
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

REST: Performance Improvement of a Black
Box Model via RL-Based Spatial Transformation

Jae Myung Kim,* Hyungjin Kim,* Chanwoo Park,* Jungwoo Lee
Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea

{goldkim92, hjkim, cpark}@cml.snu.ac.kr, junglee@snu.ac.kr

Abstract

In recent years, deep neural networks (DNN) have become
a highly active area of research, and shown remarkable
achievements on a variety of computer vision tasks. DNNs,
however, are known to often make overconfident yet incor-
rect predictions on out-of-distribution samples, which can
be a major obstacle to real-world deployments because the
training dataset is always limited compared to diverse real-
world samples. Thus, it is fundamental to provide guarantees
of robustness to the distribution shift between training and
test time when we construct DNN models in practice. More-
over, in many cases, the deep learning models are deployed
as black boxes and the performance has been already opti-
mized for a training dataset, thus changing the black box it-
self can lead to performance degradation. We here study the
robustness to the geometric transformations in a specific con-
dition where the black-box image classifier is given. We pro-
pose an additional learner, REinforcement Spatial Transform
learner (REST), that transforms the warped input data into
samples regarded as in-distribution by the black-box mod-
els. Our work aims to improve the robustness by adding a
REST module in front of any black boxes and training only
the REST module without retraining the original black box
model in an end-to-end manner, i.e. we try to convert the real-
world data into training distribution which the performance of
the black-box model is best suited for. We use a confidence
score that is obtained from the black-box model to determine
whether the transformed input is drawn from in-distribution.
We empirically show that our method has an advantage in
generalization to geometric transformations and sample effi-
ciency.

Introduction
In the last few years, convolutional neural networks(CNNs)
have made great progress in visual recognition tasks such
as image classification, object detection, and semantic seg-
mentation(He et al. 2016; Redmon et al. 2016; Long, Shel-
hamer, and Darrell 2015). Although diverse CNN-based ar-
chitectures have shown state-of-the-art performance in many
computer vision tasks, this result is based on the assump-
tion that training and test data are drawn from the same

*Equal Contribution
Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

distribution. However, when the deep learning applications
are actually deployed in real-world settings, it is inevitable
to deal with real data generated from a different distri-
bution from the training phase, and the performance can-
not be guaranteed. As is the case with geometric varia-
tions caused by different poses, deformations, and view-
points, it can be one of the major challenges that deep learn-
ing systems face in reality. To address this issue, several
studies have been reported in the literature(Xu et al. 2014;
Marcos, Volpi, and Tuia 2016; Follmann and Bottger 2018;
You et al. 2018; Worrall et al. 2017).

Apart from the issue of model performance on real-
world data, automated decision-making systems are usually
opaque, which means we are not fully accessible to them.
The only thing we can observe is the input and the predicted
output of black box model. This raises a natural question
about the systems. How much should we trust the predic-
tions of the black box system with the given input? Even
if we assume there is an indicator that tells us how much
we can trust, what actions should we take to obtain reliable
predictions if it tells us that the predicted result is highly un-
certain?

For example, let us consider a car number recognition sys-
tem. The embedded system outputs the predicted number
given a license plate. The predictions of the system are usu-
ally very accurate given the numbers with typical shapes.
However, a crumpled license plate by a car accident (e.g.
tilted number 7 written in the plate) would prevent the cur-
rent system from recognizing the numbers accurately (e.g.
predicted as 1). The system would also have high uncertainty
in its prediction.

Motivated by the question above, this paper aims to spa-
tially transform the input data to obtain the most reliable
predictions by applying the sequence of modified inputs to
the black-box model. If test data is not sampled from the
same distribution as the data used for training the black-box
model, the probability of false prediction increases. To im-
prove accuracy and reliability of predictions, the test input
data should be transformed to follow the training data distri-
bution of the black-box model. We refer to the transforma-
tion model as a transform learner. After the test data is mod-
ified by the transform learner, the black-box model maps the

11262



Figure 1: The schematic description. Figure (a) shows the framework of our approach. The white rectangle demonstrates a
trainable model and the black represents a black-box model. Ellipse is an input or an output of the models. Solid lines are
forward propagation and dashed lines are backpropagation. Figure (b) shows a more detailed framework where the black-box
is an image classifier. The REST learner consists of two modules which are the RL module and the warp module.

transformed data to the output which tells us not only the
prediction but also the confidence of the prediction, which is
named confidence score here. The schematic description is
given in Figure 1(a).

The main challenge in our setting is that we do not know
what data distribution the black box system has trained from.
The prediction and the confidence score are provided by the
black-box model only when a particular input is given. We
cannot directly train the transform learner by a gradient-
based method because the black-box model prevents the gra-
dient flow from reaching to the transform learner. To deal
with the problem, we introduce a black-box optimization
technique which approximates the gradient of the output by
reinforcement learning(Jacovi et al. 2019).

Specifically, in this paper, we take a close look at im-
age classification as the black-box problem. We use a pre-
trained image classifier for the black-box model. Input im-
ages are transformed by a transform learner, which we call
REinforcement Spatial Transform learner (REST). REST is
trained to perform geometric transformation on the input im-
ages to increase the confidence score. At inference time, an
input image is transformed by REST, followed by predicting
the class label via the black-box model.

Related Work

Invariance to geometric transformations

There have been many studies to achieve geometric invari-
ance or equivariance in computer vision problems such as
classification and segmentation, and we here review four
methods: Data augmentation, Spatial Transformer network,
Deformable Convolutional Networks, and Capsule network.

Data augmentation Data augmentation (DA)(Simard et
al. 2003) is a ubiquitous technique largely used to improves

generalization. Although DA is a good starting point for
transformation invariance, it is extremely expensive to aug-
ment training images with every possible combination of
random rotations, shifts, and scales and it is often observed
that the models learned with DA are only invariant to known
transformations rather than arbitrary changes.

Spatial Transformer Network Spatial transformer net-
works (STN)(Jaderberg et al. 2015) is the first work which
learns to apply spatial transformation to warp feature maps
in an end-to-end fashion. STN consists of three components
- localization network, grid generator and sampler. Local-
ization network learns input-dependent transformations and
allows the entire network to increase classification accuracy.
The drawback of the STN is that it has to be trained with
various transformations in the training phase, and we find
that STN failed to generalize when unknown, rare transfor-
mations are applied to input images.

Deformable Convolutional Networks In (Dai et al. 2017)
the authors argue that it is inherently difficult to han-
dle objects with different scales and shapes in regular
CNN because their operations, e.g. convolution kernels,
max-pooling, have geometrically fixed patterns. Deformable
ConvNets tries to model the dense spatial transformations
by learning 2D offsets to the regular sampling grid from tar-
get tasks instead of parametric transformations. Deformable
ConvNets is then applied to semantic segmentation and ob-
ject detection to demonstrate its efficiency.

Capsule network Capsules(Sabour, Frosst, and Hinton
2017) are represented by a vector which contains the fea-
tures of an object and its likelihood. Higher capsules are ac-
tivated only when the group of objects below them is consis-
tent in their orientation and size with each other. The authors
tested CapsNet on affNIST dataset to show its robustness to

11263



affine transformations. CapsNet was trained on MNIST dig-
its only with random translations and achieved 79% accu-
racy on affNIST which confirms it generalizes well to small
affine transformations.

Deep RL for computer vision

Deep RL methods have been making steady progress in
games (Mnih et al. 2013), robotics (Levine et al. 2016), fi-
nance (Deng et al. 2016), etc., and have recently been ex-
panded to a wide range of computer vision tasks. (Caicedo
and Lazebnik 2015) addresses the problem of detection by
learning localization policy to find region proposals which
best focus on the object while (Kong et al. 2017) suggests
joint agent detection to reduce the iterations compared to a
single agent.

For visual tracking, (Yun et al. 2017) proposes to dynam-
ically track the object with increased efficiency in search
space through selecting sequential actions on candidate
bounding boxes. (Ren et al. 2018) extends to multi-object
tracking by modeling each object as an agent and exploiting
the collaborative interactions between agents.

Video recognition can be computationally expensive if
performing exhaustive search in every frame. For the first
time, (Rao, Lu, and Zhou 2017) authors produce temporal-
spatial representations then find the most relevant informa-
tion in video pairs as a Markov decision process (MDP) for
face recognition. In action recognition, (Tang et al. 2018)
propose to reduce the computational burden by selecting
only the key frames in skeleton-based videos, and generating
the reward with the graph-based convolutional NN.

Deep RL has also been applied to image editing and color
enhancement. (Li et al. 2018) deploys a RL-based method
for automatic image cropping where the agent makes se-
quential decisions on where to crop the original image to
maximize the aesthetics score. (Yu et al. 2018) progressively
restores a corrupted image by selecting a specific tool from
the toolbox at each step while (Park et al. 2018) focuses on
automatic color enhancement where the agent takes an inter-
pretable action sequence to produce a retouched image like
a human expert. Here, we present a novel RL-based strat-
egy for geometric invariance and this is, to the best of our
knowledge, the first work to apply deep RL to its kind.

Method

In this section, we describe the procedure of REST. The pur-
pose of REST is to warp the input image for reliable pre-
diction of the black-box model. We first define the black-
box model which performs a classification task and provides
the confidence scores. Our method, REST, is composed of
two modules. The first part is a trainable RL module which
outputs the parameters of the transformation when geomet-
rically deformed images are given as states. The other is
a warp module which takes an input image and performs
warping with the transformation parameters.

Black Box Model

We view the black-box function as a probabilistic model
P (y|x) where the model assigns a probability of the class

y for an input x. For the black-box image classifier B,
x ∈ R

H×W×C is an input image, where H , W , C are the
height, width, and channels of an input image, and y ∈ Y is
the class with Y a set of classes. We formulate the function
of black-box as y and c = B (x), where c is the confidence
score obtained from the black box B. We discuss the defi-
nition of confidence score and which method we choose to
measure it in the next section. The classifier B is trained
on the dataset D = {(xi, yi) |1 ≤ i ≤ n, i ∈ N}, and xi is
drawn from the data distribution P (x) which is regarded as
in-distribution. When training the REST learner, we are not
allowed to access the original dataset D to ensure black-box
assumption.

Confidence Score

It is important for neural networks to understand how un-
certain they are in their predictions. While there are meth-
ods to quantify the predictive uncertainty by training neural
networks where the structure is different from that of pre-
vailing deterministic models (Graves 2011; Blundell et al.
2015), there are also other approaches to obtain the uncer-
tainty without modifying the existing classifier structure or
training procedure (Gal 2016; Gal and Ghahramani 2016;
Ritter, Botev, and Barber 2018). We choose one of the lat-
ter methods as we are dealing with the black-box model. We
here set a confidence score c to be inversely proportional to
the predictive uncertainty obtained by the black-box model.

One of the most widely used approaches to uncertainty
estimation is Monte-Carlo (MC) Dropout due to its sim-
plicity (Gal 2016; Gal and Ghahramani 2016). When the
black-box classifier has a dropout layer, the uncertainty is
calculated by performing dropout at the inference time. An-
other simple method for measuring uncertainty is using a
value proportional to the inverse of the prediction probabil-
ity P (y|x) (which means the prediction probability is a con-
fidence score).

While there exists an extensive literature that softmax
outputs are sometimes overly confident and thus not suf-
ficient to consider it as confidence scores (Gal 2016; Gal
and Ghahramani 2016), in our experiment, the output of the
softmax itself was a proper indicator for confidence level of
predictions. Experimental results of replacing a confidence
score with predictive uncertainty by MC dropout are given
in Appendix B.

Reinforcement Spatial Transform Learner

REST learner consists of two modules: the RL module and
the warp module. Given a distorted input image x′, the RL
module provides θ which is used for the warp module Tθ to
transform a distorted image x′ into x′

tf . As in-distribution
P (x) and the dataset D are unknown, we indirectly esti-
mate the possibility of x′

tf by the confidence score from in-
distribution sample.

we train the RL module with a new dataset D′ =
{(x′

i, y
′
i) |1 ≤ i ≤ n, i ∈ N} to find a transform parameter

θ for each data x′
i that makes a higher confidence score for

the transformed image Tθ (x
′
i). Let us clarify the state, ac-

tion, policy, and reward of the RL module. State St is an

11264



Figure 2: The sequence of transformation of an input image. A distorted input image gets a sequence of parameter to transform
it into a canonical style. The sequence terminates when the transformed image gives a high confidence score. It is interesting to
see that the final image resembles a style of typical MNIST data.

input data in time step t with S1 = x′
i, and action At is a

parameter θ used in the warp module Tθ. By mapping St by
Tθ, we get a next state St+1 = Tθ (St). Policy π (At|St) is
a probability for each parameter θ to be selected given input
state, where the purpose of training the RL module is to find
the optimal policy.

As the agent is trained to maximize a cumulative reward,
we formulate a Reward Rt to increase as the confidence
score ct+1 of the image St+1 is bigger than ct.

Rt = log (ct+1)− log (ct) (1)

In training mode, we set the confidence score to be the
the prediction probability of the target class label, ct =
P (y′i|St) when S1 = x′

i. Then the equation (1) can be in-
terpreted as a difference between log-likelihood of the target
class.

To get higher reward rate when the confidence score gets
closer to 1, and to give penalty per step for a shorter length
of episode, we modify the reward function as

Rt = (− log (1− ct+1))− (− log (1− ct))− 1 (2)

We also perform an ablation study that compares reward
function (1) and (2) in Appendix C. In training mode,
episode terminates when the confidence score ct+1 exceeds
a threshold value in time step t or the number of steps
reaches max number. We set a max number to be 10 for all
the experiments. In inference mode, we use maximum like-
lihood, maxy∈YP(y|St+1), instead of the prediction proba-
bility of the target class, P (y′i|St), for the confidence score
to determine the termination, and the other parts are the
same.

Training

We use PPO algorithm (Schulman et al. 2017) for the RL
module. To make it operate in continuous action space, we
modify the actor network where the output is a mean of
the Normal distribution with standard deviation to be 1. The
re-parameterization trick is used to enable backpropagation.

Method R RSc RSh RSS RSST
BB 69.28 65.52 56.52 53.95 17.99

REST+BB 97.63 96.30 94.81 93.20 85.05

Table 1: The accuracy of a distorted MNIST dataset. BB
refers to a black-box model. While it presents a low per-
formance when using only a black-box model, by applying
the REST, the accuracy increases significantly.

After setting the activation function of actor network to the
hyperbolic tangent function, we change the output bounds
of (−1, 1) to match action bounds so that the parameter θ
exists within action bounds, making stable learning. In the
test phase, we reduce the standard deviation of a normal dis-
tribution to decrease the randomness of actor network. We
train the model using Adam optimization (Kingma and Ba
2014) with the learning rate 0.0001 and batch size 256.

Experiment

In this section we demonstrate the effectiveness of our ap-
proach in generalization by attaching the REST learner to
the black-box model. To train the RL module, we generate
a dataset D′ by applying a random affine transformation to
the expected canonical style of the dataset D used for train-
ing the black box classifier. For example, if we know that
a black-box model B classifies a gray-scale numeric image,
it is plausible to assume that the model B is trained by the
MNIST dataset, and therefore we generate a dataset D′ by
random affine transformation of MNIST images.

We also use the affine transformation for the warp mod-
ule Tθ. Although 6 parameters are typically used for affine
matrix, we factorize the affine matrix into 4 matrices to have
7 parameters, θ = (θr, θsc1, θsc2, θsh1, θsh2, θt1, θt2).

Tθ =

[
cos θr − sin θr 0
sin θr cos θr 0
0 0 1

]
·
[
θsc1 0 0
0 θsc2 0
0 0 1

]

·
[

1 θsh1 0
θsh2 1 0
0 0 1

]
·
[
1 0 θt1
0 1 θt2
0 0 1

] (3)

11265



Dataset Method base R RSc RSh RSS RSST

SVHN BB 96.03 59.96 56.46 57.05 53.54 26.09
REST + BB - 89.38 88.58 89.00 85.92 83.82

CIFAR10 BB 93.78 51.58 49.14 50.69 48.16 32.09
REST + BB - 74.33 72.15 70.73 69.46 60.27

STL10 BB 77.59 41.57 38.46 41.26 37.97 30.90
REST + BB - 62.24 59.18 59.94 56.55 53.20

Table 2: The accuracy of a distorted real-world dataset. We show that applying our model also performs better in real-world
datasets such as SVHN, CIFAR10, and STL10.

Figure 3: Various transformations of different complexity.
S1 is the initial state(a deformed image) and sequence of
best actions are taken given the states.

where θr, θsc, θsh, and θt are parameters for rotation, scal-
ing, shearing, and translation, respectively. Details of gener-
ating affine-warped dataset and settings of action bounds are
described in Appendix A.

As we use the image dataset for experiments, the actor
and the critic networks in RL module are constructed by two
convolution layers followed by two fully connected layers.
We choose 5-layer CNN and STN(Jaderberg et al. 2015) as
baselines and test the transformation invariance on affine-
warped MNIST, SVHN, CIFAR10, and STL10 datasets. We
train the baseline models using Adam optimization(Kingma
and Ba 2014) with the learning rate 0.0001 and batch size
128.

We start with the distorted MNIST dataset to show the
improvement of classification performance in a shifted data
distribution. We further test our model in a more challenging
real-world dataset such as SVHN, CIFAR10, and STL10.
Then, we demonstrate the ability of generalization of our
model in a more shifted, arduous setting where disjoint-
ing subsets are selected for training and testing the REST

learner. Finally, we show that even with training a REST
learner with a small number of training data, the perfor-
mance does not drop significantly, which results in good
sample efficiency.

Improvement of Classification Performance

To evaluate the improvement of black-box's performance by
using REST learner, we begin with the black-box gray-scale
numeric image classifier. We use the CNN pre-trained with
MNIST dataset as a black-box classifier which performs
99% accuracy in MNIST test data. However, when apply-
ing randomly rotated MNIST test images (R), the accuracy
decreases to 69.28%. By attaching the REST in front of the
black-box model, the accuracy increases back to 97.63%.

We also experiment with more difficult tasks by gener-
ating the data with rotation and scaling (RSc), rotation and
shearing (RSh), rotation, scaling, and shearing (RSS), and
rotation, scaling, shearing, and translation (RSST) of the
MNIST test digits.

Examples of the sequence of transformation for each
warping method are shown in Figure 3. All the affinely
warped input images in the first column are transformed
two times to get the final output. The quantitative results
are shown in Table 1. As task complexity increases from
simple rotation to full affine transformation, the black-box
classifier gets worse for predicting the label. For the RSST
method, the accuracy of the black box model is 17.99 per-
cent, which is almost random choice. However, by adding
the REST model in front of the black-box model, it highly
improves the performance. The difference in accuracy be-
tween applying the REST model and only using black-box
model gets larger as the task becomes more difficult.

Figure 2. shows the sequence of how the distorted in-
put image is transformed by REST. When affinely ex-
tended image of number 9 is taken for the first state
S1, the RL module outputs transform parameter θ =
(20.4, 1.1, 1.1, 0, 0,−4.9,−4.4). Then, the warp module re-
ceives the state S1 and the parameter θ to produce the next
state S2, which is rotated clockwise, scaled up, and trans-
lated to the upper-left direction. The black-box model maps
the transformed image S2 to a confidence score c2. As the
confidence score does not exceed a terminal threshold, the
process iterates until the terminal condition is satisfied. An
interesting observation is that the final image S5 seems to re-
semble a style of data sampled from in-distribution D, which
is the MNIST dataset in this case. The number 9 in the im-

11266



Figure 4: The first figure is an example of separating the composition of RST transformation into two disjoint subsets. The gray
parts are used for generating distorted training data while the white parts are for deformed test data. The second figure shows
test results on three different decomposition setting. Our models shows the best generalization effect as the task gets harder.

age S5 is standing upright and locating at the center of an
image with its size similar to typical MNIST data.

We further evaluate our model in real-world datasets. We
use three datasets which are SVHN, CIFAR10, and STL10.
For the black-box models, we use CNN models that perform
96.03%, 93.78%, and 77.59% for accuracy, respectively. Ta-
ble 2 shows the test accuracy of black-box classifier before
and after attaching REST. The performance improves when
the REST model is applied at the front-end of the black-box
model.

Generalization

In the previous section, we have shown that the REST works
well by interacting with the black-box model. However, the
limitation of the previous experiment is that the training and
test data are generated in the same transformation format.
In this section, we demonstrate the effect of generalization
by generating the training data and test data in a different
condition.

We first set the black box model as a general MNIST
classifier. We then generate a distorted MNIST dataset by
rotation, scaling, and translation (RST) to train the REST
learner. We constrain the behavior of transformation by
choosing one in (right, left), (up, down), (right, left, up,
down) for each transformation R, S, and T, respectively.
Therefore, there are 16 possible transformations of RST. We
split 16 transformations of RST into two disjoint subsets,
and apply each of the subset to MNIST for generating the
training data and the test data. Figure 4(a) shows an exam-
ple of separating 16 transformations into two subsets, each
containing 8 transformations.

We compared the REST model with CNN and STN, and
the results are shown in Figure 4(b). When the training
dataset is generated by 12 RST transformations, STN per-
forms better than ours. However, as the number of RST com-

Method R RSc RSh RSS RSST
CNN 87.24 82.91 76.67 70.97 38.16

CNN++ 88.69 85.86 80.48 76.58 39.92
STN 55.95 38.60 34.87 27.83 14.94

STN++ 93.63 92.13 89.37 85.39 80.80
REST (ours) 97.02 95.94 93.45 92.79 83.18

Table 3: The accuracy of models trained by a small number
of data. We trained CNN, STN, and REST by 1000 affine-
warped training data. CNN++ and STN++ are trained by
56000 data where 55000 is a typical MNIST training data
and the rest 1000 is affine-warped training data. The result
shows that our model performs best on all different kinds of
transformation.

positions used for transforming the training data is decreas-
ing, CNN and STN suffer from predicting the correct labels.
On the contrary, our model has a slight decrease in accu-
racy. It means that our model has better generalization in
data shift conditions. It is assumed that our model shows a
generalization effect because our model takes exploration in
the training process, which generates samples that are not
present in the training data distribution.

Sample Efficiency

In this section, we examine the effect of sample efficiency of
our model. While 55,000 randomly affine-warped data has
been generated from 55,000 training MNIST data to train
the REST learner, in this section, we only generate 1000 ran-
domly affine-warped data from 1000 training MNIST data.
Then we perform the same process for training and test the
model. We compare our model with CNN and STN. Both
networks are trained by 1000 data. We also trained CNN and
STN with 56,000 data, where 55,000 data is MNIST training
data and the other 1000 data is randomly affine-warped data.

11267



We call it CNN++ and STN++, respectively. All models are
tested with 10,000 affine-warped test data and the results are
shown in Table 3.

As a few data is used for training CNN and STN, they
result in low accuracy for all different types of transforma-
tions. Also, although many data is used for training CNN++
and STN++, they also show a low performance because only
a small number of training data is in the same distribution
with that of test data. On the contrary, our model has a best
performance. It is considered that our model shows a sample
efficiency because of the exploration process in the training
step. In the process of creating a state to train the model, new
images are created for each episode. These images can be
considered as training data which is implicitly augmented.

Conclusion

Robustness to real-world data is essential for deep learning
systems to be successfully deployed in reality. Most stud-
ies so far have focused on improving generalization perfor-
mance on test datasets when a single whole dataset is ran-
domly split into training and test dataset. In other words, the
training and test dataset are drawn from the same distribu-
tion and have similar sample statistics. Under this experi-
mental assumption, the performance on the real-world data
is not necessarily guaranteed even if the system generalizes
well on the test dataset.

In this paper, we addressed geometric invariance using
deep RL by transforming out-of-distribution samples into
training distribution of the pretrained black box classifier in
the system. We showed that the proposed method, REST,
can improve the robustness of deep learning systems to var-
ious image warping. Specifically, as the complexity of the
task gradually increased from simple rotation to full affine
transformation, i.e. from one to six degrees of freedom, the
relative performance of REST over the black-box model also
increased accordingly.

We analyzed the generalization performance on unknown
transformations by defining 16 disjoint subsets of affine
transformations. REST generalized better as we trained it
with a fewer number of transformation combinations while
more of novel and unseen transformations were given at test
time. Lastly, we experimented baseline methods with only
1000 affine-warped training data and showed REST is effi-
cient in learning with a small number of samples as well.
The action space of our method is focused on geometric
transformation in this work but can be extended to other im-
age processing techniques such as auto exposure, white bal-
ancing, edge enhancement, noise reduction to fill the gap be-
tween controlled experimental settings and real-world sce-
narios in the future works.

Acknowledgments

This work is in part supported by Basic Science Research
Program (NRF-2017R1A2B2007102) through NRF funded
by MSIT, Technology Innovation Program (10051928)
funded by MOTIE, Bio-Mimetic Robot Research Center
funded by DAPA (UD190018ID), Samsung Electronics AI

Grant, MSIT-IITP grant (No.2019-0-01367, BabyMind),
INMAC, and BK21-plus.

References

Blundell, C.; Cornebise, J.; Kavukcuoglu, K.; and Wierstra,
D. 2015. Weight uncertainty in neural network. In Interna-
tional Conference on Machine Learning, 1613–1622.
Caicedo, J. C., and Lazebnik, S. 2015. Active object lo-
calization with deep reinforcement learning. In Proceedings
of the IEEE International Conference on Computer Vision,
2488–2496.
Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; and
Wei, Y. 2017. Deformable convolutional networks. In Pro-
ceedings of the IEEE international conference on computer
vision, 764–773.
Deng, Y.; Bao, F.; Kong, Y.; Ren, Z.; and Dai, Q. 2016. Deep
direct reinforcement learning for financial signal representa-
tion and trading. IEEE transactions on neural networks and
learning systems 28(3):653–664.
Follmann, P., and Bottger, T. 2018. A rotationally-invariant
convolution module by feature map back-rotation. In 2018
IEEE Winter Conference on Applications of Computer Vi-
sion (WACV), 784–792. IEEE.
Gal, Y., and Ghahramani, Z. 2016. Dropout as a bayesian ap-
proximation: Representing model uncertainty in deep learn-
ing. In international conference on machine learning, 1050–
1059.
Gal, Y. 2016. Uncertainty in deep learning. University of
Cambridge.
Graves, A. 2011. Practical variational inference for neu-
ral networks. In Advances in neural information processing
systems, 2348–2356.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Jacovi, A.; Hadash, G.; Kermany, E.; Carmeli, B.; Lavi, O.;
Kour, G.; and Berant, J. 2019. Neural network gradient-
based learning of black-box function interfaces. In Interna-
tional Conference on Learning Representations.
Jaderberg, M.; Simonyan, K.; Zisserman, A.; et al. 2015.
Spatial transformer networks. In Advances in neural infor-
mation processing systems, 2017–2025.
Kingma, D., and Ba, J. 2014. Adam: A method for stochastic
optimization. International Conference on Learning Repre-
sentations.
Kong, X.; Xin, B.; Wang, Y.; and Hua, G. 2017. Collab-
orative deep reinforcement learning for joint object search.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 1695–1704.
Levine, S.; Finn, C.; Darrell, T.; and Abbeel, P. 2016. End-
to-end training of deep visuomotor policies. The Journal of
Machine Learning Research 17(1):1334–1373.
Li, D.; Wu, H.; Zhang, J.; and Huang, K. 2018. A2-rl: Aes-
thetics aware reinforcement learning for image cropping. In

11268



Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 8193–8201.
Long, J.; Shelhamer, E.; and Darrell, T. 2015. Fully con-
volutional networks for semantic segmentation. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 3431–3440.
Marcos, D.; Volpi, M.; and Tuia, D. 2016. Learning rotation
invariant convolutional filters for texture classification. In
2016 23rd International Conference on Pattern Recognition
(ICPR), 2012–2017. IEEE.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.
Park, J.; Lee, J.-Y.; Yoo, D.; and So Kweon, I. 2018. Distort-
and-recover: Color enhancement using deep reinforcement
learning. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 5928–5936.
Rao, Y.; Lu, J.; and Zhou, J. 2017. Attention-aware deep
reinforcement learning for video face recognition. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, 3931–3940.
Redmon, J.; Divvala, S.; Girshick, R.; and Farhadi, A. 2016.
You only look once: Unified, real-time object detection. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, 779–788.
Ren, L.; Lu, J.; Wang, Z.; Tian, Q.; and Zhou, J. 2018.
Collaborative deep reinforcement learning for multi-object
tracking. In Proceedings of the European Conference on
Computer Vision (ECCV), 586–602.
Ritter, H.; Botev, A.; and Barber, D. 2018. A scalable laplace
approximation for neural networks. In International Confer-
ence on Learning Representations.
Sabour, S.; Frosst, N.; and Hinton, G. E. 2017. Dynamic
routing between capsules. In Advances in neural informa-
tion processing systems, 3856–3866.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Simard, P. Y.; Steinkraus, D.; Platt, J. C.; et al. 2003. Best
practices for convolutional neural networks applied to visual
document analysis. In Icdar, volume 3.
Tang, Y.; Tian, Y.; Lu, J.; Li, P.; and Zhou, J. 2018. Deep
progressive reinforcement learning for skeleton-based ac-
tion recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 5323–5332.
Worrall, D. E.; Garbin, S. J.; Turmukhambetov, D.; and
Brostow, G. J. 2017. Harmonic networks: Deep transla-
tion and rotation equivariance. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
5028–5037.
Xu, Y.; Xiao, T.; Zhang, J.; Yang, K.; and Zhang, Z.
2014. Scale-invariant convolutional neural networks. arXiv
preprint arXiv:1411.6369.
You, Y.; Lou, Y.; Liu, Q.; Ma, L.; Wang, W.; Tai, Y.; and Lu,

C. 2018. Prin: Pointwise rotation-invariant network. arXiv
preprint arXiv:1811.09361.
Yu, K.; Dong, C.; Lin, L.; and Change Loy, C. 2018. Craft-
ing a toolchain for image restoration by deep reinforcement
learning. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2443–2452.
Yun, S.; Choi, J.; Yoo, Y.; Yun, K.; and Young Choi, J. 2017.
Action-decision networks for visual tracking with deep rein-
forcement learning. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 2711–2720.

11269


