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Abstract

Traditional video compression technologies have been devel-
oped over decades in pursuit of higher coding efficiency. Ef-
ficient temporal information representation plays a key role
in video coding. Thus, in this paper, we propose to exploit
the temporal correlation using both first-order optical flow
and second-order flow prediction. We suggest an one-stage
learning approach to encapsulate flow as quantized features
from consecutive frames which is then entropy coded with
adaptive contexts conditioned on joint spatial-temporal priors
to exploit second-order correlations. Joint priors are embed-
ded in autoregressive spatial neighbors, co-located hyper ele-
ments and temporal neighbors using ConvLSTM recurrently.
We evaluate our approach for the low-delay scenario with
High-Efficiency Video Coding (H.265/HEVC), H.264/AVC
and another learned video compression method, following
the common test settings. Our work offers the state-of-the-
art performance, with consistent gains across all popular test
sequences.

Introduction

Video content occupied more than 70% Internet traffic,
and it became a big challenge for transmission and stor-
age along its explosive growth. Researchers, engineers, etc,
continuously pursue the (next-generation) high-efficiency
video compression for wider application enabling and
larger market adoption. Conventional video compression ap-
proaches usually follow the hybrid coding framework over
decades (Sullivan and Wiegand 2005) with hand-crafted
tools for individual components. It is not efficient to jointly
optimize the system in an end-to-end manner, especially for
the inter tool efficiency exploration despite its great success
of H.264/AVC (Wiegand et al. 2003) and H.265/HEVC (Sul-
livan et al. 2012).

Recently, image compression algorithms (Ballé, Laparra,
and Simoncelli 2016; Li et al. 2017; Ballé et al. 2018;
Mentzer et al. 2018; Liu et al. 2019) based on machine
learning have shown great superiority in coding efficiency
for spatial redundancy removal, compared with conven-
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Figure 1: Temporal correlation exploration using both first-
order and second-order motion representation. Frame-to-
frame redundancies can be easily removed by accurate flow
estimation and compensation (e.g., first-order); Then flow-
to-flow correlation can be further eliminated or reduced
using predictions from joint spatial-temporal priors (e.g.,
second-order).

tional codecs. These methods benefit from non-linear trans-
forms, deep neural network (DNN) based conditional en-
tropy model, and joint rate-distortion optimization (RDO),
under an end-to-end learning strategy. Learned video com-
pression can be extended from image compression by fur-
ther exploiting the temporal redundancy or correlation. We
proposed an end-to-end video compression framework using
joint spatial-temporal priors to generate compact latent fea-
ture representations for intra texture, inter motion and sparse
inter residual signals. Intra textures are well represented by
spatial priors for both reconstruction and entropy context
modeling using a variational autoencoder (VAE) structure
(Minnen, Ballé, and Toderici 2018; Liu et al. 2019). We
directly use NLAIC method proposed in (Liu et al. 2019)
for our intra texture compression because of its state-of-the-
art efficiency, and primarily investigate learned inter coding
with the focus on efficient temporal motion representation in
this paper.
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We represent temporal information or correlation using its
both first-order and second-order statistics. The first-order
temporal information is referred to as the motion fields (e.g.,
intensity, orientation) between consecutive frames. Motion
fields can be described by either optical flow or block-based
motion vectors. Here, we suggest an one-stage unsupervised
flow learning approach, where first-order motions are quan-
tized temporal features learned from the consecutive frames
directly. Our unsupervised flow learning does not rely on
a well pre-trained optical flow estimation network, such as
FlowNet2 (Ilg et al. 2017; Sun et al. 2018), and can de-
rive the compressed optical flow from quantized features di-
rectly.

The second-order temporal information is flow-to-flow
correlations, describing the object acceleration. Flow can be
further predicted for energy reduction. Thus, we fuse priors
from spatial, temporal and hyper information to predict flow
elements and compress the predictive difference. It turns out
that this can be realized by entropy coding with adaptive
contexts conditioned on fused priors.

Inter residual is derived between original frame and flow
warped prediction. We reuse the intra texture coding net-
work here directly for residual coding. It is worth to point
out that VAE structures are applied for all components (e.g.,
intra, inter, residual) in this paper.

Contributions.

1) We propose an end-to-end video compression method
which offers the state-of-the-art performance against tradi-
tional video codecs and recent learned approaches with con-
sistent gains across a variety of common test sequences;

2) High-efficient inter coding is achieved by representing
temporal correlation using both first-order optical flow and
second-order flow predictive difference;

3) First-order flow is offered using an one-stage unsuper-
vised learning and represented by quantized features derived
from consecutive frames;

4) Second-order flow predictive difference compression
is efficiently solved by entropy coding with adaptive con-
texts conditioned on fused priors (e.g., autoregressive spatial
priors, hyperpriors, and temporal priors propagated using a
ConvLSTM (Xingjian et al. 2015)).

Related Work

Learned Image Compression

DNN based image compression approaches generally rely
on autoencoders. (Toderici et al. 2016) first proposed to
use recurrent autoencoders to progressively encode bits for
image compression. Recent years, convolutional autoen-
coders are studied extensively, including non-linear trans-
forms (e.g., generalized divisive normalization (Ballé, La-
parra, and Simoncelli 2016) and non-local attention trans-
forms (NLAIC) (Liu et al. 2019)), differentiable quantiza-
tion (e.g., soft-to-hard quantization (Mentzer et al. 2018) and
uniform noise approximation (Ballé, Laparra, and Simon-
celli 2016)), and adaptive entropy model using the Bayesian
generative rules (e.g., PixelCNNs (Oord, Kalchbrenner, and
Kavukcuoglu 2016) and variational autoencoders (Ballé et
al. 2018)). RDO (Sullivan and Wiegand 1998) is applied by

minimizing Lagrangian cost J = R + λD, in end-to-end
training. Here, R is referred to as entropy rate, and D is the
distortion measured by either mean squared error (MSE) or
multiscale structural similarity (MS-SSIM).

These approaches demonstrated better coding efficiency
against traditional image coders, both objectively and sub-
jectively. In addition, extreme compression are under ex-
ploration with adversarial training (e.g., conditional GANs
(Agustsson et al. 2018), multi-scale discriminators (Rippel
and Bourdev 2017) for satisfied subjective quality at very
low bit rates.

Learned Video Compression

Learned video compression (Djelouah et al. 2019; Habibian
et al. 2019) is a relatively new area. (Chen et al. 2017) first
proposed the DeepCoder where DNNs were used for intra
texture and inter residual, and block motions were applied
using traditional motion estimation for temporal informa-
tion representation. Inspired by temporal interpolation and
prediction (Niklaus, Mai, and Liu 2017; Niklaus and Liu
2018; Huang, Wang, and Wang 2015), (Wu, Singhal, and
Krähenbühl 2018) introduced a RNN based video compres-
sion framework through frame interpolation, offering com-
parable performance with H.264/AVC. However, interpola-
tion typically brings structural delay. Recently, unsupervised
flow estimation methods (Jason, Harley, and Derpanis 2016;
Meister, Hur, and Roth 2018) are introduced to utilize end-
to-end learning for predicting optical flow between two
frames without leveraging groundtruth flow. The proposed
brightness constancy, motion smoothness and bidirectional
census loss are proven to be efficient for flow generation.
Robust and reliable optical flow derivation methods are
emerged, such as FlowNet2 (Ilg et al. 2017) and PWC-
Net (Sun et al. 2018). FlowNet2 stacks multiple simple
flownet and applies small displacements to correct flow.
PWC-Net extends traditional pyramid flow reconstructed
rules to learn and generate precise flow faster.

(Lu et al. 2019) replaced the block based motion estima-
tion with a pre-trained FlowNet2 followed by a cascaded
autoencoder for flow compression. U-Net alike processing
network was used to enhance the quality of predicted frame.
In addition, they directly used models in (Ballé et al. 2018)
for their intra and residual coding. The entire framework is
so called DVC. DVC outperformed H.265/HEVC mainly at
high bit rates but the coding efficiency dropped unexpectly
at low bit rates as reported.

All these attempts in learned video compression were try-
ing to represent the temporal information more efficiently.

Proposed Method

Framework Overview

Fig. 2 sketches our learned video compression. Given a
group of pictures (GOP) X = {X1,X2, ...,Xt}, we first
encode X1 using NLAIC-based intra coding in (Liu et al.
2019), having reconstructed frame as X̂1.

For X2, we first learn the first-order flow for the predicted
frame X̂p

2 using X̂1. Corresponding r2 = X2 − X̂p
2 is en-

coded using residual coding sharing the same architecture as
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Figure 2: Learned Video Compression. Intra & residual cod-
ing using NLAIC in (Liu et al. 2019), and inter coding by
exploring one-stage unsupervised flow learning, and quan-
tized flow feature encoding using context adaptive entropy
models.

NLAIC-based intra coding, and reconstructed as r̂2. First-
order flow is represented using quantized features that are
entropy-coded with adaptive contexts conditioned on priors,
by exploiting the second-order temporal correlation. Final
reconstruction X̂2 is given by X̂2 = X̂p

2 + r̂2. Subsequent
frames follow the same process as of X2.

Adaptive entropy models for rate estimation and arith-
metic encoding are embedded for intra, inter and residual
components. Thanks to the VAE structures, intra and resid-
ual coding use the joint autoregressive spatial and hyper pri-
ors for the probability estimation; and inter coding applies
priors from spatial, hyper and temporal information.

Intra Coding

We directly apply the NLAIC approach in (Liu et al. 2019)
for our intra coding. Its state-of-the-art coding efficiency
in image compression comes from the introduction of non-
local attention transform that are embedded in both main and
hyper encoder-decoder network in Fig. 3. Note that the main
network is used to obtain the reconstructed frame and the
hyperprior network is used for context modeling of adaptive
entropy coding.

In NLAIC method, non-local attention modules (NLAM)
are embedded to capture joint local and global correlations
for both reconstruction and context probability modeling, by
inheriting the advantages from both nonlocal processing and
attention mechanism. NLAM applies joint spatial-channel
attention masks for more compact feature representation.
And, masked 3D convolutions are used to fuse hyperpriors
and autoregressive priors for accurate context estimation of
adaptive entropy coding,

(μi, σi) = F(x̂1, ..., x̂i−1, ẑt). (1)

F represents cascaded 3D 1×1×1 convolutions to fuse the
priors. x̂1, x̂2, ..., x̂i−1 denote the causal (and possibly for-
mer reconstructed) pixels prior to current pixel x̂i obtained
by a 3D 5×5×5 masked convolution and ẑt are the hyper-
priors. Probability of each pixel symbol in x̂t can be simply

Figure 3: NLAIC-based Intra Coding. A VAE architecture
with non-local attention transforms embedded. “AE” repre-
sents the arithmetic encoding to encode the quantized fea-
tures with corresponding probability distribution, “AD” re-
verts binary strings to feature elements and “Q” is for quan-
tization.

derived using

px̂t|ẑt
(x̂t|ẑt) =

∏

i

(N (μi, σ
2
i ) ∗ U(−

1

2
,
1

2
))(x̂i), (2)

with a Gaussian distribution assumption with mean (μ) and
variance (σ).

Inter Coding

Video coding performance heavily relies on the efficient
temporal information representation. It has two folds. One
needs to have the most accurate first-order flow for compen-
sation, and the other is to devise second-order statistics for
flow prediction.

One-stage Unsupervised Flow Learning Previous work
in (Lu et al. 2019) obtained decoded optical flow using typi-
cal two-stage methods shown in Fig. 4(a). It relied on a well
pre-trained flow network to generate an uncompressed opti-
cal flow that was then compressed using a cascaded autoen-
coder. But, in our work, we leverage the quantized features
between consecutive frames as compact motion representa-
tions and directly decode the compressed features for sub-
sequent compensation. There is no need to explicitly derive
raw and uncompressed flow in encoding process with su-
pervised guidance as in FlowNet2 and PWC-Net. Thus, it is
an one-stage unsupervised flow learning and compensation
approach in Fig. 4(b).

We concatenated two consecutive frames as the input
for feature fusion, and the network is consisted of stacked
NLAM1 and downsampling (e.g., 5×5 convolutions with
stride 2), generating the fused features with (H/16) ×

1Nonlocal attention is used to capture local and global correla-
tions.
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(a)

(b)

Figure 4: Flow Learning and Compensation. (a) Two-stage supervised approach using a pre-trained flow net (with explicit raw
flow) and a cascaded flow compression autoencoder; (b) One-stage unsupervised approach with implicit flow represented by
quantized features that will be directly decoded for compensation.

(W/16) × 64 dimension. Quantization is then applied to
obtain the quantized features F for entropy coding. The
decoder mirrors the stacked NLAM with upsampling (e.g.,
5×5 deconvolutions with stride 2) in the feature fusion
network, and derived the decoded flow f̂d

t (at a size of
H × W × 2 for separable horizontal and vertical orienta-
tions) for compensation. Here, H,W denotes the height and
width of the original frame, respectively.

To avoid quantization induced motion noise,we first pre-
train the network with uncompressed consecutive frames
Xt−1 and Xt. Then we replace Xt−1 using its decoded cor-
respondence X̂t−1 as described in Eq. (3) and (4). Note that
we only have X̂t−1 not Xt−1 for inter coding in practice.
And we have directly utilized the decoded flow f̂d

t for end-
to-end training and do not need a flow explicitly at encoding
(i.e., implicitly represented by quantized features).

A compressed flow representation of f̂d
t , i.e., quantized

features F , is encoded into the bitstream for delivery. f̂d
t is

then used for warping with reference frame to have X̂p
t for

compensation, i.e.,

f̂d
t = Fd(Fe(X̂t−1,Xt)), (3)

X̂p
t = warping(X̂t−1, f̂

d
t ), (4)

Here Fe and Fd represent the feature fusion network with
quantization and decoder network, respectively. Note that
F = Fe(X̂t−1,Xt).

Context Adaptive Flow Compression Previous section
introduced one-stage unsupervised flow learning targeting
for the accurate first-order motion representation for com-
pensation, where flow is represented implicitly using quan-

tized features F . Efficient representation of F is highly de-
sirable

Generally, as shown in Fig. 1, there is not only the first-
order correlation (frame-to-frame) that can be exploited by
the flow, but also the second-order correlation both spatially
and temporally. A way to predict flow efficiently could lead
to much better compression performance. Ideally, flow ele-
ment can be estimated by its spatial neighbors, temporal co-
located element, and hyper priors for energy compaction. A
duality problem for such flow prediction using neighbors, is
flow element entropy coding using adaptive contexts.

Adaptive context modeling can leverage priors from spa-
tial autoregressive neighbors, temporal and hyper informa-
tion, shown in Fig. 5. For spatial autoregressive prior, we
propose to apply the 3D masked convolutions on quantized
features F ; while for hyper priors, hyper decoder is used to
decode corresponding information. Hyperpriors are widely
used in VAE structured compression approaches. Note that,
temporal correlations are exhibited in video sequence. In-
stead of applying the only pixel domain frame buffer in
traditional video codecs, we propose to embed and propa-
gate flow representation at a frame recurrent way using the
ConvLSTM, which is also referred to as the temporal prior
buffer. Temporal priors have the same dimension as the cur-
rent quantized features F .

These priors are fused together for context adaptive flow
coding, i.e.,

(μF , σF ) = F(F1, ...,Fi−1, ẑt,ht−1), (5)

pF |(F1,...,F i−1,ẑt,ht−1)(Fi|F1, ...,Fi−1, ẑt,ht−1)

=
∏

i

(N (μF , σ2
F ) ∗ U(−1

2
,
1

2
))(Fi). (6)
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Figure 5: Adaptive Contexts Using Fused Priors. Spatial
autoregressive priors are applied using 3D masked convolu-
tions, temporal priors are propagated using convLSTM, and
hyperpriors are hyper decoder in a VAE setup. All priors are
then fused together for probability modeling. Note that con-
texts update at a frame recurrent fashion.

Fi, i = 0, 1, 2, ... are elements of quantized features for im-
plicit flow f̂d

t representation, ht−1 is aggregated temporal
priors from previous flow representations, which is updated
using standard ConvLSTM:

(ht, ct) = ConvLSTM(Ft,ht−1, ct−1), (7)

where ht, ct are updated state at t and prepared for the next
time step slot with ct−1 as a memory gate.

Residual Coding

For the sake of simplicity, we encode the residual signals
rt using the identical networks as the NLAIC-based intra
coding. rt is obtained by rt = Xt − Xp

t . Here, we do not
calculate the loss between rt and r̂t but directly target for
overall reconstruction loss D(Xt,X

p
t + r̂t) for optimizing

the residual coding.

Experimental Studies

We proceed to the details about training strategy and evalua-
tion in this section. More ablation studies are given to verify
the effectiveness of our work.

Implementation Details

Training & Testing Datasets. We choose COCO (Lin et
al. 2014) dataset to pre-train NLAIC-based intra coding net-
work. And then we joint train video compression frame-
work on Vimeo 90k (Xue et al. 2019) which is a widely
used dataset for low-level video processing tasks. All images
from these the datasets are randomly cropped into 192×192
patches for training.

We gave evaluations on NLAIC using Kodak dataset in
ablation studies to understand the efficiency of nonlocal at-
tention transforms. We then evaluated our video compres-
sion approaches on standard HEVC dataset and ultra video

Figure 6: Rate-Distortion Performance Comparison. Ex-
periments are performance for HEVC comment test classes
and UVG videos for a variety of content distributions. Our
method gains consistently across all test videos.

group (UVG) dataset with different classes, resolution and
frame rate.

Loss Function & Training Strategy. It is difficult to train
multiple networks on-the-fly at one shot. Thus, we pre-train
the intra coding and flow learning and coding networks first,
followed by the jointly training with pre-trained network
models for an overall optimization, i.e.,

L =
λ1

n

n∑

t=0

D1(X̂t,Xt) +
λ2

n

n∑

t=0

D2(X̂
p
t ,Xt)

+Rs +
1

n− 1

n∑

t=1

Rt, (8)

where D1 is measured using MS-SSIM, and D2 is the warp-
ing loss evaluated using L1 norm and total variation loss. Rs

represents the bit rate of intra frame and Rt is the bit rate of
inter frames including bits for residual and flow respectively.
Currently, λ1 and λ2 will be adapted according to the spec-
ified overall bit rate and bit consumption percentage of flow
information in inter coding.

Besides, entropy rate loss R is approximated by condi-
tional probability p using Eq. (9), with main payload for
context adaptive feature elements, and payload overhead for
image height (H), width (W ), number of frames (N ) and
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GOP length (n), e.g.,

R = −
∑

i
log2(p) + overhead. (9)

Note that bit consumption for “overhead” is less than 0.1%
of the entire compressed bitstream, according to our exten-
sive simulations.

To well balance the efficiency of temporal information
learning and training memory consumption, we have en-
rolled 5 frames to train the video compression framework
and shared the weights for the subsequent frames. The ini-
tial learning rate (LR) is set to 10e-4 and is clipped by half
for every 10 epochs. The final models are obtained using a
LR of 10e-5. We apply the distributed training on 4 GPUs
(Titan Xp) for 5 days.

Evaluation Criteria. For fair comparison, we have ap-
plied the same setting as DVC in (Lu et al. 2019) for our
method and traditional H.264/AVC, and HEVC codecs. We
use GOP of 10 and encode 100 frames on HEVC test se-
quences and use GOP of 12 with 600 frames on UVG
dataset. The reconstructed quality are measured in RGB do-
main using MS-SSIM. Bits per pixel (Bpp) is used for bit
rate measure which can be easily translated to the kbps by
scaling it with H × W × n/τ . τ is the video duration in
seconds.

Performance Comparison

Rate distortion Performance. Our approach outperforms
all the existing methods as shown in Fig.6. Here, the distor-
tion is measured by MS-SSIM which is proven to be a more
relevant to human visual system, and used widely in learned
compression methodologies (Minnen, Ballé, and Toderici
2018).

To the best of our knowledge, our work is the first end-
to-end method that outperforms H.265/HEVC consistently
across a variety of bit rates for all test sequences. In con-
trast, algorithm in (Wu, Singhal, and Krähenbühl 2018) only
presents a similar performance as H.264/AVC. DVC (Lu
et al. 2019) improves (Wu, Singhal, and Krähenbühl 2018)
with better coding efficiency against HEVC at high bit rates.
However, a cliff fall of performance is revealed for DVC at
low bit rate (e.g., some rates having performance even worse
than H.264/AVC). We have also observed that DVC’s perfor-
mance varies for different test sequences. But, our approach
shows consistent gains, across contents and bit rates, leading
to the conclusion that our model presents better generaliza-
tion for practical applications.

We use H.264/AVC as the anchor for BD-Rate calcu-
lation as shown in Table 1. Our approach reports 50.36%
and 51.67% BD-rate reduction on HEVC test sequences
and UVG dataset compared with H.264/AVC, respectively,
offering a significant performance improvement margin in
contrast to the HEVC or DVC over the H.264/AVC.

Visual Comparison We provide the visual quality com-
parison with H.264/AVC and H.265/HEVC as shown in
Fig. 8.

Traditional codecs usually suffer from blocky artifacts, es-
pecially at low bit rate, because of its block based coding
strategy. Our results eliminate this phenomenon and provide

Figure 7: Efficiency of NLAM. NLAM is used in non-
local attention transforms for intra & residual coding. Per-
formance is reduced by removing NLAM, but still close to
the work in (Minnen, Ballé, and Toderici 2018).

Table 1: BD-Rate Gain of Our Method, HEVC and DVC
against the H.264/AVC

Sequences H.265/HEVC DVC Ours
ClassB -28.31% -29.09% -54.17%
ClassC -20.50% -28.11% -39.17%
ClassD -8.89% -27.35% -44.84%
ClassE -29.52% -33.91% -63.28%

Average -21.73% -29.73% -50.36%

UVG dataset -37.25% -28.28% -51.67%

more visually satisfying quality of reconstructed frames.
Meanwhile, we need less bits for similar visual quality.

Ablation Study

Non-local Attention Transforms. Most existing image
compressions apply Generalized Divisive Normalization
(GDN) as non-linear transform to de-correlate spatial-
channel redundancy (Minnen, Ballé, and Toderici 2018;
Ballé 2018). Alternative non-local attention transform uti-
lizes NLAM to capture both local and global correlations,
leading to the state-of-the-art efficiency as reported in (Liu et
al. 2019). Algorithms in (Minnen, Ballé, and Toderici 2018)
ranks the second place for coding efficiency. Both meth-
ods in (Liu et al. 2019) and (Minnen, Ballé, and Toderici
2018) apply the VAE structures. Fig. 7 experiments the effi-
ciency of NLAM, revealing that performance can be retained
closely to (Minnen, Ballé, and Toderici 2018) even by re-
moving all nonlocal operations.

Second-order Flow Correlations In Fig.1, we have
shown that the second-order motion representations im-
ply the further temporal redundancy between optical flows.
Thus, we present a recurrent state (e.g., ConvLSTM) to ag-
gregate temporal priors for inter coding which can effec-
tively reduce the bits for flow compression.

Temporal priors are fused with autoregressive and hyper
priors to improve the context modeling of flow element.
Then we use ConvLSTM to combine temporal priors with
current quantized features for the updated priors in a re-
current way. Flow prediction provides an effective means to
exploit the redundancy between complex motion behaviors.
Fig. 9 shows that efficiency variations when removing the
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Figure 8: Visual Comparison. Reconstructed frames of our method, H.265/HEVC and H.264/AVC. We avoid blocky artifacts
and provide better quality of reconstructed frame at low bit rate.

Figure 9: Efficiency of Temporal Priors. 2% - 10% loss cap-
tured at similar bit rate when removing temporal priors for
context modeling.

ConvLSTM system from our entire framework without ex-
ploiting the temporal correlations, where 2% to 10% quality
loss is captured.

Generally, bits consumed by motion information varies
across different content and bit rates, leading to a variety of
percentages to the total bits. More bit saving is revealed for
low bit rates, and motion intensive content. For stationary
content, such as HEVC Class E, spatial and hyper priors al-
ready give a good reference, thus temporal priors are less
used.

Conclusions & Future Work

In this paper, we present an end-to-end video compression
framework and fully exploit the spatial and temporal redun-
dancies. Key novelty laid on the accurate motion representa-
tion for exploiting temporal correlation, via both first-order
optical flow learning and second-order flow predictive cod-
ing. An one-stage unsupervised flow learning is applied with
implicit flow representation using quantized features. These
features are then compressed using joint spatial-temporal
priors by which the probability model is conditioned adap-
tively.

We evaluate our methods and report the state-of-the-art
performances among all the existing video compression ap-
proaches, including traditional H.264/AVC, H.265/HEVC,
and learning-based DVC. Our approach offers the consis-
tent gains over existing methods across a variety of contents
and bit rates.

As for the future study, an interesting topic is to devise
implicit flow without actual bits consumption, such as the
decoder-side flow derivation, or frame interpolation and ex-
trapolation. Currently, residual shares the same network with
intra coding, which may be worth for deep investigation for
network simplification. It is also significant to generalize the
whole system to more complex video data sets such as spec-
tural video (Cao et al. 2016) and 3D video (Müller et al.
2013; Cao, Li, and Dai 2011).
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Minnen, D.; Ballé, J.; and Toderici, G. D. 2018. Joint autore-
gressive and hierarchical priors for learned image compres-
sion. In Advances in Neural Information Processing Sys-
tems, 10794–10803.
Müller, K.; Schwarz, H.; Marpe, D.; Bartnik, C.; Bosse, S.;
Brust, H.; Hinz, T.; Lakshman, H.; Merkle, P.; Rhee, F. H.;
et al. 2013. 3d high-efficiency video coding for multi-view
video and depth data. IEEE Transactions on Image Process-
ing 22(9):3366–3378.
Niklaus, S., and Liu, F. 2018. Context-aware synthesis for
video frame interpolation. arXiv preprint arXiv:1803.10967.
Niklaus, S.; Mai, L.; and Liu, F. 2017. Video frame inter-
polation via adaptive convolution. In IEEE Conference on
Computer Vision and Pattern Recognition, volume 1, 3.
Oord, A. v. d.; Kalchbrenner, N.; and Kavukcuoglu, K.
2016. Pixel recurrent neural networks. arXiv preprint
arXiv:1601.06759.
Rippel, O., and Bourdev, L. 2017. Real-time adaptive image
compression. arXiv preprint arXiv:1705.05823.
Sullivan, G. J., and Wiegand, T. 1998. Rate-distortion op-
timization for video compression. IEEE Signal Processing
Magazine 15(6):74–90.
Sullivan, G. J., and Wiegand, T. 2005. Video compression -
from concepts to the h.264/avc standard. Proceedings of the
IEEE 93(1):18–31.
Sullivan, G. J.; Ohm, J.-R.; Han, W.-J.; and Wiegand, T.
2012. Overview of the high efficiency video coding (hevc)
standard. IEEE Transactions on circuits and systems for
video technology 22(12):1649–1668.
Sun, D.; Yang, X.; Liu, M.-Y.; and Kautz, J. 2018. Pwc-net:
Cnns for optical flow using pyramid, warping, and cost vol-
ume. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 8934–8943.
Toderici, G.; Vincent, D.; Johnston, N.; Hwang, S.-J.; Min-
nen, D.; Shor, J.; and Covell, M. 2016. Full resolution
image compression with recurrent neural networks. CoRR
abs/1608.05148.
Wiegand, T.; Sullivan, G. J.; Bjontegaard, G.; and Luthra,
A. 2003. Overview of the h. 264/avc video coding stan-
dard. IEEE Transactions on circuits and systems for video
technology 13(7):560–576.
Wu, C.-Y.; Singhal, N.; and Krähenbühl, P. 2018. Video
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