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Abstract

Unpaired image-to-image translation is proven quite effec-
tive in boosting a CNN-based object detector for a different
domain by means of data augmentation that can well pre-
serve the image-objects in the translated images. Recently,
multimodal GAN (Generative Adversarial Network) models
have been proposed and were expected to further boost the
detector accuracy by generating a diverse collection of im-
ages in the target domain, given only a single/labelled image
in the source domain. However, images generated by multi-
modal GANs would achieve even worse detection accuracy
than the ones by a unimodal GAN with better object preser-
vation. In this work, we introduce cycle-structure consistency
for generating diverse and structure-preserved translated im-
ages across complex domains, such as between day and night,
for object detector training. Qualitative results show that our
model, Multimodal AugGAN, can generate diverse and real-
istic images for the target domain. For quantitative compar-
isons, we evaluate other competing methods and ours by us-
ing the generated images to train YOLO, Faster R-CNN and
FCN models and prove that our model achieves significant
improvement and outperforms other methods on the detection
accuracies and the FCN scores. Also, we demonstrate that our
model could provide more diverse object appearances in the
target domain through comparison on the perceptual distance
metric.

Introduction

Recent advances of object detection are driven by the suc-
cess of two-stage detectors, (Girshick et al. 2014; Girshick
2015; Ren et al. 2015). While two-stage detectors are gener-
ally more accurate but slower, one-stage detectors (Redmon
et al. 2016; Redmon and Farhadi 2017; Liu et al. 2016) have
been proposed for real-time performance. These detectors
keep pushing the limits of object detection on benchmark
datasets, such as PASCAL VOC (Everingham et al. 2010)
and MSCOCO (Lin et al. 2014).

The generalization capability of CNN-based detectors is
way better than traditional machine learning approaches.
However, performance still drops significantly when the
trained model is deployed in a new domain different from
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Figure 1: How our multimodal GAN helps an object detec-
tor adapt to a target domain: Our GAN model could pro-
vide structure-consistent translated images across complex
domains.

those of the training images. Taking the on-road object de-
tection for example, one of the most complex domain shift is
between day and night because the object appearances such
as vehicles at daytime are very different from their coun-
terparts at nighttime. As indicated by (Braun et al. 2018)
in pedestrian detection, training on daytime and testing on
night-time gives significantly worse results than training and
testing on the same time-of-day. The reason that nighttime
vehicle datasets in real-driving scenario are scarce in public
domain is that the labeling cost at nighttime is significantly
more expensive than that at daytime.

The successes of Generative Adversarial Networks
(GANs) (Goodfellow et al. 2014) on image generation have
made rapid progress in this area. The generators in GANs
can map from noise vectors to realistic images. However, to
apply GAN for improving the robustness of an on-road ob-
ject detection in terms of data augmentation, it is more prac-
tical to perform image-to-image translation for the labeled
data in the source domain to the target domain. This way,
the tedious data annotation could be significantly mitigated.
Pix2Pix (Isola et al. 2017) could provide visually-plausible
images in the target domain if paired training data is avail-
able, which is not possible for on-road object detection.

Recently, unpaired image-to-image translation methods,
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such as CycleGAN (Zhu et al. 2017a), have achieved as-
tonishing results by introducing the cycle consistency con-
straint. UNIT (Liu, Breuel, and Kautz 2017) further ap-
plied weight-sharing constraint to increase the translation
consistency. AugGAN (Huang et al. 2018a) presented a
weighting-shared multi-tasking generator consisting of an
image-translation subtask and a segmentation one to pur-
sue better translation results in the target domain while the
image-objects are well-preserved. CyCADA (Hoffman et
al. 2018) proposed to improve domain adaptation transla-
tion by (1) applying the segmentation task loss in the for-
ward cycle and the semantic consistency loss in the back-
ward cycle, and (2) aligning representations at both pixel-
level and feature-level. (Inoue et al. 2018) presented a cross-
domain weakly supervised object detection framework by
fine-tuning a detector well-trained in the source domain with
(1) domain-transferred images and (2) target-domain im-
ages with image-level annotations. (Chen et al. 2018) tried
to improve the cross-domain robustness in the image-level
and the instance-level. The two domain adaptation compo-
nents of their work are implemented by learning domain
classifiers on different levels in adversarial training man-
ner. The image translation made above were all one-to-one
mapping, which limits the diversity of the generated images,
given the labelled data in the source domain. BicycleGAN
(Zhu et al. 2017b) is a multimodal image-to-image trans-
lation model and could provide diverse output. However, it
requires paired data and is thus not suitable for many appli-
cations, such as on-road image transformation.

More recently, instead of one-to-one mapping in unpaired
image-to-image translation, multimodal image-translation
models, such as AugCGAN (Almahairi et al. 2018), DRIT
(Lee et al. 2018) and MUNIT (Huang et al. 2018b), have
been proposed to provide diverse outputs using a single
model. Therefore, given unpaired labelled data in different
domains, the GAN models would learn to produce various
outputs in terms of different styles, appearances, or obser-
vations. However, in complex domain shift, such as day-to-
night, the image-objects may not be well-preserved because
specific objects’ appearances would normally not dominate
the model training in learning the image translation.

In this paper, we propose, Multimodal AugGAN, a mul-
timodal structure-consistent image-to-image translation net-
work, which directly benefits object detection by translat-
ing each existing detection training image from its original
domain to diverse results, each of which possesses differ-
ent degrees of transformation at the target domain. The con-
tribution of this work is three-fold: (1) we design a multi-
modal structure-consistent image-to-image translation net-
work which learns from unpaired images to generate diverse
images in the target domain while artifact in the transformed
images is greatly reduced; (2) we quantitatively prove that
the domain adaptation capability of a vehicle detector could
be further boosted by incorporating multimodal transformed
images in detector training; (3) our multimodal GAN model
provides significant performance gain in the difficult day-to-
night case in terms of vehicle detection and semantic seg-
mentation.

Proposed Model

Our goal is to learn a multimodal structure-consistent image-
translation network between two visual domains X ⊂
R

H×W×3 and Y ⊂ R
H×W×3 where the N-class segmen-

tation ground-truth, i.e., X̂ ⊂ R
H×W and Ŷ ⊂ R

H×W , is
available in the learning stage, and the transformation be-
tween two domains is learned in the unpaired fashion.

Our network, as depicted in Fig. 2, consists of
image-translation encoders {Ex, Ey}, parsing net encoders
{Ep

x, E
p
y}, image-translation generators {Gx, Gy}, parsing

nets {Px, Py}, and discriminators {Dx, Dy} for the two im-
age domains, respectively.

While unpaired image-to-image translation tasks have
achieved success in generating realistic images, they are pri-
marily limited to generating a deterministic output ȳ, given
the input image x. In order to learn the mapping that could
sample the output ȳ from true conditional distribution given
x and produce results which are both diverse and realis-
tic, we would like to learn a low-dimensional latent vec-
tor z ⊂ R

Z , which encapsulates the ambiguous aspects of
the output mode. For example, a vehicle in a daytime image
could map to their nighttime counterparts with different am-
bient light levels and rear lamp conditions (on/off) but with
the same vehicle type, color and locations. In this work, we
aim at learning a deterministic mapping Gx(x, z) → y to
the output. To enable stochastic sampling, we desire the la-
tent code vector z to be drawn from some prior distribution
p(z). We use a standard Gaussian distribution N(0, 1) in this
work.

As shown in Fig. 2, generator Gx generates images con-
ditioned on the random vector drawn from a prior Gaussian
distribution N(0, 1) in an attempt to fool discriminator Dx

and be structure-consistent in image translation by fulfilling
the structure required to perform segmentation subtask done
by Py . Then, to further reduce the space of possible map-
pings, we claim that the mappings should be cycle-structure
consistent. Therefore, given the translated ȳ, Gy will also try
to generate a reconstructed image xrec which is not capable
of being discriminated by Dy but still preserves the structure
in a way that it could be segmented by Px to produce x̂rec

closer to x̂. The backward cycle learns to translate image
starting from domain Y basically in the same way. There-
fore, our network learns the multimodal image translation
to the target domain according to its structure in the source
domain.

Detailed architecture of our network is given in Table 1.
We use the same encoder structure for the subsequent gener-
ators and parsing networks. There are some design choices
for modeling stochastic mapping. Injecting random noise
by concatenation was used in (Zhu et al. 2017b) and (Rad-
ford, Metz, and Chintala 2015) while the former indicates
that there is no significant difference between input-injection
and all-layer-injection. However, similar to (Almahairi et al.
2018), our model also achieves more high-level variations
by using Conditional Instance Normalization (CIN). For the
discriminators, we follow the design of PatchGAN (Isola et
al. 2017) because it is flexible to work on arbitrarily-sized
images in a fully convolutional fashion.
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Figure 2: Overall structure of the proposed multimodal structure-consistent image-to-image translation network: x, y: sampled
images from domain X and Y; x̂, ŷ: segmentation Ground-Truth of x and y; x̄, ȳ: translated results; x̂pred, ŷpred: predicted seg-
mentation masks, given x̄ and ȳ; xrec, yrec: reconstructed images corresponding to x and y; x̂rec, ŷrec: predicted segmentation
masks, given reconstructed images xrec, yrec.

Adversarial learning

We first apply adversarial losses to the mapping func-
tions. Let Z be an auxiliary noise with a standard Gaussian
prior. The mapping function between two domains is firstly
learned with a deterministic mapping from X domain to the
structure-aware latent space Zx and then translated to Y do-
main while both processes are conditioned on the same aux-
iliary noise. i.e., Ex : X× Z → Zx, Gx : Zx × Z → Y. We
define the first adversarial loss function as:

LGAN1(Ex, Gx, Dx, X, Y ) = Ey∼pdata(y)
[logDx(y)]

+Ex∼pdata(x),z∼p(z)
[log(1−Dx(Gx(Ex(x, z), z)))], (1)

where Ex and Gx try to generate transformed images
Gx(Ex(x)) that look similar to images from domain Y ,
while Dx aims to distinguish between translated samples
Gx(Ex(x)) and real samples y in terms of style. The same
mapping function could be applied to the reconstruction
phase of the backward cycle and the only difference is
Ex : X̄ × Z → Zx, Gx : Zx × Z → Y with the objective
LGAN1

(Ex, Gx, Dx, X̄, Y ). In the testing stage for stochas-
tic sampling, we desire the auxiliary noise to be drawn from
some prior distribution p(z), which is still a standard Gaus-
sian distribution N(0, 1) throughout this work.

Similarly, for the image-translation phase of the backward
cycle, the mapping function Ey : Y → Zy, Gy : Zy → X
and its discriminator Dy are related in the following adver-
sarial loss:

LGAN2
(Ey, Gy, Dy, Y,X) = Ex∼pdata(x)

[logDy(x)]

+Ey∼pdata(y)
[log(1−Dy(Gy(Ey(y))))], (2)

and the reconstruction phase of the forward cycle is modeled
as LGAN2

(Ey, Gy, Dy, Ȳ , X).

Image-translation-structure consistency

Our model actively guides the encoder-generator network to
extract structure-aware features conditioned on the injected
random vector so that the image is transformed to the style
of the target domain while its structure is consistent with
the structure of the corresponding image in the source do-
main. Here, we use the multi-class cross-entropy loss for the
segmentation subtask in preserving structure for the image-
translation phase of the forward cycle and it could be formu-
lated as:

Lseg1(Ex, Gx, E
p
y , Py, X, X̂) =

Ex,x̂∼pdata(x,x̂),z∼p(z)
[�mce(x̂pred, x̂)], (3)
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Table 1: Network architecture of encoders, generators, dis-
criminators and parsing nets in our multimodal structure-
consistent image-to-image translation model: N, K, S, Nseg
denote the number of convolution filters, kernel size, stride,
and task-specific number of segmentation classes, respec-
tively. Every Convolution and Deconvolution layer is fol-
lowed by a Batch Normalization layer when there is no la-
tent vector injection or a Conditional Instance Normalization
layer when there is, except the last layer of each generator,
parsing net and discriminator.

Layer Encoders Layer Info
1 CONV, ReLU N48,K7,S1
2 CONV, ReLU N96,K3,S1
3 CONV, ReLU N192,K3,S2
4 CONV, ReLU N192,K3,S2
5 RESBLK, ReLU N192,K3,S1
Layer Generators Layer Info
1 RESBLK, ReLU N192,K3,S1
2 RESBLK, ReLU N192,K3,S1
3 DCONV, ReLU N192,K3,S2
4 DCONV, ReLU N96,K3,S2
5 CONV, Tanh N3,K7,S1
Layer Parsing Networks Layer Info
1 RESBLK, ReLU N192,K3,S1
2 RESBLK, ReLU N192,K3,S1
3 DCONV, ReLU N192,K3,S2
4 DCONV, ReLU N96,K3,S2
5 CONV, ELU Nseg,K7,S1
6 CONV, Softmax Nseg,K1,S1
Layer Discriminator Layer Info
1 CONV, LeakyReLU N64, K4, S2
2 CONV, LeakyReLU N128, K4, S2
3 CONV, LeakyReLU N256, K4, S2
4 CONV, LeakyReLU N512, K4, S2
5 CONV, LeakyReLU N512, K4, S1
6 CONV, Sigmoid N1, K4, S1

where x̂pred = Py(E
p
y(Gx(Ex(x, z), z))) and

�mce(x̂pred, x̂) denotes the multi-class cross-
entropy loss which could be formulated as
− 1

H×W

∑H×W
i=1

∑C
c=1 x̂c(i)log(x̂pred,c(i)).

For the backward cycle, the image-translation-structure
consistency is modeled without the random vector:

Lseg2(Ey, Gy, E
p
x, Px, Y, Ŷ ) =

Ey,ŷ∼pdata(y,ŷ)
[�mcePx(E

p
x(Gy(Ey(y)))), ŷ)]. (4)

Cycle-structure Consistency

Cycle consistency was proposed in CycleGAN for produc-
ing images in another domain without the use of pairing
information. However, as pointed out by (Almahairi et al.
2018), enforcing the learned mapping to be cycle-consistent
is the fundamental flaw in modeling multimodal condition-
als for the reconstruction error would encourage the map-
pings to ignore the random vector. Here, we propose cycle-
structure consistency which does not force X and Xrec to be

exactly the same when cycling X → Ȳ → Xrec. Instead,
our cycle-structure consistency only encourages X̂ and X̂rec

to be as close as possible. This way, only structure of the re-
constructed image is preserved while the transferred-style is
not constrained. The associated loss functions are given by

Lcycle1(Ex, Gx, Ey, Gy, E
p
x, Px, X, X̂) =

Ex,x̂∼pdata(x,x̂),z∼p(z)
[�mce(x̂rec, x̂)], (5)

Lcycle2(Ey, Gy, Ex, Gx, E
p
y , Py, Y, Ŷ ) =

Ey,ŷ∼pdata(y,ŷ),z∼p(z)
[�mce(ŷrec, ŷ)], (6)

where x̂rec = Px(E
p
x(Gy(Ey(Gx(Ex(x, z), z))))), ŷrec =

Py(E
p
y(Gx(Ex(Gy(Ey(y)), z), z))), and we still apply the

multi-class cross-entropy loss here.

Network Learning

We jointly solve the learning problems for the image-
translation subtask:{Ex, Gx, Dx} and {Ey, Gy, Dy},
the image parsing subtask: {Ex, Gx, E

p
y , Py} and

{Ey, Gy, E
p
x, Px}, to be image-translation-structure-

consistent and cycle-structure-consistent. The full objective
function is given as follows:

Lfull(Ex, Gx, Ey, Gy, E
p
x, Px, E

p
y , Py, Dx, Dy) =

LGAN1
(Ex, Gx, Dx, X, Y )

+ LGAN2
(Ey, Gy, Dy, Y,X)

+ LGAN1(Ex, Gx, Dx, X̄, Y )

+ LGAN2
(Ey, Gy, Dy, Ȳ , X)

+ Lseg1(Ex, Gx, E
p
y , Py, X, X̂)

+ Lseg2(Ey, Gy, E
p
x, Px, Y, Ŷ )

+ λcyc ∗ (Lcycle1(Ex, Gx, Ey, Gy, E
p
x, Px, X, X̂)

+ Lcycle2(Ey, Gy, Ex, Gx, E
p
y , Py, Y, Ŷ ),

(7)

and we aim to solve the following optimization problem dur-
ing the model training:

min
Ex,Gx,
Ey,Gy ,

Ep
x,Px,

Ep
y ,Py

max
Dx,Dy

Lfull(Ex, Gx, Ey, Gy, E
p
x, Px, E

p
y , Py, Dx, Dy).

(8)

Experimental Results

Advanced driver assistance systems (ADAS) or autonomous
vehicles are expected to function well at both daytime and
nighttime. However, most vehicle-related datasets (Yang et
al. 2015; Zhou et al. 2016; Sivaraman and Trivedi 2010;
Geiger, Lenz, and Urtasun 2012) in public domain were
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captured at daytime. Synthetic datasets, such as SYNTHIA
(Ros et al. 2016) and GTA (Richter et al. 2016), and real-
driving datasets, such as BDD100k (Yu et al. 2018), provide
detection and segmentation Ground-Truth in driving scenar-
ios including different weather and time-of-day. Since our
network includes segmentation subtask for better preserving
the image-structure in image translation, we conduct GAN
model training and detector testing in SYNTHIA, GTA and
BDD100k, respectively. Also, each GAN model learning
from SYNTHIA, GTA, or a mixture of GTA and BDD100k
is also verified on BDD100k.

In SYNTHIA, only images in stereo-left are adopted and
the day-to-night GAN training is performed with the spring
and night images in sequences other than sequence-1. The
data used for detector training and testing come from seq-
1-spring transformed by GANs and seq-1-night images. In
GTA, all the daytime and the nighttime images in train-
ing sets are used in GAN training and the daytime images
in validation set are transformed by GANs to train detec-
tors which would be later assessed by the nighttime vali-
dation images. In BDD100k, the GAN training is done by
using BDD100k-seg-train. The detectors are trained with
day-to-night-transformed BDD100k-val-day and tested on
BDD100k-val-night.

We applied both one-stage YOLO (Redmon et al. 2016)
and two-stage Faster R-CNN (VGG-16) (Ren et al. 2015)
detectors in assessing how well the day-to-night transfor-
mation is done by each GAN model in terms of vehicle
detection. Except that both detectors are revised to per-
form single-class vehicle detection, all hyper-parameters
and evaluation metrics follow the same setting in their PAS-
CAL VOC results. Besides, we found the best strategy to
boost the detection accuracy is to train the vehicle detector
with unimodal images first and then fine-tune the detector
with multimodal data. The learning rate of both detectors is
1e-4 in the fine-tuning stage. It is worth mentioning that each
unimodal image generated by a multimodal GAN model is
done by simply feeding zero vector to the network through-
out this work. Several other detector training strategies will
also be discussed in this section.

Our major competitors in unimodal GANs which also uti-
lize segmentation subtask include CyCADA and AugGAN,
while the former originally only applies the segmentation
task loss in the forward cycle only, and the final version
of the latter has proved that using segmentation subtasks in
both cycles is quantitatively beneficial. Since the segmenta-
tion Ground-Truth at both daytime and nighttime is available
in our target datasets, we revise CyCADA to perform seg-
mentation subtasks in both domains for a fairer comparison
with AugGAN and our model.

This work is implemented in PyTorch (Paszke et al. 2017).
We use the input image size of 256x152 for SYNTHIA and
320x152 for both GTA and BDD100k datasets. We set the
size of the random vector Z ∈ R16 throughout this work. For
training, we use the Adam optimizer (Kingma and Ba 2015)
with a batch size of 4, a learning rate of 0.0002, exponential
decay rates (β1, β2) = (0.5, 0.999). In all the experiments,
we set the weightings related to structure consistency in the
multi-task loss to be Lseg1 = Lseg2 = Lcycle1 = Lcycle2 =

5; others are all set to 1.

Synthetic Datasets

We first evaluate nighttime detector training using day-to-
night-transformed images in synthetic datasets. The images
transformed by AugGAN and CyCADA are quantitatively
better than the ones by other unimodal GAN models in-
cluding CycleGAN and UNIT. AugCGAN, MUNIT and our
model, Multimodal AugGAN, all provide both unimodal
and multimodal day-to-night transformed images. As shown
in Table 2 and Table 3, Multimodal AugGAN outperforms
competing methods in terms of nighttime detection accu-
racy.

Visually, the transformation results of Multimodal Aug-
GAN are clearly better than the competing methods in
terms of realism, diversity, and image-object preservation
as shown in Fig. 3 and Fig. 4. It is worth mentioning that
other multimodal models would potentially produce a num-
ber of nearly black pixels even on vehicle body inside im-
age for achieving more diversity, which is harmful for train-
ing a vehicle detector because the detector would be strug-
gled to learn something from nothing. However, our net-
work would try to transform images while maintaining the
structure-consistency in both the image-translation phase
and the image-reconstruction one. Therefore, every day-to-
night transformed image is beneficial for the detector to
gradually learn different appearances of vehicles under dif-
ferent levels of ambient light at nighttime.

Table 2: Detection accuracy comparison (AP) - detectors
trained with (SYNTHIA-seq-1-spring) images day-to-night-
transformed by GANs (trained with SYNTHIA dataset se-
quences other than seq-1 ), and tested with night sequence
(SYNTHIA-seq-1-night).

CyCADA AugGAN AugCGAN MUNIT Ours Detector
39.5 39.0 28.2 33.7 42.6 YOLO
72.6 72.2 55.1 68.5 73.5 FRCN

Table 3: Detection accuracy comparison (AP) - detec-
tors trained with (GTA-train-day) images day-to-night-
transformed by GANs (trained with training set in GTA
dataset), and tested with nighttime images in GTA valida-
tion set.

CyCADA AugGAN AugCGAN MUNIT Ours Detector
25.1 25.3 24.8 22.8 33.0 YOLO
66.2 67.4 61.3 62.0 68.5 FRCN

BDD100k datasets

Real-driving BDD100k dataset provides on-road object de-
tection labels and segmentation ones. However, there are no
day/night attributes in BDD100k-seg-train. We later found
that the nighttime labelled images are quite limited after
manually classifying them to either day or night. Therefore,
we also try to train the GAN models using synthetic, real,
and synthetic + real datasets.
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Figure 3: SYNTHIA day-to-night transformation results
generated by GANs trained with SYNTHIA given different
random vectors: 1st row: results of AugCGAN; 2nd row: re-
sults of MUNIT; 3rd row: results of this work.

Figure 4: GTA-val day-to-night transformation results gen-
erated by GANs trained with GTA-train given different ran-
dom vectors: 1st row: results of AugCGAN; 2nd row: results
of MUNIT; 3rd row: results of this work.

Our model consistently outperforms others in every
dataset. As shown in Table 4, the highest detection accu-
racy is reported by using the training data generated by
our GAN model learning from GTA and BDD100k and the
transformed results are shown in Fig. 5

The detection results corresponding to the detector trained
by using both datasets are shown in Fig. 6. A nighttime vehi-
cle detector trained by using day-to-night-transformed data
from AugCGAN or MUNIT would easily encounter diffi-
culties in determining the exact boundary of vehicles espe-
cially in the images captured under low light. Our model
could provide visually-appealing results in terms of realism
under different ambient light levels at nighttime. Therefore,
the nighttime vehicle detector would learn to better under-
stand diverse appearances of vehicles at nighttime.

Semantic Segmentation Across Domains

This work has been proven effective in boosting the night-
time vehicle detection accuracy. However, the analysis is
done in vehicles only. In order to evaluate the quality of the
entire transformed image, we also adopt the popular FCN8s

Figure 5: BDD100k-val-day day-to-night transformation re-
sults generated by GANs trained with BDD100k-seg-train +
GTA-train given different random vectors: 1st row: results
of AugCGAN; 2nd row: results of MUNIT; 3rd row: results
of this work.

Table 4: Detection accuracy comparison (AP) - YOLO &
Faster R-CNN trained with (BDD100k-val-day) images day-
to-night-transformed by GANs (trained with S: SYNTHIA
sequences other than seq-1, G: GTA-train, B: BDD100k-
seg-train, B+G: BDD100k-seg-train + GTA-train and tested
on BDD100k-val-night.

Data CyCADA AugGAN AugCGAN MUNIT Ours Detector
S 39.5 39.2 37.1 39.1 41.0 YOLO
G 38.2 38.3 37.9 37.2 39.2 YOLO
B 39.0 37.9 32.0 36.7 40.4 YOLO

B+G 39.3 38.1 34.1 35.9 41.9 YOLO
S 62.0 61.7 51.2 60.7 64.5 FRCN
G 63.0 63.3 56.9 56.7 64.7 FRCN
B 62.2 62.1 51.8 58.1 64.5 FRCN

B+G 64.2 64.4 53.5 59.9 67.0 FRCN

(VGG16-based) (Long, Shelhamer, and Darrell 2015) to re-
port the FCN score as Pix2Pix and CycleGAN did. The intu-
ition is that if the day-to-night transformed images are real-
istic, then FCN8s could be trained by them to achieve better
segmentation results on real nighttime images. The analy-
sis is done in SYNTHIA dataset. We follow the same pro-
tocol as we did in the detector analysis, i.e., the model is
firstly trained by unimodal data and then fine-tuned by mul-
timodal data. In our experiments, the images are all re-sized
to 600×600. For unimodal models, CycleGAN, UNIT, Cy-
CADA and AugGAN, the FCNs are trained for 100k itera-
tions. For multimodal models, AugCGAN, MUNIT and this
work, the FCNs are trained with their unimodal data for 90k
iterations and fine-tuned with their multimodal data for 10k
iterations. The learning rates for unimodal data training are
set to 1e-10 and the ones for multimodal data training are
1e-11. As can be seen in Table 5, the higher per-class ac-
curacy, mIoU and fwIoU have shown that this work, Multi-
modal AugGAN, consistently outperforms other models on
most of the classes.
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Figure 6: Faster R-CNN (trained with unimodal and multi-
modal BDD100k-val-day day-to-night-transformed images
generated by GANs learning from BDD100k-seg-train and
GTA-train) detection result comparison on BDD100k-val-
night: 1st row: results using training images generated by
AugCGAN; 2nd row: results using training images gener-
ated by MUNIT; 3rd row: results using training images gen-
erated by this work.

Image Quality and Diversity Evaluation

We conduct a user study to evaluate realism, level of object
preservation and diversity at the same time by mean opin-
ion score (MOS). In each given question, the same daytime
image is transformed to five different nighttime-style im-
ages by giving different random vectors and they are shown
in the form of a single GIF image. The observers are ex-
pected to score from one to five (very low, relatively, low,
medium, relatively high, and very high) for each question ac-
cording to the aforementioned factors. To further assess the
diversity objectively, similar to (Zhu et al. 2017b), we use
the LPIPS metric (Zhang et al. 2018) (ImageNet-pretrained
AlexNet (Krizhevsky 2014)) to measure the diversity in the
BDD100k-val-day case. The LPIPS distance is computed
between each day-to-night image pair corresponding to the
same daytime image. Besides, we only focus on the largest
vehicles in every single image because they are the most
salient objects for vehicle detectors.

There are 74 observers involved in the user study, and the
results are summarized in Table 6. The MOS comparison
indicates that our work outperforms AugCGAN and MU-
NIT because other works would sometimes lead to unnat-
ural, structure-inconsistent or even locally-darkened results
and they are harmful for detector training. The LPIPS dis-
tance comparison also indicates that this work could bring
more diverse looking for vehicles at nighttime in terms of
different ambient light levels. It is worth mentioning that
unimodal models are excluded in the diversity analysis be-
cause they could only generate a single nighttime-looking
image given a daytime image.

Table 5: FCN-scores from FCN8s trained with SYNTHIA-
seq-1-spring day-to-night-transformed by GANs (trained
with SYNTHIA spring & night sequences other than seq-1),
and tested with SYNTHIA-seq-1-night sequence excluded
in GAN training.

GAN model Per-class acc. mIoU fwIoU
CycleGAN 62.0 53.5 82.5
UNIT 65.8 55.8 85.6
AugGAN 67.4 58.6 87.8
CyCADA 67.7 60.1 88.8
AugCGAN 52.0 39.7 69.1
MUNIT 67.8 59.8 88.6
Multimodal AugGAN (Ours) 70.1 62.6 90.1

Table 6: LPIPS score for diversity analysis and MOS of re-
alism, diversity and level of object preservation for day-to-
night-transformed images in BDD100k-val-day by using the
GAN models trained from BDD100k-seg-train and GTA-
train.

GAN model MOS LPIPS
AugCGAN 1.57 0.38 ± 0.078
MUNIT 1.63 0.31 ± 0.108
Multimodal AugGAN (Ours) 3.31 0.47 ± 0.155

Detector Training Strategy

There are different ways of applying data augmentation for
training a vehicle detector. In this work, we explore four
kinds of training strategies including (1) only unimodal, (2)
only multimodal, (3) unimodal & multimodal, (4) unimodal
then multimodal day-to-night transformed data in the real-
world dataset-BDD100k. As can be seen in Table 7, using
only unimodal transformed results, the detector would learn
to detect the vehicles in similar nighttime looking. Multi-
modal transformed results would result in diverse vehicle
appearance. However, its diversity would sometimes lead to
slightly-inferior results because learning the essence of vehi-
cles’ appearances from scratch given highly-varying appear-
ance is very challenging. Mixing unimodal and multimodal
data would lead to better results to some extent, but we found
that using multimodal data for fine-tuning the detector pre-
trained with unimodal data would achieve the highest detec-
tion accuracy. In the fine-tuning stage, we adopt the learning
rate 1e-4 which is the one used in the final stage of train-
ing both YOLO and Faster R-CNN. It is worth mentioning
that, for a fair comparison, every detector trained with multi-
modal data also follows the official iterations in the original
settings of PASCAL VOC results.

Training with Generated Night Images v.s Real
Night Images

To label objects in nighttime images is expensive. Although
using day-to-night-transformed images are beneficial, it is
necessary to compare a detector trained with generated
nighttime images and real ones. We train YOLO with images
randomly sampled from BDD100k-train-night and all the
BDD100k-val-day day-to-night-transformed images (5222
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Table 7: Detection accuracy comparison (AP) using differ-
ent training strategies - detectors trained with (BDD100k-
val-day) images day-to-night-transformed by GANs (trained
with BDD100k-seg-train) and tested on BDD100k-val-
night.

Strategy AugCGAN MUNIT Ours Detector
uni 26.9 30.0 37.1 YOLO
uni 44.6 46.2 61.2 FRCN
multi 30.0 31.0 38.9 YOLO
multi 41.0 44.0 60.0 FRCN
uni+multi 31.1 31.7 37.9 YOLO
uni+multi 43.0 49.5 62.0 FRCN
uni then multi 32.0 36.7 40.4 YOLO
uni then multi 51.8 58.1 64.5 FRCN

images). However, the training in CNN is non-deterministic
in the sense that the resulted AP would be slightly differ-
ent every time. Therefore, we simply perform each training
for five times and report the averaged results. Quantitative
results show that the AP of YOLO vehicle detector trained
with day-to-night images transformed by this work is close
to the AP with 2k real nighttime images. However, AugC-
GAN and MUNIT achieve the performance reached by us-
ing only 0.5k and 1k images. Fairly speaking, this work is
nearly four times and two times better than AugCGAN and
MUNIT in terms of the AP achieved with different numbers
of real nighttime images.

Table 8: Average precision (on BDD100k-val-night) com-
parison for night-time vehicle detectors (YOLO) trained
with real nighttime images (BDD100k-val-night) and
BDD100k-val-day day-to-night-transformed image gener-
ated by GANs learning from BDD100k-seg-train

Training data AP
BDD100k-train-night random 0.5k 31.1
BDD100k-train-night random 1k 36.4
BDD100k-train-night random 1.5k 38.0
BDD100k-train-night random 2k 40.5
BDD100k-val-day day-to-night by AugCGAN 32.0
BDD100k-val-day day-to-night by MUNIT 36.7
BDD100k-val-day day-to-night by this work 40.4

Conclusion and Future work

In this work, we proposed Multimodal AugGAN, a
mulimodal structure-consistent image-to-image translation
network for realizing domain adaptation for vehicle detec-
tion. Our method quantitatively surpasses competing meth-
ods including unimodal and multimodal GANs for providing
object-preserved, multimodal training data to achieve higher
nighttime vehicle detection accuracy. The robustness of the
vehicle detector is significantly improved because the ve-
hicle detector would learn to adapt to different (1) ambi-
ent light levels, (2) brightness of vehicles’ rear lamps, and
(3) sharpness of vehicle’s body at nighttime. The quantita-
tive results demonstrate that multimodal translated images

are beneficial in boosting the detection accuracy by fine-
tuning a vehicle detector trained by the corresponding uni-
modal training data. Besides, the semantic segmentation ex-
periments also indicate that our model could also provide
performance gain on most of the classes in the nighttime
scenario. This way, most daytime on-road datasets in public
domain become valuable in the development of a segmenta-
tion model or an object detector at nighttime. In the future,
we plan to dig into the latent spaces for explicitly manipu-
lating semantic features corresponding to different parts of
the objects in the progress of image translation. For exam-
ple, once the appearance, style, brightness and lamp condi-
tion of buildings or vehicles could be directly and separately
controlled, a CNN model would learn to better perceive the
environment at nighttime.
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