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Abstract

Different from Visual Question Answering task that requires
to answer only one question about an image, Visual Dialogue
involves multiple questions which cover a broad range of vi-
sual content that could be related to any objects, relationships
or semantics. The key challenge in Visual Dialogue task is
thus to learn a more comprehensive and semantic-rich im-
age representation which may have adaptive attentions on the
image for variant questions. In this research, we propose a
novel model to depict an image from both visual and seman-
tic perspectives. Specifically, the visual view helps capture
the appearance-level information, including objects and their
relationships, while the semantic view enables the agent to
understand high-level visual semantics from the whole im-
age to the local regions. Futhermore, on top of such multi-
view image features, we propose a feature selection frame-
work which is able to adaptively capture question-relevant in-
formation hierarchically in fine-grained level. The proposed
method achieved state-of-the-art results on benchmark Vi-
sual Dialogue datasets. More importantly, we can tell which
modality (visual or semantic) has more contribution in an-
swering the current question by visualizing the gate values.
It gives us insights in understanding of human cognition in
Visual Dialogue.

Introduction
To understand the real world by analyzing vision and lan-
guage together is a priority for AI to achieve human-like
abilities, which enables the development of diverse applica-
tions, such as Visual Question Answering (VQA) (Agrawal
et al. 2017), Referring Expressions (Wang et al. 2019),
Image Captioning (Johnson, Karpathy, and Fei-Fei 2016;
Qi et al. 2016), etc. To move a step further, this work focuses
on the Visual Dialogue (Das et al. 2017) problem, which
requires the agent to answer a series of questions in natu-
ral language regarding an image. It is more challenging be-
cause it demands the agent to adaptively focus on diverse
visual content with respect to the current question, while
other vision-language problems mostly attend to some spe-
cific objects or regions. Considering the dialogue in Figure
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Figure 1: An illustration of DualVD. Left: the input of the di-
alogue system. Right: visual and semantic modules designed
to adaptively understand the visual content like humans. The
answer is inferred depending on multi-modal evidence.

1: Given “ Q1: Is the man on the skateboard?”, the agent
should be aware of the foreground visual content, i.e. the
man, the skateboard, while “ Q5: Is there sky in the picture?”
changes the attention of the agent to the background of sky.
Besides appearance-level questions like Q1 and Q5, “ Q4: Is
he young or older?” requires the agent to reason about the
visual content for higher-level semantics. How to adaptively
capture the desired visual content through dialogue becomes
one of the most critical challenges in visual dialogue.

The typical solution for visual dialogue is to firstly fuse
visual (i.e. image) features and textual (i.e. dialogue history,
current question) features together and then to infer the cor-
rect answer. Most approaches focus on enhancing the tex-
tural representations by recovering the dialogue relational
structure (Zheng et al. 2019), imperfect dialogue history
(Yang, Zha, and Zhang 2019), and dialogue consistency (Qi
et al. 2018). However, the role of visual information is at
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present less studied. Existing models simply use CNN (Si-
monyan and Zisserman 2014) or R-CNN (Ren et al. 2017)
to extract visual features and focus on the question-relevant
content. Such visual features have limited expressive abil-
ity due to the monolithic representations (Wang et al. 2019).
On one hand, questions in a visual dialogue refer to a wide
range of visual content, including objects, relationships and
high-level semantics, which can not be covered by mono-
lithic features. On the other hand, the referred visual con-
tent may change remarkably from visual appearance to high-
level semantics through the dialogue, which is difficult for
monolithic features to capture.

Our work is inspired by the Dual-coding theory (Paivio
1971) of human cognition process. Dual-coding theory pos-
tulates that our brain encodes information in two ways: vi-
sual imagery and textual associations. When asked to act
upon a concept, our brain retrieves either images or words,
or both simultaneously. The ability to encode a concept by
two different ways strengthens the capacity of memory and
understanding. Inspired by the cognitive process, we first
propose a novel scheme to comprehensively depict an image
from both visual and semantic perspectives, where the ma-
jor objects and their relationships are kept in the visual view
while the higher-level abstraction is provided in the semantic
view. We propose a model called Dual Encoding Visual Dia-
logue (DualVD) to adaptively select question-relevant infor-
mation from the image in a hierarchical mode: intra-modal
selection first captures the visual and semantic information
individually from the object-relational visual features and
global-local semantic features; then inter-modal selection
obtains the joint visual-semantic knowledge by correlating
vision and semantics. This hierarchical framework imitates
human cognition process to capture targeted visual clues
from multiple perceptual views and semantic levels.

The main contributions are summarized as follows: (1)
We exploit the possibility of cognition in visual dialogue by
depicting an image from both visual and semantic views,
which covers a broad range of visual content referred by
most of questions in the visual dialogue task; (2) We propose
a hierarchical visual information selection model, which is
able to progressively select question-adaptive clues from
intra-modal and inter-modal information for answering di-
verse questions. It supports explicit visualization in visual-
semantic knowledge selection and reveals which modal-
ity has more contribution to answer the question; (3) The
proposed model outperforms state-of-the-art approaches on
benchmark visual dialogue datasets, which demonstrates the
feasibility and effectiveness of the proposed model. The
code is available at https://github.com/JXZe/DualVD.

Related Work
Visual Question Answering (VQA) focuses on answer-
ing arbitrary natural language questions conditioned on an
image. The typical solutions in VQA build multi-modal rep-
resentations upon CNN-RNN architecture (Ren, Kiros, and
Zemel 2015; Qi et al. 2017). Existing approaches incorpo-
rate context-aware visual features. For example, (Ren, Kiros,
and Zemel 2015) applies CNN features of the whole im-
age as global context, (Xu and Saenko 2016; Anderson et

al. 2018) adopt patches and salient objects learned by atten-
tion mechanism as the region context, and (Gao et al. 2018;
Li et al. 2019b) exploits inter-object relationships via graph
attention networks or convolutional networks to model the
relational context. However, how to leverage the external
visual-semantic knowledge to learn more informative rela-
tional representations for better semantic understanding has
not been well exploited yet. Another emerging line of work
represents visual content explicitly by natural language and
solves VQA as a reading comprehension problem. In (Li et
al. 2019a), the image is wholly converted into descriptive
captions, which preserves information at semantic-level in
textual domain. However, this kind of approaches use the
generated captions, which could not be correct as we de-
sired, and that they fully abandon the informative and subtle
visual features. Besides the specific tasks, our model has no-
table progress compared to the above approaches. We adopt
dual encoding mechanism to provide both appearance-level
and semantic-level visual information, so that it incorporates
the strong points of the above two kinds of approaches.

Visual Dialogue aims to answer a current question con-
ditioned on an image and dialogue history. Most existing
works are based on late fusion framework and focused
on modeling the dialogue history. Sequential co-attention
mechanism (Qi et al. 2018) enables the model to identify
question-relevant image regions and dialogue history to keep
the dialogue consistency. (Yang, Zha, and Zhang 2019) in-
troduces false response in dialogue history for an adverse
critic on the historic error. (Zheng et al. 2019) introduces an
Expectation Maximization algorithm to infer the dialogue
structure and the answers via graph neural networks. By
contrast to extensive study on modeling dialogue history, the
image content has been less studied. Although some works
devise attention mechanism to focus on the essential visual
features most relevant to the question and dialogue history,
such monolithic visual representations still have limited ex-
pressive abilities. In this work, we exploit the role of vi-
sual information in visual dialogue. Different from existing
works merely modeling the appearance, our model is able
to adaptively capture visual and semantic information in a
hierarchical mode inspired by the Dual-coding theory of hu-
man cognition process to provide adequate visual clues for
diverse questions in visual dialogue.

Methodology
The visual dialogue task can be described as follows: given
an image I and its caption C, a dialogue history till round
t-1, Ht = {C, (Q1, A1), ..., (Qt−1, At−1)}, and the current
question Qt, the task is to rank a list of 100 candidate an-
swers A = {A1, A2, ..., A100} and return the best answer At

to Qt. In this section, we first introduce the idea of depicting
an image from both visual and semantic perspectives. It cov-
ers a broad range of visual content like objects, relationships,
global semantics and local semantics. Then we introduce a
hierarchical feature selection approach to adaptively capture
question-relevant visual-semantic information. Our model is
based on the late fusion (LF) framework (Das et al. 2017),
which will be described at the end of this section.
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Figure 2: Overview structure of the DualVD model for visual dialogue. The model mainly contains two parts: Visual Module
and Semantic Module, where “G” represents gate operation given inputs.

Visual-Semantic Dual Encoding
In visual dialogue, two types of information play the pri-
mary role to depict an image and answer the diverse ques-
tions: visual information and semantic information (Figure
2). For visual information, the major objects and relation-
ships should be kept. In semantic information, higher-level
abstraction of the image content should be provided, which
involves prior knowledge and complex cognition. In this sec-
tion, we introduce a dual encoding scheme to generate both
visual and semantic representations to depict an image. A
scene graph is proposed to represent the visual information
while multi-level captions in natural language are leveraged
to represent the semantic information. These representations
are served as the input of our DualVD model.

Scene Graph Construction Each image is represented as
a scene graph. Let V = {vi}N denotes its nodes, which rep-
resents objects detected by a pre-trained object detector and
let E = {eij}N×N denotes its edges, which represents the
semantic visual relationships embedded by our visual rela-
tionship encoder. We use a pre-trained Faster-RCNN (Ren
et al. 2017) to detect N objects in an image and describe the
object vi as a 2, 048-dimensional vector, denoted by hi. The
visual relationship encoder (Zhang et al. 2019), which is pre-
trained on a visual relationship benchmark, i.e. GQA (Hud-
son and Manning 2019), encodes relationships between the
subject vi and object vj as a 512-dimensional relation em-
bedding, denoted as rij . We assume that certain relationship
exists between any pair of objects by considering “unknown-
relationship” as a special kind of relationship. Therefore, the
scene graph we constructed is fully-connected.

The visual relationship encoder embeds the relationships

between objects into a semantic space which is aligned with
their corresponding descriptions in natural language. Such
continuous representations instead of discrete labels can pre-
serve the discriminative capability and contextual aware-
ness. Inspired by recent work (Zhang et al. 2019), our en-
coder consists of a visual part and a textual part. The visual
part takes three CNN feature maps corresponding to the vi-
sual regions of subject, object and their union region as in-
put and outputs the three encoded embeddings xs, xo and
xr. The textual part uses a shared GRU to encode the an-
notations and yield textual embeddings. The loss function is
designed to minimize the cosine similarity between the em-
beddings of positive visual-textual pairs and alienate nega-
tive pairs. The union embedding xr is served as the visual
relationship representation rij between vi and vj .

Multi-level Image Captions The advantages of captions
compared to visual features lie in that captions are repre-
sented by natural language with high-level semantics, which
can provide straightforward clues for the questions without
“heterogeneous gap”. Global image caption C (provided by
the dataset) is beneficial to response to questions explor-
ing the scene. Meanwhile, dense captions (Johnson, Karpa-
thy, and Fei-Fei 2016), denoted as Z = {z1, z2, ..., zk} (k
is the number of dense captions), provide a set of local-
level semantics, including the object properties (position,
color, shape, etc.), the prior knowledge related to the ob-
jects (weather, species, emotion, etc.), and the relationships
between objects (interactions, spatial positions, comparison,
etc.). The words in both C and Z are represented by con-
catenated GloVe (Pennington, Socher, and Manning 2014)
and ELMo (Peters et al. 2018) word embeddings. Then C
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and Z are separately encoded with two different LSTMs,
denoted as C̃ and Z̃ = {z̃1, z̃2, ..., z̃k}, respectively.

Adaptive Visual-Semantic Knowledge Selection
On top of the visual and semantic image representations, we
propose a novel feature selection framework to adaptively
select question-relevant information from the image. Under
the guidance of the current question, the feature selection
process is devised in a hierarchical mode: intra-modal se-
lection first captures the visual and semantic information
respectively from the visual module and semantic module;
then inter-modal selection obtains the desired visual knowl-
edge from both the visual module and semantic module via
selective visual-semantic fusion. The advantages of such hi-
erarchical framework is that it can explicitly reveal the pro-
gressive feature selection mode and preserve fine-grained in-
formation as much as possible.

Visual Module This module is presented on the top of
Figure 2. Based on the constructed scene graph introduced
in Scene Graph Construction, we aim to select question-
relevant relation information and object information. For re-
lation information, we propose a relation-based graph at-
tention network to enrich the object representations with
question-aware relationships. It mainly consists of two units:
Question-Guided Relation Attention highlights the critical
relationships and Question-Guided Graph Convolution en-
riches the object features by its relation-critical neighbors.
For object information, we highlight the most informative
objects to answer the question. Finally, the clues of objects
and relationships are further fused in Object-Relation Infor-
mation Fusion to obtain the question-relevant visual content.

Question-Guided Relation Attention: The question-
guided relation attention examines all the relationships to
highlight the ones most relevant to the question. First, we se-
lect question-relevant information from the dialogue history
to merge into the question representation via a gate opera-
tion, which is defined as:

gateqt = σ(Wq[H̃t, Q̃t] + bq) (1)

Q̃g
t = W1(gate

q
t ◦ [H̃t, Q̃t]) + b1 (2)

where “[·, ·]” denotes concatenation, “◦” denotes the
element-wise product. Each word is represented by concate-
nating the hidden states extracted from pre-trained GloVe
and ELMo models. Then dialogue history Ht and the cur-
rent question Qt are separately encoded with two differ-
ent LSTMs, denoted as H̃t and Q̃t, respectively. gateqt is
a vector of gate values over H̃t and Q̃t, W1 (as well as
W2, ...,W7 mentioned below) is the linear transformation
layer and Q̃g

t is the encoded history-aware question features.
The attention weights αij of all the visual relationships

are calculated under the guidance of the question Q̃g
t :

αij = softmax(Wρ(W2Q̃
g
t ◦ W3rij) + br) (3)

Each relation embedding is updated based on the attention
importance. Formally defined as:

r̃ij = αijrij (4)

where r̃ij is the question-guided relation embedding.
Question-Guided Graph Convolution: This module fur-

ther updates each object’s representation under the guidance
of questions by aggregating information from its neighbor-
hood and the corresponding relationships. Given the feature
hj of object vj and its relation embedding r̃ij , the attention
value of vj w.r.t. vi is calculated as:

βij = softmax(Wg(Q̃
g
t ◦ (W4[hj , r̃ij ])) + bg) (5)

The obtained attention values for all the neighbors of vi
are used to compute a linear combination of their features,
which serves as the updated representation h̃i for vi:

h̃i =

N∑
j=1

βijhj (6)

Since the scene graph is a fully connected graph, the num-
ber of neighbors N for each object is equal to the number of
objects detected in each image.

Object-Relation Information Fusion: In visual dialogue,
the object appearance and the visual relationships will con-
tribute to infer the answer, but with different contributions.
In this module, we adaptively fuse question-relevant object
features from both original object feature hi and relation-
aware object feature h̃i again by a gate, which is defined by:

gatevi = σ(Wv[hi, h̃i] + bv) (7)

h̃g
i = W5(gate

v
i ◦ [hi, h̃i]) + b5 (8)

where h̃g
i is the updated representation of object vi. The

whole image representation Ĩ is obtained as the weighted
sum of the object representations. In order to strengthen the
influence of the current question Qt and the original object
features on the retrieved visual clues, we calculate the atten-
tion value γv

i for hi under the guidance of Qt:

γv
i = softmax(Ws(Qt ◦ (W6hi)) + bs) (9)

Then the the whole representation of the image Ĩ can be
updated by:

Ĩ =

N∑
i=1

γv
i h̃

g
i (10)

Semantic Module This module aims to select and merge
question-relevant semantic information from global and lo-
cal captions with a Question-Guided Semantic Attention
module and a Global-Local Information Fusion module.
The semantic module is located in the middle of Figure 2.

Question-Guided Semantic Attention: The semantic atten-
tion mechanism highlights relevant captions at both global-
level and local-level. This type of attention is guided by the
current question which is enhanced with corresponding in-
formation from the dialogue history (as introduced above).
According to the attention distribution, we enrich the caption
representations in order to better adapt to the question. The
attention value for each caption in mi ∈ {C̃, z̃1, z̃2, ..., z̃k}
is calculated as follows:

δqi = softmax((Wz1Q̃
g
t + bz1)

T (Wz2mi + bz2)) (11)
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The caption representation for C̃ and Z̃ will be updated
to C̃q and Z̃q:

C̃q = δq1C (12)

Z̃q =

k+1∑
i=2

δqi z̃i−1 (13)

Global-Local Information Fusion: Some questions are
global-related while others are local-related. This step adap-
tively selects the information from the global caption C̃q and
local caption Z̃q via a gate as described above:

gatec = σ(Wc[C̃
q, Z̃q] + bc) (14)

T̃ = W7(gate
c ◦ [C̃q, Z̃q]) + b7 (15)

where T̃ is the textural representations for the abstract visual
semantics.

Selective Visual-Semantic Fusion When asked to answer
a question, the agent will retrieve either the visual informa-
tion or the semantic information individually, or both simul-
taneously. In this module, we design a gate operation to de-
cide the contributions of the two modalities on the answer
prediction. The gate operation and the final visual knowl-
edge representation S are calculated as:

gates = σ(Ws[Ĩ , T̃ ] + bs) (16)

S = gates ◦ [Ĩ , T̃ ] (17)

Late Fusion and Discriminative Decoder
The full model consists of late fusion encoder and discrim-
inative (softmax) decoder. The encoder first embeds each
part in a dialogue tuple D = {I,Ht, Qt}. Then we concate-
nate H̃t and Q̃t with the visual knowledge representation S
into a joint input embedding for answer prediction. The de-
coder ranks all the answers from a set of 100 candidates A.
It first encodes each candidate via a common LSTM. Then
a dot product followed by softmax operation is calculated
between the joint input embedding and candidates to get the
posterior probability over each candidate. We obtain the cor-
rect answer by ranking the candidates based on their poste-
rior probabilities. Our model can also be applied to more
complex decoders and fusion strategies, such as memory
network, co-attention, adversarial network, etc. In this paper,
we utilize the simple late fusion and discriminative decoder
to highlight the advantages of our visual encoder.

Experiments
Datasets: We conduct extensive experiments on datasets
(Das et al. 2017): VisDial v0.9 and VisDial v1.0. For both
datasets, the examples are split into “train”, “val” and “test”
and each dialogue contains 10 rounds of question-answer
pairs. VisDial v1.0 is an upgraded version of VisDial v0.9.
For VisDial v0.9, all the splits are built on MSCOCO im-
ages. For VisDial v1.0, all the splits of VisDial v0.9 serve
as “train” (120k), while “val” (2k) and “test” (8k) consist of
dialogues on extra 10k COCO-like images from Flickr.

Table 1: Comparison on validation split of VisDial v0.9.
Model MRR R@1 R@5 R@10 Mean
LF 58.07 43.82 74.68 84.07 5.78
HRE 58.46 44.67 74.50 84.22 5.72
MN 59.65 45.55 76.22 85.37 5.46
SAN-QI 57.64 43.44 74.26 83.72 5.88
HieCoAtt-QI 57.88 43.51 74.49 83.96 5.84
AMEM 61.60 47.74 78.04 86.84 4.99
HCIAE 62.22 48.48 78.75 87.59 4.81
SF 62.42 48.55 78.96 87.75 4.70
CoAtt 63.98 50.29 80.71 88.81 4.47
CorefMN 64.10 50.92 80.18 88.81 4.45
VGNN 62.85 48.95 79.65 88.36 4.57
DualVD 62.94 48.64 80.89 89.94 4.17

Evaluation Metrics: We follow the metrics in (Das et
al. 2017) to evaluate the response performance. In the test
stage, the model is asked to rank 100 candidate answer op-
tions and evaluated by Mean Reciprocal Rank (MRR), Re-
call@k(k = 1, 5, 10) and Mean Rank of human response
(Mean) on both datasets. For VisDial v1.0, Normalized Dis-
counted Cumulative Gain (NDCG) is added as an extra met-
ric for more comprehensive analysis. Lower value for Mean
and higher value for other metrics are desired.

Implementation Details: For the textual part, the maxi-
mum sentence length of the dialogue history, dense captions
and the current question is all set to 20. The hidden state size
of all the LSTM blocks is set to 512. We use Faster-RCNN
with the ResNet-101 to detect object regions and extract the
2048-dimensional region features. Since some captions with
low confidence are likely to introduce unexpected noise and
too many captions will decrease the computation efficiency,
we select the top 6 (the mean value of the caption distribu-
tion) dense captions in our model. We train all of our models
by Adam optimizer with 16 epochs, where the mini-batch
size is 15 and the dropout ratio is 0.5. For the strategy of
learning rate, we first apply warm up strategy for 2 epoches
with initial learning rate 1 × 10−3 and warm-up factor 0.2.
Then we adopt cosine annealing learning strategy with ini-
tial learning rate ηmax=1 × 10−3 and termination learning
rate ηmin=3.4× 10−4 for the rest epoches.

Overall Results
In Table 1 and Table 2, we compare DualVD with state-of-
the-art discriminative models, namely LF (Das et al. 2017),
HRE (Das et al. 2017), MN (Das et al. 2017), SAN-QI
(Yang et al. 2016), HieCoAtt-QI (Lu et al. 2016), AMEM
(Seo et al. 2017), HCIAE (Lu et al. 2017), SF (Jain, Lazeb-
nik, and Schwing 2018), CoAtt (Qi et al. 2018), CorefMN
(Kottur et al. 2018), VGNN (Zheng et al. 2019), LF-Att
(Das et al. 2017), MN-Att (Das et al. 2017), RvA(Niu et
al. 2019) and DL-61(Guo, Xu, and Tao 2019). Our model
consistently outperforms all the approaches on most met-
rics, which highlights the importance of visual understand-
ing from visual and semantic modules in visual dialogue.
CoAtt and HeiCoAtt-QI are relevant to our model in the
sense that they leverage attention mechanism to identify
question-relevant visual features. However, they ignore the
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Table 2: Comparison on test-standard split of VisDial v1.0.
Model MRR R@1 R@5 R@10 Mean NDCG
LF 55.42 40.95 72.45 82.83 5.95 45.31
HRE 54.16 39.93 70.47 81.50 6.41 45.46
MN 55.49 40.98 72.30 83.30 5.92 47.50
LF-Att 57.07 42.08 74.82 85.05 5.41 40.76
MN-Att 56.90 42.43 74.00 84.35 5.59 49.58
CorefMN 61.50 47.55 78.10 88.80 4.40 54.70
VGNN 61.37 47.33 77.98 87.83 4.57 52.82
RvA 63.03 49.03 80.40 89.83 4.18 55.59
DL-61 62.20 47.90 80.43 89.95 4.17 57.32
DualVD 63.23 49.25 80.23 89.70 4.11 56.32

semantic-rich relationships and language priors. It should be
noted that our model and the compared approaches all be-
long to single-step models. With the success of multi-step
reasoning, ReDAN (Gan et al. 2019) achieves 1% boost over
our model on most metrics. We believe that stacking our vi-
sual encoder to achieve multi-step visual understanding is a
promising future work. DL-61 (Guo, Xu, and Tao 2019) is
a two-stage network for candidate selection and re-ranking
while FGA (Schwartz et al. 2019) conducts attention across
all the data parts, which gain relatively high performance on
some metrics compared with our model. We believe that our
model for the visual part and existing works for the dialogue
or answer parts have complementary advantages.

Ablation Study
Ablation study on VisDial v1.0 validation set exploits the in-
fluence of the essential components of DualVD. We use the
same discriminative decoder for all the following variations:

Object Representation (ObjRep): this model uses the
averaged object features to represent an image. Object rep-
resentations are enhanced by question-driven attention.

Relation Representation (RelRep): this model applies
averaged relation-aware object representations via question-
guided relation attention and question-guided graph convo-
lution as the image representation.

Visual Module without Relationships (VisNoRel): this
is our full visual module except that the relation embeddings
are replaced by unlabeled edges and the convolution is con-
ducted via the intra-modal attention (Gao et al. 2019).

Visual Module (VisMod): this is our full visual module,
which fuses objects and relation features.

Global Caption (GlCap): this model uses LSTM to en-
code the global caption to represent the image.

Local Caption (LoCap): this model uses LSTM to en-
code the local captions to represent the image.

Semantic Module (SemMod): this is our full semantic
module, which fuses global and local features.

DualVD (full model): this is our full model, which incor-
porates both the visual module and semantic module.

In Table 3, models in the first block are designed to eval-
uate the influence of key components in the visual module.
ObjRep only considers isolated objects and ignores the rela-
tional information, which achieves worse performance com-
pared with VisMod. RelRep considers the relationships by
introducing relation embedding. However, empirical study

Table 3: Ablation study of DualVD on VisDial v1.0.
Model MRR R@1 R@5 R@10 Mean NDCG
ObjRep 63.84 49.83 81.27 90.29 4.07 55.48
RelRep 63.63 49.25 81.01 90.34 4.07 55.12
VisNoRel 63.97 49.87 81.74 90.60 4.00 56.73
VisMod 64.11 50.04 81.78 90.52 3.99 56.67
GlCap 60.02 45.34 77.66 87.27 4.78 50.04
LoCap 60.95 46.43 78.45 88.17 4.62 51.72
SemMod 61.07 46.69 78.56 88.09 4.59 51.10
w/o ELMo 63.67 49.89 80.44 89.84 4.14 56.41
DualVD 64.64 50.74 82.10 91.00 3.91 57.30

indicates that enhancing visual relationships while weaken-
ing object appearance is still not sufficient for better per-
formance. VisNoRel fuses the information from both object
appearance and neighborhoods without relational semantics,
which achieves slight improvement compared to ObjRep.
On top of VisNoRel, VisMod moves a step further by ag-
gregating all the neighborhood features with relational in-
formation, which achieves the best performance compared
to above three models.

Orthogonal to visual part, models in the second block
evaluate the influence of key components in the semantic
part. The overall performance of either GlCap or LoCap
decreases by 1% and 0.15% respectively, compared to their
integrated version SemMod, which adaptively selects and
fuses the task-specific descriptive clues from both global-
level and local-level captions.

DualVD results in a great boost compared to SemMod
and a relatively slight boost compared to VisMod. This un-
balanced boost indicates that visual module provides com-
paratively richer clues than semantic module. Combining the
two modules together gains an extra boost because of their
complementary information. The performance of DualVD
without ELMo embedding decrease slightly, which proves
that the improvement of DualVD mainly comes from the
contribution of the novel visual representation.

Interpretability
A critical advantage of DualVD lies in its interpretability:
DualVD is capable to predict the attention weights in the vi-
sual module, semantic module and the gate values in visual-
semantic fusion. It supports explicit visualization and can
reveal DualVD’s mode in information selection. Figure 3
shows three examples with variant dependence on visual and
semantic modules. The third example (third and fourth rows
in Figure 3) shows three round of dialogues about an image.
In each round of dialogue, DualVD is capable to capture
the most relevant visual and semantic information regarding
the current question. In the first question, the visual module
highlights the face of a boy and the relationships to his body
and the other boy, while the semantic module puts more at-
tention on the captions describing the two boys, which all
provide useful clues to infer the correct answer. In the sec-
ond and third round of dialogues, DualVD respectively at-
tends to the whole grass and the discs. In this example, the
attended information is adaptively changed through the dia-
logue and this explains why the correct answer is selected.

We further show another two examples with a current
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Figure 3: Visualization for DualVD. Visual module highlights the most relevant subject (red box) according to attention weights
of each object (γv

i in Eq. 9) and the objects (orange and blue boxes) with the top two attended relationships (βij in Eq. 5).
Semantic module shows the attention distribution (δqi in Eq. 11) over the global caption (first row) and the local captions (rest
rows), where darker green color indicates bigger attention weight. The yellow thermogram on the top visualizes the gate values
(gates in Eq. 16) of the visual embedding (left) and the caption embedding (right) in visual-semantic fusion. The ratio of gate
values for the visual module and semantic module is computed from Eq. 16.

question and the dialogue history (first two rows in Figure 3)
to reveal DualVD’s mode in information selection. We ob-
serve that the amount of information derived from each mod-
ule highly depends on the complexity of the question and
the relevance of the content. More information will come
from the semantic module when the question involves com-
plex relationships or the semantic module explicitly contains
question-relevant clues. In Figure 3, ratio of total gate val-
ues reveals the amount of information derived from each
module. In the first example, more visual information is re-
quired. Similar observation exists for the second question
in the third example. Such questions referring to object ap-
pearance depend more clues from the visual module. In the
second example, the current question is about the relation-
ship between the girl and the hair. The amount of semantic
information remarkably increases since there exists explicit
evidence “The girl has long hair”. This observation holds
for the third question in the third example. Since language is
a higher-level encoding of the visual content after complex
reasoning involved with prior knowledge, it provides more
useful clues for semantic-level questions.

Conclusion

In this paper, inspired by the dual-coding theory in cogni-
tive science, we propose a novel DualVD model for visual
dialogue. DualVD mainly consists of a visual module and
a semantic module, which encodes image information at
appearance-level and semantic-level, respectively. Desired
clues for answer inference are adaptively selected from the
two modules via gate mechanism. Results from extensive
experiments on benchmarks demonstrate that deriving vi-
sual information from visual-semantic representations can
achieve superior performance compared to other state-of-
the-art approaches. Another major advantage of DualVD is
its interpretability via progressive visualization. It can give
us insight of how information from different modalities is
used for inferring answers.

Acknowledgement

This work is supported by the National Key Research and
Development Program (Grant No.2017YFB0803301).

11131



References
Agrawal, A.; Lu, J.; Antol, S.; Mitchell, M.; Zitnick, C. L.;
Parikh, D.; and Batra, D. 2017. Vqa: Visual question an-
swering. IJCV 123(1):4–31.
Anderson, P.; He, X.; Buehler, C.; Teney, D.; Johnson, M.;
Gould, S.; and Zhang, L. 2018. Bottom-up and top-down at-
tention for image captioning and visual question answering.
In CVPR, 6077–6086.
Das, A.; Kottur, S.; Gupta, K.; Singh, A.; Yadav, D.; Moura,
J. M. F.; Parikh, D.; and Batra, D. 2017. Visual dialog. In
CVPR, 1080–1089.
Gan, Z.; Cheng, Y.; Kholy, A. E.; Li, L.; and Gao, J. 2019.
Multi-step reasoning via recurrent dual attention for visual
dialog. In ACL.
Gao, P.; Li, H.; Li, S.; Lu, P.; Li, Y.; Hoi, S. C.; and Wang,
X. 2018. Question-guided hybrid convolution for visual
question answering. In ECCV, 469–485.
Gao, P.; Jiang, Z.; You, H.; Lu, P.; Hoi, S. C.; Wang, X.;
and Li, H. 2019. Dynamic fusion with intra-and inter-
modality attention flow for visual question answering. In
CVPR, 6639–6648.
Guo, D.; Xu, C.; and Tao, D. 2019. Image-question-answer
synergistic network for visual dialog. In CVPR, 10434–
10443.
Hudson, D. A., and Manning, C. D. 2019. Gqa: A new
dataset for real-world visual reasoning and compositional
question answering. In CVPR, 6700–6709.
Jain, U.; Lazebnik, S.; and Schwing, A. 2018. Two can
play this game: Visual dialog with discriminative question
generation and answering. In CVPR, 5754–5763.
Johnson, J.; Karpathy, A.; and Fei-Fei, L. 2016. Densecap:
Fully convolutional localization networks for dense caption-
ing. In CVPR, 4565–4574.
Kottur, S.; Moura, J. M.; Parikh, D.; Batra, D.; and
Rohrbach, M. 2018. Visual coreference resolution in visual
dialog using neural module networks. In ECCV, 153–169.
Li, H.; Wang, P.; Shen, C.; and Hengel, A. V. D. 2019a.
Visual question answering as reading comprehension. In
CVPR, 6319–6328.
Li, L.; Gan, Z.; Cheng, Y.; and Liu, J. 2019b. Relation-aware
graph attention network for visual question answering. In
ICCV.
Lu, J.; Yang, J.; Batra, D.; and Parikh, D. 2016. Hierarchical
question-image co-attention for visual question answering.
In NIPS, 289–297.
Lu, J.; Kannan, A.; Yang, J.; Parikh, D.; and Batra, D. 2017.
Best of both worlds: Transferring knowledge from discrimi-
native learning to a generative visual dialog model. In NIPS,
314–324.
Niu, Y.; Zhang, H.; Zhang, M.; Zhang, J.; Lu, Z.; and Wen,
J.-R. 2019. Recursive visual attention in visual dialog. In
CVPR, 6679–6688.
Paivio, A. 1971. Imagery and Verbal Process. New York:
Holt, Rinehart and Winston.

Pennington, J.; Socher, R.; and Manning, C. 2014. Glove:
Global vectors for word representation. In EMNLP, 1532–
1543.
Peters, M. E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark,
C.; Lee, K.; and Zettlemoyer, L. 2018. Deep contextualized
word representations. In NAACL.
Qi, W.; Chunhua, S.; Lingqiao, L.; Anthony, D.; and An-
ton van den, H. 2016. What value do explicit high level
concepts have in vision to language problems? In CVPR,
203–212.
Qi, W.; Chunhua, S.; Peng, W.; Anthony, D.; and Anton van
den, H. 2017. Image captioning and visual question an-
swering based on attributes and external knowledge. TPAMI
40(6):1367–1381.
Qi, W.; Peng, W.; Chunhua, S.; Reid, I.; and Anton van den,
H. 2018. Are you talking to me? reasoned visual dialog
generation through adversarial learning. In CVPR, 6106–
6115.
Ren, S.; Girshick, R.; Girshick, R.; and Sun, J. 2017. Faster
r-cnn: Towards real-time object detection with region pro-
posal networks. TPAMI 39(6):1137–1149.
Ren, M.; Kiros, R.; and Zemel, R. 2015. Exploring mod-
els and data for image question answering. In NIPS, 2953–
2961.
Schwartz, I.; Yu, S.; Hazan, T.; and Schwing, A. G. 2019.
Factor graph attention. In CVPR, 2039–2048.
Seo, P. H.; Lehrmann, A.; Han, B.; and Sigal, L. 2017. Vi-
sual reference resolution using attention memory for visual
dialog. In NIPS, 3719–3729.
Simonyan, K., and Zisserman, A. 2014. Very deep convolu-
tional networks for large-scale image recognition. Computer
Science.
Wang, P.; Wu, Q.; Cao, J.; Shen, C.; Gao, L.; and Hen-
gel, A. v. d. 2019. Neighbourhood watch: Referring ex-
pression comprehension via language-guided graph atten-
tion networks. In CVPR, 1960–1968.
Xu, H., and Saenko, K. 2016. Ask, attend and answer: Ex-
ploring question-guided spatial attention for visual question
answering. In ECCV, 451–466.
Yang, Z.; He, X.; Gao, J.; Li, D.; and Smola, A. 2016.
Stacked attention networks for image question answering.
In CVPR, 21–29.
Yang, T.; Zha, Z.-J.; and Zhang, H. 2019. Making history
matter: Gold-critic sequence training for visual dialog. arXiv
preprint arXiv:1902.09326.
Zhang, J.; Kalantidis, Y.; Rohrbach, M.; Paluri, M.; Elgam-
mal, A.; and Elhoseiny, M. 2019. Large-scale visual rela-
tionship understanding. In AAAI, 9185–9194.
Zheng, Z.; Wang, W.; Qi, S.; and Zhu, S.-C. 2019. Reason-
ing visual dialogs with structural and partial observations. In
CVPR, 6669–6678.

11132


