 2017a; Long et al. 2019)
draw more attention on the one-stage architectures, moti-
vated by the development of region-free image object detec-
tors such as SSD (Liu et al. 2016). For example, SSAD (Lin,
Zhao, and Shou 2017a) assigns anchors to the bottom-up
pyramidal layers for predicting the classes and locations of
actions. SS-TAD (Buch et al. 2017a) devises two recurrent
memory modules to capture temporal information of videos,
in which neither the feature pyramid nor anchor mechanism
is adopted. Similarly, another work (Yeung et al. 2016) pro-
poses a recurrent network with reinforcement learning. Re-
cently, CTAN (Long et al. 2019) proposes to explore the
temporal structure of an action through learning a Gaus-
sian kernel for each cell in the pyramidal layers. Different
from these works, our method pursues to build an end-to-end
trainable network with anchor mechanism, aiming at taking
advantages of two-stage methods into one-stage method.

Progressive Boundary Refinement Network

The architecture of the proposed progressive boundary re-
finement network (PBRNet) is illustrated in Figure 1, where
the U-net (Ronneberger, Fischer, and Brox 2015) like struc-
ture is particularly adopted as one important component. Es-
pecially, two types of fusion blocks (i.e., FBv1 and FBv2)
are inserted to fuse features from different levels. PBR-
Net consists of three key modules along with a spatio-
temporal feature extractor, i.e., coarse pyramidal detection,
refined pyramidal detection and fine-grained detection. Here
the first two modules perform the anchor-based detection
in multiple scales, and the last one completes fine-grained
boundary refinement for each action candidate based on the
frame-level feature. Features used in the three modules be-
come much richer or finer gradually. In addition, the three
modules will continuously refine action candidates produced
by the previous module.

Main Modules

Feature Extraction In this work, we segment videos
into clips with a fixed temporal length as the inputs. Let
(L×H ×W ) denote the spatio-temporal shape of video
clips, where L is the number of continuous frames, H and
W are the spatial height and width of the video frames. In
our experiments, H = W = 96 is set. For feature extraction,
we employ I3D (Carreira and Zisserman 2017) as the visual
encoder due to its excellent performance in action recog-
nition (Carreira and Zisserman 2017) and temporal action
detection (Chao et al. 2018). Specifically, we use the layers
of I3D before the last average pooling layer as the backbone
network for feature extraction. Then a feature map with the
size (L/8×H/32×W/32) will be generated for each video
clip.

Coarse Pyramidal Detection In this work, we build tem-
poral feature pyramids in our anchor-based detection mod-
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Figure 1: Architecture of our proposed progressive boundary refinement network (PBRNet). PBRNet belongs to the one-stage
detectors and mainly consists of three key components: coarse pyramidal detection, refined pyramidal detection and fine-grained
detection. The three components sequentially refine the boundaries of action candidates accompanied by the enhancement of
features. Best viewed in color.

ules to address the variation of action instances in differ-
ent temporal scales. In CPD, we take the output of the
backbone network as the first anchor layer. For other an-
chor layers, the temporal scale is reduced by a factor of
2 with maintaining the spatial shape of 3 × 3. Taking our
implementation on THUMOS’14 (Jiang et al. 2014) for
instance, the feature pyramid consists of five layers, de-
noted by (B0, B1, B2, B3, B4), and the corresponding tem-
poral scales are (L/8, L/16, L/32, L/64, L/128), respec-
tively. Here the high-resolution feature maps in the low lay-
ers of the pyramid are designated to detect the short action
instances and the low-resolution ones are for the long action
instances. Like in SSD (Liu et al. 2016), we assign each layer
of feature maps a set of preset anchors with several scales.
Suppose a feature map has a temporal length of N , and we
assign K anchors of different scales to each temporal loca-
tion. Then there are NK anchors in total associated with this
anchor layer. For each layer in the pyramid, we conduct the
classification and location regression (i.e., predicting offsets
to default boundaries) by 3D convolutional layers with the
kernel size of (3× 3× 3).

With CPD, we will obtain the first-level action candidates
which are refined from preset anchors. However in the pyra-
mid of CPD, the low layers lack enough semantics and the
high layers lack enough fine details, hence the first-level ac-
tion candidates only have coarse boundaries.

Refined Pyramidal Detection To amend the drawbacks
of CPD, we propose a more powerful pyramid in RPD.
The feature pyramid upscales the temporal resolution grad-
ually, and enriches the features by merging with the fea-
ture maps of CPD, as shown in Figure 1. Thus, the feature
hierarchy is (U0, U1, U2, U3, U4) with the temporal scales
(L/128, L/64, L/32, L/16, L/8) in our implementation on
THUMOS’14. Specifically, the feature map Un in this mod-
ule is generated by merging the feature map Un−1 in the
previous layer and the corresponding feature map Bm in
CPD. More specifically, we use the first kind of fusion block
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Figure 2: Illustration of two kinds of fusion blocks. (a)
FBv1, (b) FBv2. The kernel sizes (along with channels if
necessary) and strides of operators are shown. The strides
are (1,1,1) where not specified. Best viewed in color.

(i.e., FBv1) for feature fusion, as shown in Figure 2. In each
FBv1, we use a 3D deconvolutional layer over Un−1 to en-
large the temporal length by a factor of 2, and then apply a
256-channel convolution on Bm to fit the channels of Un−1.
The element-wise summation is followed to merge both fea-
tures, and a convolutional layer is then applied to produce
Un. Since CPD and RPD have symmetric structure, we di-
rectly assign the first-level action candidates as the anchors
of RPD. Afterwards, we conduct the classification and re-
gression to produce the second-level action candidates.

Although the structure of two inter-connected tempo-
ral pyramids is also applied in (Liu et al. 2019), the nov-
elty of our method is that classification and regression are
conducted on both pyramids to form a cascaded detection
pipeline.

Fine-grained Detection FGD is designed to refine the
candidates in a finer granularity. In FGD, we use the sec-
ond type of fusion block (i.e., FBv2) to generate a frame-
level feature. As shown in Figure 2, the frame-level feature
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is merged from two parts. The first part takes the last fea-
ture map of RPD as input, and then stacks three 3D de-
convolutional layers to make temporal length of the fea-
ture map equal to the input clip. The second part takes the
raw frames as input, and then uses three convolutional lay-
ers and a average pooling layer to make its spatio-temporal
shape same with that of the first part. We concatenate these
two feature maps for fusion, and then use a convolutional
layer to generate the ultimate frame-level feature. The fea-
ture from the second part can supplement spatial details to
the first part. Moreover, we add three frame-level classifica-
tion branches upon the frame-level feature, which densely
outputs three kinds of frame-level class-specific probabil-
ities whether each frame is inside or outside, at or not at
the boundaries of a ground-truth instance, denoted by ac-
tionness, starting and ending probability, respectively. Each
branch is composed of a convolutional layer with the ker-
nel size of (3× 3× 3) and a softmax layer. The frame-level
classification branches have two main functions. First, the
auxiliary frame-level supervisions can help to enrich the se-
mantics of the frame-level feature, which will facilitate the
fine-grained boundary regression. Second, the frame-level
classification scores are used to fuse with the anchor-based
scores in the inference time.
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Candidate
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Start time offset
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Figure 3: Illustration of boundary refinement in FGD. Best
viewed in color.

For fine-grained boundary regression, we separately ad-
just the start and end time of each action candidate, as shown
in Figure 3. Let s and e denote the start/end time of an action
candidate, and we will equally process each of them. With-
out loss of generalization, we explain the refinement proce-
dure by taking s for instance. To be specific, we first locate
it in the frame-level feature map, and then choose the neigh-
boring features centered at s as the input to refine s with
the temporal length t/β (β = 8 is used in our experiments),
where t = e−s is the length of the action candidate. We em-
ploy a temporally dilated 3D convolutional layer to predict
the final boundary, where the network output is the temporal
offset. The kernel size of the dilated convolutional layer is
set as 3 × 3 × 3 and the temporal dilation rate is t/(2 · β).
Such settings enable the receptive field of the dilated convo-
lutional layer reach at t/β in the temporal dimension.

After the last time of boundary refinement, we get the
third-level action candidates. Then we map each candidate
on the frame-level classification branches, and find the cor-
responding class-specific starting probability of the start lo-

cation and ending probability of the end location, denoted as
pks and pke for the action class of k respectively. We will use
these two frame-level class-specific scores to fuse with the
anchor-based scores in the test phase.

Training of PBRNet

Progressive Matching Strategy The matching strategy is
to determine which anchors correspond to a ground-truth in-
stance. In this work, we calculate the IoU scores of each
anchor with all action instances. An anchor is regarded pos-
itive if its highest IoU score is greater than the preset thresh-
old h, and background otherwise. For positive samples, the
matched action instance with the highest score is used as
the ground truth. We apply this matching strategy to three
detection modules with the thresholds hcp, hrp and hfg , re-
spectively. We set the IoU thresholds of three modules with
increasing values such that actions can be refined progres-
sively. In our implementation, hcp = 0.5, hrp = 0.6 and
hfg = 0.7 are used. The similar idea is proposed by the
multi-stage cascaded object detector (Cai and Vasconcelos
2018). Here we adopt it in our single-shot framework.

Preliminary Anchor Discarding There is serious imbal-
ance between background and foreground after matching,
which will badly bias the optimization. To alleviate this is-
sue, we take two steps before feeding the anchors from one
module into the next module. First, we discard some well-
recognized background anchors. Concretely, we compute
the background score for each anchor according to the pre-
diction of previous module, and then only keep the anchors
whose background scores are lower than a constant thresh-
old. Second, hard example mining is then applied to keep
an acceptable balance between foreground and background
samples. Specifically, we only preserve the background an-
chors with high loss values to make the amounts of the back-
ground and foreground anchors approximately equal.

Loss Function We use a multi-task loss function to train
the network. The overall loss Ltotal is defined as

Ltotal = Lcp + λ1Lrp + λ2Lfg, (1)

where Lcp, Lrp, and Lfg represent the loss functions for
CPD, RPD and FGD, respectively. λ1 and λ2 are the control
parameters which are both empirically set to 1.

Since the CPD and RPD have similar detection structures,
Lcp and Lrp share a unified formulation Lx as

Lx =
1

N

(∑

i

Lcls(pi, p
∗
i )+

∑

i

[p∗i ≥ 1]Lloc(ti, t
∗
i )
)
, (2)

where N is the number of training anchors, Lcls is the clas-
sification loss, and Lloc is the regression loss. Specifically,
pi is the predicted classification scores for the anchor i and
p∗i is the corresponding ground-truth label. t = (tc, tl) de-
notes the temporal offset of the predicted center location and
duration, and t∗ is the corresponding ground truth.

Lfg consists of two parts, i.e.,

Lfg = Lbr
fg + γLfc

fg, (3)
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The weight factor γ is empirically set as 1. Lbr
fg represents

the boundary regression loss, i.e.,

Lbr
fg =

1

Nbr

∑

i

[p∗i ≥ 1]Lloc(bi,b
∗
i ), (4)

where Nbr is the number of training action candidates, bi =
(si, ei) represents the offsets of the predicted start time and
end time for the action candidate i, and b∗

i is the correspond-
ing ground truth.
Lfc
fg is the loss function for frame-level classification, i.e.,

Lfc
fg =

1

Nf

∑

i

(Lcls(p
a
i , p

a∗
i ) + Lcls(p

s
i , p

s∗
i )+ (5)

Lcls(p
e
i , p

e∗
i )

)
.

where Nf is the number of frames. pa
i , ps

i and pe
i represent

the predicted class-specific actionness probability, starting
probability and ending probability of the frame i, respec-
tively. The pa∗i , ps∗i and pe∗i are the corresponding ground-
truth label of the frame i. To assign frame-level label, for
each ground-truth instance with boundary of (s∗, e∗) and
category of c∗, we define the actionness region, starting re-
gion, ending region as [s∗, e∗], [s∗ − t∗/η, s∗ + t∗/η] and
[e∗ − t∗/η, e∗ + t∗/η], where t∗ = e∗ − s∗ is the duration
of the ground-truth instance and η is empirically set as 10.
For each frame, its actionness, starting or ending label will
be set as c∗ if it lies in the corresponding region.

We use the cross-entropy loss for classification and
smooth �1 loss for regression throughout the experiments.

Inference of PBRNet

Scores Fusion For each anchor, we first get two anchor-
based classification scores output by CPD and RPD (denoted
as pkcp and pkrp for action class k, respectively). We then fuse
the anchor-based scores with the frame-level scores ( i.e., pks
and pke ) from FGD by multiplication. Concretely, for each
anchor the final confidence score of class k is computed as:

pk = pkcp · pkrp · pks · pke (6)

The score contain both the anchor-based information and
fine-grained information, hence is able to help achieve better
evaluation performances.

Two-stream Fusion In recent works on temporal action
detection (Chao et al. 2018), fusing the appearance and op-
tic flow information by two-stream architectures has shown
significantly helpful to achieving good performance due to
their complementarity. Similarly, we also investigate the
two-stream fusion in our framework. Specifically, we train
our proposed networks for two streams separately, and aver-
age the predicted values from both streams in the test phase.

Post-processing For each anchor, the fused confidence
score and three-step regressed boundaries are used for eval-
uation. Non-maximum suppression (NMS) is conducted to
reduce redundant results. We assemble the detection results
of the clips belonging to the same video.

Experiments

Dataset and Setup

Dataset THUMOS’14 (Jiang et al. 2014) contains 200
untrimmed videos (including 3, 007 action instances) in the
validation set and 213 untrimmed videos (including 3, 358
action instances) in the test set which are widely used for
temporal action detection from 20 action categories. We
use the validation set for training and the test set for eval-
uation. ActivityNet v1.3 (Caba Heilbron et al. 2015) con-
tains 10, 024, 4, 926, and 5, 044 videos from 200 classes
in the training, validation, and test sets, respectively. We
evaluate our model on the validation set, as in previous
works (Shou et al. 2017; Gao, Chen, and Nevatia 2018;
Xie et al. 2018).

Evaluation Metrics For evaluation, we report the mean
average precision (mAP) using multiple IoU thresholds. On
THUMOS’14, mAP is computed by its official toolkit (Jiang
et al. 2014). On ActivityNet, following the protocol provided
by the dataset (Caba Heilbron et al. 2015), the IoU thresh-
olds are set as [0.5 : 0.05 : 0.95].

Experimental Settings For training, adjacent clips are al-
lowed to be temporally overlapped to increase the amount
of training data. We only keep the clips containing at least
one complete ground-truth action instance. In the inference
stage, the input video is split into clips without temporal
overlap. All clips are kept for evaluation. On THUMOS’14,
we sample both RGB and optic flow frames at 10 frames
per second (fps). The length of each clip L is set as 256
frames (i.e., about 25.6 seconds), which is greater than that
of 99.7% of action instances in the dataset. Since Activi-
tyNet is much larger-scale than THUMOS’14, we sample
frames at only 3 fps on ActivityNet. Accordingly, L is set
as 768 (i.e., covering 256 seconds of a video). Such a tem-
poral length is longer than the duration of over 99.9% of
action instances in the training set. We set 6 feature layers
in the two pyramids. In addition, considering the fact that
one video only contains a single class of action instances for
most videos in ActivityNet, we first conduct binary classi-
fication in different modules, which indicates whether each
anchor contains an action instance, and then assign each de-
tected anchor the top-1 video-level label predicted by (Wang
and Tao 2016), by following the protocol in (Lin et al. 2018;
2019). Our backbone is pretrained by (Carreira and Zisser-
man 2017) on the ImageNet and Kinetics datasets. The batch
size is set as 1, thus we freeze all batch normalization layers.

Action Detection Performance

Table 1 gives the detection performance comparison of our
proposed PBRNet with state-of-the-art methods, where the
results after two-stream fusion are reported. It can be seen
that PBRNet outperforms previous state-of-the-art methods
with remarkable mAP gaps for all used IoU thresholds.
Particularly, PBRNet achieves the improvement of 8.5% at
tIoU = 0.5 (from 42.8% to 51.3%) compared with TAL-
Net, which is the state-of-the-art two-stage detector in THU-
MOS’14. Such results imply that one-stage detectors have
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tIoU 0.3 0.4 0.5 0.6 0.7
Wang et al. (Wang, Qiao, and Tang 2014) 14.6 12.1 8.5 4.7 1.5
FTP (Caba Heilbron, Carlos Niebles, and Ghanem 2016) − − 13.5 − −
DAP (Escorcia et al. 2016) − − 13.9 − −
Oneata et al. (Oneata, Verbeek, and Schmid 2014) 28.8 21.8 15.0 8.5 3.2
Richard and Gall (Richard and Gall 2016) 30.0 23.2 15.2 − −
Yeung et al. (Yeung et al. 2016) 36.0 26.4 17.1 − −
SMS (Yuan et al. 2016) 36.5 27.8 17.8 − −
Yuan et al. (Yuan et al. 2017) 33.6 26.1 18.8 − −
S-CNN (Shou, Wang, and Chang 2016) 36.3 28.7 19.0 10.3 5.3
SST (Buch et al. 2017b) 37.8 − 23.0 − −
CDC (Shou et al. 2017) 40.1 29.4 23.3 13.1 7.9
SSAD (Lin, Zhao, and Shou 2017a) 43.0 35.0 24.6 − −
TCN (Dai et al. 2017) − 33.3 25.6 15.9 9.0
TURN (Gao et al. 2017) 44.1 34.9 25.6 − −
Xiong et al. (Xiong et al. 2017) 48.7 39.8 28.2 − −
R-C3D (Xu, Das, and Saenko 2017) 44.8 35.6 28.9 − −
SS-TAD (Buch et al. 2017a) 45.7 − 29.2 − 9.6
SSN (Zhao et al. 2017) 51.9 41.0 29.8 − −
CTAP (Gao, Chen, and Nevatia 2018) − − 29.9 − −
CBR (Gao, Yang, and Nevatia 2017) 50.1 41.3 31.0 19.1 9.9
ETP (Qiu et al. 2018) 48.2 42.4 34.2 23.4 13.9
BSN (Lin et al. 2018) 53.5 45.0 36.9 28.4 20.0
MGG (Liu et al. 2019) 53.9 46.8 37.4 29.5 21.3
GTAN (Long et al. 2019) 57.8 47.2 38.8 − −
BMN (Lin et al. 2019) 56.0 47.4 38.8 29.7 20.5
CMS-RC3D (Bai et al. 2018) 54.7 48.2 40.0 − −
TAL-Net (Chao et al. 2018) 53.2 48.5 42.8 33.8 20.8
PBRNet 58.5 54.6 51.3 41.8 29.5

Table 1: Temporal action detection mAP (%) on THUMOS’14.

great potential to beat the two-stage detectors. Table 2 gives
the action detection results on ActivityNet. Similarly, PBR-
Net surpasses other state-of-the-art methods for all listed
IoU thresholds, although we sample frames of ActivityNet
at only 3 fps. Some qualitative examples are shown in Fig-
ure 4.

Inference Speed

We present the comparison of action detection speed be-
tween our PBRNet and other state-of-art methods, as shown
in Table 3. Here our model is evaluated on a Nvidia GeFore
GTX 1080Ti GPU. It can be seen that PBRNet is able to
process frames at a speed of 1488 fps, and thus is one of
most competitive methods. The high efficiency of our PBR-
Net may mainly from the following two facts. First, PBRNet
belongs to the family of one-stage detectors and thus elimi-
nates the additional proposal stage used in S-CNN, DAP and
R-C3D. Second, PBRNet adopts the fully convolutional op-
erations to process frames rather than the time-consuming
recurrent architectures used in DAP and SS-TAD.

Ablation Study

In order to investigate the effect of key components and set-
tings in our proposed PBRNet, we conduct ablation study
on THUMOS’14. Here we only use the threshold of 0.5 to
evaluate the methods without specification, since different

thresholds have similar performance trends. The results of
RGB stream and optical stream are reported separately.

Main Detection Modules Anchors are progressively re-
vised in three modules. Here we investigate the perfor-
mances after using different numbers of modules, where the
multiplication is applied to fuse the confidence scores from
all used modules. The results are shown in Table 4. It can
be seen that the detection performance is boosted gradually
as higher-level modules are used to refine action anchors,
validating the progressive design of our PBRNet.

Frame-level Classification Branches In FGD, three
frame-level classification branches are used to enrich the
frame-level feature and generate ultimate confidence score.
Here the performance are evaluated when the frame-level
classification branches are all removed. The second row in
Table 5 shows the frame-level classification branches are
helpful to boost the action detection performances.

Progressive Matching Strategy We adopt the increasing
IoU thresholds in PBRNet to match action anchors in the de-
tection modules. Here we conduct another experiment with
the same IoU threshold of 0.5 as a comparison. As shown in
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tIoU 0.5 0.75 0.95 Average
R-C3D (Xu, Das, and Saenko 2017) 26.80 − − 12.70
CMS-RC3D (Bai et al. 2018) 32.92 18.36 1.13 18.46
TCN (Dai et al. 2017) 36.17 21.12 3.89 −
TAL-Net (Chao et al. 2018) 38.23 18.30 1.30 20.22
CDC (Shou et al. 2017) 43.83 25.88 0.21 22.77
Xiong et al. (Xiong et al. 2017) 39.12 23.48 5.49 23.98
Lin et al. (Lin, Zhao, and Shou 2017b) 44.39 29.65 7.09 29.17
BSN (Lin et al. 2018) 46.45 29.96 8.02 30.03
BMN (Lin et al. 2019) 50.07 34.78 8.29 33.85
GTAN (Long et al. 2019) 52.61 34.14 8.91 34.31
PBRNet 53.96 34.97 8.98 35.01

Table 2: Temporal action detection mAP (%) on ActivityNet v1.3 (val)

22.8 27.0

24.8 27.6 33.9 38.1
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23.0
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29.511.1
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Figure 4: Qualitative examples from THUMOS’14 and Ac-
tivityNet. Here we compare the predictions from different
levels with ground truth. All the temporal boundaries are
showed in seconds. Best viewed in color.

Methods FPS
S-CNN (Shou, Wang, and Chang 2016) 60
DAP (Escorcia et al. 2016) 134
CDC (Shou et al. 2017) 500
SS-TAD (Buch et al. 2017a) (Titan Xm) 701
R-C3D (Xu, Das, and Saenko 2017) (Titan Xm) 569
R-C3D (Xu, Das, and Saenko 2017) (Titan Xp) 1030
PBRNet (1080Ti) 1488

Table 3: Comparison on action detection speed for test.

Module mAP@0.5
CPD RPD FGD RGB Flow
� 36.8 37.3
� � 39.7 40.6
� � � 42.2 42.4

Table 4: Ablation study of different modules in PBRNet.

the third row of Table 5, the proposed setting is positive to
the performance of action detection.

Preliminary Anchor Discarding This is used to filter out
the background anchors with high confidence scores for sub-
sequent detection modules, before applying hard example
mining. We also conduct an ablation experiment where only
hard example mining is used. The results in the fourth row
of Table 5 show that the proposed strategy is useful to our
network.

Techniques in PBRNet mAP@0.5
RGB Flow

w/o Frame-level classification branches 41.2 40.3
w/o Progressive matching strategy 41.3 41.5
w/o Preliminary anchor discarding 42.0 41.7

full 42.2 42.4

Table 5: Effect of different techniques in PBRNet, where the
last row of results is the baseline.

Conclusion
In this paper, we proposed a novel progressive boundary re-
finement network (PBRNet) for temporal action detection,
which progressively refine action anchors under the one-
stage detection framework. Particularly, we introduced two
inter-connected pyramids to perform the anchor-based de-
tection and one refinement module to accurately localize the
action boundaries in a fine granularity. Benefited from the
well-designed architecture, end-to-end training, and specific
learning methods, PBRNet achieves the state-of-the-art per-
formance on THUMOS’14 and ActivityNet.
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