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Abstract

Extreme instance imbalance among categories and combina-
torial explosion make the recognition of Human-Object Inter-
action (HOI) a challenging task. Few studies have addressed
both challenges directly. Motivated by the success of few-shot
learning that learns a robust model from a few instances, we
formulate HOI as a few-shot task in a meta-learning frame-
work to alleviate the above challenges. Due to the fact that
the intrinsic characteristic of HOI is diverse and interactive,
we propose a Semantic-Guided Attentive Prototypes Network
(SGAP-Net) to learn a semantic-guided metric space where
HOI recognition can be performed by computing distances
to attentive prototypes of each class. Specifically, the model
generates attentive prototypes guided by the category names
of actions and objects, which highlight the commonalities of
images from the same class in HOI. In addition, we design
a novel decision method to alleviate the biases produced by
different patterns of the same action in HOI. Finally, in order
to realize the task of few-shot HOI, we reorganize two HOI
benchmark datasets, i.e., HICO-FS and TUHOI-FS, to real-
ize the task of few-shot HOI. Extensive experimental results
on both datasets have demonstrated the effectiveness of our
proposed SGAP-Net approach.

Introduction

Human-Object Interaction (HOI) is to recognize the rela-
tionship between human actions and surrounding environ-
ment, which is a challenging computer vision task. Unlike
object recognition, the key to understanding visual scene is
not only to recognize the existence of instances, but also
to understand the visual relationship among instances. In-
stead of “Where is what” (i.e., object detection and recog-
nition in images), the goal of HOI recognition is to answer
“What does the person do with something”. That is to say,
given an input image, this task aims at recognizing the triple
< human, verb, object >.

Despite significant advances in the field of computer vi-
sion, such as image classification (He et al. 2016; Wang et
al. 2017), object detection (Ren et al. 2017; He et al. 2017)
and action recognition (Gkioxari, Girshick, and Malik 2015;
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Figure 1: Extreme imbalance and ubiquitous similarities
among categories on one HOI dataset: HICO (Chao et al.
2015). Despite of the same object category, the number of
samples produced by different actions varies greatly. On the
other side, objects with similar attributes (e.g., horse and ze-
bra) are likely to interact with the same action.

Girdhar and Ramanan 2017), the study of HOI is still in its
infancy. This is due to: (1) The instance imbalance among
categories increases the difficulty of training and is prone to
cause over-fitting (Chao et al. 2015). Some common interac-
tions have abundant samples, while some unusual HOI com-
binations have quite few samples. For example, samples of
“Hold-Horse” are much more than those of “Feed-Horse”, as
shown in Fig. 1. (2) Multiple labels in HOI make the number
of classes increase exponentially, which results in the vari-
ous information being entangled with each other, or aggre-
gating the similarity of all possible pairs of actions and ob-
jects exhaustively, and bringing about huge burden for com-
puting resources. Current approaches apply data augmenta-
tion with weakly labeled data (Zhuang et al. 2018) or valid
geometric configuration regularization (Lin et al. 2016) to
improve performance for HOI recognition. However, they
neglect the above challenges in HOI.

Recently, the task of few-shot learning has been proved
to alleviate the instance imbalance problem effectively. It
learns a network that maps an unlabeled example to its la-
bel from a small labeled support set (Vinyals et al. 2016),
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which alleviates over-fitting caused by the instance imbal-
ance problem. Moreover, the idea of meta-learning provides
a new solution to combinatorial explosion in HOI. When
collecting more new combinations of actions and objects, it
can borrow some knowledge from existing HOI models in-
stead of training a new model from scratch due to the ubiq-
uitous similarities among actions. For example, the actions
with “Horse” are helpful for recognizing the interactions be-
tween humans and “Zebra” (as shown in Fig. 1). To this end,
we explore formulating HOI as a few-shot HOI task and ap-
plying the idea of meta-learning to address it.

To overcome the diversity and interactivity characteris-
tics in HOI, we propose a semantic-guided attentive pro-
totypes network for few-shot HOI. It includes a SemantIc-
Guided Multiple Attention Module (SIGMA-Module) and a
Prototypes Shift Module (PS-Module), respectively. Due to
the characteristics of HOI scene, the SIGMA-Module is de-
signed to generate class prototypes with multiple attention
corresponding actions and objects. In the PS-Module, we
design different decision methods for training and testing.
Particularly, we employ a super-parameter regulating shift
distance in training to alleviate the offset of different pat-
terns produced by the same action.

It is worthwhile to highlight several aspects of the pro-
posed approach here:

• We formulate HOI recognition as a few-shot learning task
in a meta-learning framework to alleviate the challenges
of instances imbalance and combinatorial explosion. To
the best of our knowledge, this is the first work to model
HOI recognition into a few-shot learning task.

• We design SGAP-Net to learn a good metric space for
HOI, where HOI recognition can be performed by com-
puting distances to attentive class prototypes. Specifically,
the SIGMA-Module makes class prototypes focus on dis-
criminative regions of HOI. And the PS-Module is further
developed to apply a novel decision method on training to
alleviate the offsets of different patterns produced by the
same action.

• For evaluating our proposed SGAP-Net in the few-shot
HOI recognition, we reorganize two benchmark datasets,
HICO-FS and TUHOI-FS. Experiments show that the
performance of the proposed SGAP-Net outperforms the
state-of-the-art few-shot learning methods in a large mar-
gin.

Related work

Human-Object Interaction. Modeling human action and
activity has a rich history in computer vision. Recently,
the idea of recognizing the interaction between humans
and objects has attracted extensive attention (Gupta and
Davis 2007). Some studies focused on HOI detection task
(Gkioxari et al. 2018; Li et al. 2019b), which applied pop-
ular detectors jointly to detect people and objects, and in-
ferred interaction triplets by fusing these predictions. Addi-
tionally, compositional learning (Kato, Li, and Gupta 2018)
addressed the zero-shot learning problem in HOI. They em-
ployed graph convolutional networks to recognize unseen

interactions with external knowledge. Moreover, some work
focused on creating large scale image datasets for HOI (Le,
Uijlings, and Bernardi 2014; Chao et al. 2015). However,
current studies neglect the instance imbalance and com-
binatorial explosion challenges in HOI recognition. Our
work takes a step forward by formulating HOI as few-shot
HOI task and utilizes meta-learning based few-shot learning
for recognizing human-object interactions to alleviate both
challenges.
Meta-Learning Based Few-Shot Learning. It is designed
to train a meta classifier with limited labeled examples,
which transfers the knowledge from seen tasks to unseen
tasks. Several recent meta-learning methods (Vinyals et al.
2016; Snell, Swersky, and Zemel 2017; Sung et al. 2018)
build metric-based networks to realize few-shot learning.
For example, Prototypical Networks (Snell, Swersky, and
Zemel 2017) learn prototypes for classes and classify the
query image into the nearest class prototypes. Other ap-
proaches (Finn, Abbeel, and Levine 2017; Nichol, Achiam,
and Schulman 2018) propose to learn a good initialization
that can be optimized in a few gradient steps and effec-
tively obtain optimal model parameters for new tasks. Dif-
ferent from the above studies, we apply few-shot learning to
a novel visual scene, i.e., human-object interaction, which
is a challenge for current frameworks. The task of few-shot
HOI focuses on learning a robust model with a few samples
to recognize visual relationships between humans and novel
objects.
Attention Mechanism. The attention mechanism has been
widely applied in computer vision and machine learning do-
main owing to its effectiveness, e.g., image classification
(Wang et al. 2017), semantic segmentation (Fu et al. 2018;
Wei et al. 2017) and video summarization (Ji et al. 2019).
Moreover, many studies (Annadani and Biswas 2018; Yu et
al. 2018; Xing et al. 2019) demonstrate that some available
prior knowledge can improve performance in zero/few-shot
learning as a type of attention information. For example, Yu
et al. (Yu et al. 2018) proposed a novel stacked semantic-
guided attention model to generate attention to the impor-
tance of different local regions for fine-grained zero-shot
learning. Accordingly, in this work, we design SGAP-Net
to generate attentive prototypes relative to the semantic of
HOI in the framework of few-shot learning.

Table 1: The notations used in SGAP-Net.

Notations Description
N Number of examples in the training set
K Number of classes in the training set
NC Number of classes per episode
NS Number of support examples per class
NQ Number of query examples per class
e The e-th episode
c Class c
Sc
e Support examples of class c in episode e

Qc
e Query examples of class c in episode e

si The i-th support example in Sc
e

q The query example in Qc
e
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Figure 2: The proposed SGAP-Net architecture for a 5-way 1-shot task. Semantic embeddings of nouns and verbs are given in
support set, while the semantic features of query images are generated by the generation network g. fφ is the semantic-guided
part of SIGMA-Module, and

∑
represents the prototypes calculation part to obtain p̃c and pc in the PS-Module.

SGAP-Net for Few-Shot HOI Recognition

Problem Definition

We formulate HOI recognition as a few-shot task in a meta-
learning framework to alleviate the challenges of instance
imbalance and combinatorial explosion in HOI. We follow a
C-way K-shot problem using the episodic formulation from
Matching Networks (Vinyals et al. 2016). According to the
datasets of HOI, the label for an image combines an action
and an object. Due to ubiquitous similarities in the same ac-
tion interacting with different objects and the number of ob-
jects are far more than that of actions, we take objects as
different tasks in our work. Specifically, we divide all noun
labels into the meta-train set, the meta-validation set and the
meta-test set that are disjoint in nouns.

In few-shot classification, there are N labeled exam-
ples {(x1, y1), ..., (xN , yN )}, where each xi ∈ R

D is
a D-dimensional visual feature vector of the i-th image,
yi ∈ {1, ...,K} is the corresponding label. When train-
ing in the support set, the semantic vectors of labels are
given as {(n1, v1), ..., (nN , vN )}, where ni ∈ R

V is the
V -dimensional text semantic embedding of the noun label,
vi ∈ R

V is the V -dimensional text semantic embedding of
the verb label. Other notations used in SGAP-Net are listed
in Table 1.

The architecture of SGAP-Net consists of a SemantIc-
Guided Multiple Attention Module (SIGMA-Module), and
a Prototypes Shift Module (PS-Module), as shown in Fig.
2. In the SIGMA-Module, the visual feature representation
part is a pretrained ResNet-18 (He et al. 2016). Then we ap-
ply the semantics of corresponding verbs and nouns to guide
class prototypes with multiple attention, which provides dis-
criminative knowledge of different classes. Finally, the PS-
Module helps to learn a good metric space for HOI by a strict
decision method.

Semantic-Guided Multiple Attention Module

To obtain an effective metric space that represents HOI class
prototypes, we propose SemantIc-Guided Multiple Atten-
tion Module (SIGMA-Module), which applies semantic in-
formation to highlight the discriminative regions in images.
Since there are a noun and a verb in a description of HOI,
a key challenge is how to coordinate their influence on at-
tention. By doing so, we apply the idea of attention-erasing
that focuses on the region of interest without being disturbed
by previous attention guidance. In this way, the next seman-
tic guidance is carried out on the features with attention-
erasing. Therefore, the fusion of both attention parts outputs
the highlighted visual regions, as illustrated in Fig. 3.

The specific process is as follows. First, a semantic-
guided network fφ is constructed to achieve semantic-
guided attentive features:

s̃i = fφ(si, ni, vi), (1)

where si is the i-th sample from the support set at episode
e, ni and vi are noun and verb label semantic vectors of si
respectively, and s̃i is the final visual feature with multiple
attention. It consists of 3 steps:

(1) We embed the category semantic information into the
visual space as a highlight mask to guide visual features:

sni = σ((1 + h(ni))si), (2)

where h(·) is a nonlinear network mapping semantic vectors
to visual space, σ(·) is ReLu activate function, sni is presen-
tation features of si with noun-guided attention. In order to
avoid influencing the next semantic-guided step, we subtract
the feature with noun-guided attention over a threshold from
the original image features.

(2) A step function is applied to preserve the high value of
features as noun-guided attention since attention-erasing can
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make networks focus on the non-overlapping region of inter-
est. Particularly, we calculate the difference between initial
visual features and noun-guided attention:

s′i = si − ε(τ) · sni , (3)

where s′i is the output of attention-erasing operation, ε(τ) is
a step function. When τ is greater than a threshold, ε(τ) = 1
, else ε(τ) = 0. Similarly, we obtain verb-guided attention
by:

svi = σ((1 + h(vi))s
′
i), (4)

where vi is verb label semantic of si, svi is the feature with
verb-guided attention.

(3) Noun and verb attention features are added up to ob-
tain the integral visual features s̃i:

s̃i = sni + svi . (5)

It should be noted that the samples in the query set are
also processed by fφ as that in support set. Since the se-
mantic information is unavailable in query set, we train a se-
mantic generation network to produce semantic vectors from
images:

ñ, ṽ = g(q), (6)

where q is the sample from the query set, g(·) is seman-
tic generation network that is a nonlinear neural network, ñ
and ṽ are generated noun and verb label semantic vectors of
q. The output of the semantic generation network is forced
to be close to the corresponding category semantic features,
which is formulated as:

Lossg = ||ñ− nc||22 + ||ṽ − vc||22, (7)

where nc and vc are respectively the true noun and verb la-
bel of q. The samples in query set are input into fφ to get
semantic-guided attentive features:

q̃ = fφ(q, ñ, ṽ), (8)

where q̃ is the final image representations of sample q in
query set. In this way, the class prototypes are guided dis-
criminatively by the class semantic information.

Prototypes Shift Module

The features obtained from the SIGMA-Module represent
more effective class prototypes. Ideally, a query sample is
near to its class prototype, which is obtained by averag-
ing samples in the support set (Snell, Swersky, and Zemel
2017). A more strict standard is that it will produce a small
influence on original class prototypes if computing the query
sample into prototypes, as shown in Fig. 4. Considering the
complex HOI scene may generate an unstable prototype, we
design a Prototypes Shift Module (PS-Module) under this
strict standard, where there are different decision methods
when training and testing. Specifically, we apply a super-
parameter regulating shift distance in training to obtain a

Figure 3: Illustration of SIGMA-Module.

new prototype by fusing query samples with class proto-
types. In testing, HOI recognition is performed by comput-
ing the direct distance to class prototypes, which achieves
superior performance than training.

There are two types of prototypes in this module, i.e.,
original prototypes and prototypes shift. Concretely, the
original prototypes pc (of category c) are calculated as:

pc =
1

NS

∑
(si,yi)∈Sc

e

fφ(si, ni, vi), (9)

where NS is the number of support set in class c and Sc
e is

the support samples of class c in the episodic e. The proto-
types shift p̃c is calculated based on the trade-off between
the query sample and original prototypes pc:

p̃c = (1− α)pc + αfφ(q, ñ, ṽ), (10)

where α is a scaling factor to generate prototypes shift p̃c.
The distance between p̃c and pc measures the perturbation
of the query sample to each class prototype.

An image perhaps appears in the support set or the query
set since images are randomly selected from a class. There-
fore, the purpose of PS-Module is to make the prototype vec-
tor of the same class more consistent. By doing so, we intro-
duce triplet loss (Schroff, Kalenichenko, and Philbin 2015)
to strengthen the similarities in the same class and the dif-
ferences among different classes:

Losstr =

N∑
i

[||fφ(q)− ppc ||22 − ||fφ(q)− pnc ||22], (11)

where ppc and pnc are vectors of positive and negative pro-
totypes. Losstr is the triplet loss that helps to learn a good
embedding where similar images are close and different im-
ages are far away.

A hard training strategy would help to learn a generaliz-
able learner (Shrivastava, Gupta, and Girshick 2016). There-
fore, constraining the distance between p̃c and pc is more ef-
fective than that between q and pc in training. Accordingly,
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(a) Prototypes are computed as
the mean of embedded support
instances for each class in Pro-
totypical Networks.

(b) The PS-Module measures
the bias of prototypes produced
by the query sample.

Figure 4: Illustration for Prototypical Networks and our pro-
posed PS-Module. Class prototypes ci are computed as the
mean of embedded support examples in category i, q is a
sample in query set and red lines are different distances to
be trained (Best viewed in color).

we apply a cross-entropy loss to meature it:

Lossps = d(p̃c, pc) + log
∑
NC

exp(−d(p̃c, pc)), (12)

where d(·) is the Euclidean distance, Lossps is the loss func-
tion that limits the distance from prototypes shift to original
prototypes.

When testing in the meta-test set, semantic information is
generated by the semantic generation network for samples
both in support sets and query sets. And we calculate a prob-
ability distribution for a query sample distance to the proto-
types of support sets to accomplish the recognition task:

pφ(y = c|q ∈ Qc
e) =

exp(−d(fφ(q, ñ, ṽ), pc))∑
k

exp(−d(fφ(q, ñ, ṽ), pk))
. (13)

Experiments

Experiment Setup

We fix parameters in the pretrained CNN of ResNet-18 (He
et al. 2016) to obtain visual features, and update all parame-
ters in SIGMA-Module. We use Adam for the optimization,
in which the initial learning rate is 0.00001. The parameter
of regularizer term is 0.01. We set the threshold of step func-
tion τ = 1.5 and the scaling factor of PS-Module α = 0.5.
Besides, we apply Word2vector (Mikolov et al. 2013) to ex-
tract the semantic embeddings for the category labels.

Datasets

We evaluate our method on the popular HICO (Chao et
al. 2015) and TUHOI (Le, Uijlings, and Bernardi 2014)
datasets. Original datasets are divided into a training set
and a test set in shared label space, which can not sat-
isfy the need for our experiments. We apply 60/20/20 train-
ing/testing/validation splits that are disjoint in noun labels
for reorganizing the datasets. Details of both datasets are de-
scribed below.
HICO-FS. HICO dataset (Chao et al. 2015) is a dataset
for Humans Interacting with Common Objects, in which

each interaction consists of a verb-noun pair. We reorga-
nize this dataset by removing images with the label of “no
interaction” and keeping the main labels for images. We
call the modified dataset HICO for few-shot task as HICO-
FS, which consists of 42,109 images with 80 nouns, 92
verbs, and 377 interactions. Considering ubiquitous simi-
larities among actions, we take different nouns as differ-
ent tasks. We divide HICO-FS into a meta-train set with 45
nouns and 25,968 images, a meta-test set with 20 nouns and
9,146 images, and a meta-val set with 15 nouns and 9,146
images, which are disjoint in noun labels.
TUHOI-FS. Trento Universal Human-Object Interaction
dataset (Le, Uijlings, and Bernardi 2014) is dedicated to ac-
tions of human in images extracted from ImageNet. In order
to establish a more natural and realistic dataset, the dataset
annotates actions from images in stead of collecting images
for some predefined human actions. Similar to that of HICO
dataset, we reorganize TUHOI to be TUHOI-FS, which con-
sists of 9802 images with 95 nouns, 66 verbs, and 194 inter-
actions. We divide TUHOI-FS into a meta-train set with 50
nouns and 4871 images, a meta-test set with 25 nouns and
2570 images, and a meta-val set with 20 nouns and 2361 im-
ages. Each pair label in all meta-sets contains 6 samples at
least and 487 samples at most to ensure that it can perform
on both 5-way 1-shot and 5-way 5-shot tasks.

Comparison with State-of-the-Art Methods

The few-shot HOI recognition accuracies are computed by
averaging 10 times over 600 randomly generated episodes.
Five metric-based methods are chosen for comparison:
Matching Networks (Vinyals et al. 2016), Prototypical Net-
works (Snell, Swersky, and Zemel 2017), Relation Networks
(Sung et al. 2018), DN4 (Li et al. 2019a) and TPN (Liu et al.
2019), and two initialization-based method: MAML (Finn,
Abbeel, and Levine 2017) and Reptile (Nichol, Achiam, and
Schulman 2018). They all utilize ResNet-18 (He et al. 2016)
as embedding networks.

From Table 2, we observe that our model achieves com-
petitive performance for both tasks on HICO-FS dataset.
Concretely, our method achieves accuracy of 38.16% in
terms of 5-way 1-shot and 58.39% in terms of 5-way 5-
shot, which outperforms the state-of-the-art approaches at
least in 4.2% and 11.1%. It is worth noting that prior knowl-
edge can be incorporated into metric-based approaches to
improve their performance (Xing et al. 2019). To this end,
our SGAP-Net utilizes semantic information to learn atten-
tive class prototypes, which pay attention to actions and ob-
jects corresponding to HOI. It proves that semantic informa-
tion can guide to learn a good metric space in few-shot HOI.
Moreover, our SGAP-Net, which is formulated as a few-shot
task in meta-learning framework, alleviates the challenges
of instance imbalance and combinatorial explosion in HOI
recognition.

Similar results are achieved on the TUHOI-FS dataset, as
shown in Table 3. It demonstrates that our proposed SGAP-
Net is capable of bringing about 3.4% and 13.3% perfor-
mance gain respectively on 5-way 1-shot and 5-way 5-shot.
However, the whole performance of all methods on TUHOI-
FS is lower than that on HICO-FS. We suppose the reason
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Table 2: Few-shot classification accuracy on test split on HICO-FS with ± 95% confidence intervals.

Methods Type 5-way 1-shot 5-way 5-shot
Matching Networks (Vinyals et al. 2016) Metric 32.14 ± 1.62% 44.87 ± 1.74%
Prototypical Networks (Snell, Swersky, and Zemel 2017) Metric 32.56 ± 1.59% 42.49 ± 1.75%
Relation Networks (Sung et al. 2018) Metric 33.20 ± 1.68% 46.15 ± 1.81%
DN4 (Li et al. 2019a) Metric 33.07 ± 1.43% 46.19 ± 1.74%
TPN (Liu et al. 2019) Metric 33.40 ± 1.55% 46.33 ± 1.86%
MAML (Finn, Abbeel, and Levine 2017) Initialization 33.87 ± 1.74% 47.25 ± 1.84%
Reptile (Nichol, Achiam, and Schulman 2018) Initialization 33.26 ± 1.77% 46.56 ± 1.85%
SGAP-Net (Ours) Metric 38.16 ± 1.65% 58.39 ± 1.82%

Table 3: Few-shot classification accuracy on test split of TUHOI-FS with ± 95% confidence intervals.

Methods Type 5-way 1-shot 5-way 5-shot
Matching Networks (Vinyals et al. 2016) Metric 32.48 ± 1.58% 40.04 ± 1.70%
Prototypical Networks (Snell, Swersky, and Zemel 2017) Metric 31.12 ± 1.55% 39.26 ± 1.71%
Relation Networks (Sung et al. 2018) Metric 33.50 ± 1.68% 41.15 ± 1.75%
DN4 (Li et al. 2019a) Metric 32.49 ± 1.43% 41.75 ± 1.77%
TPN (Liu et al. 2019) Metric 32.95 ± 1.59% 41.73 ± 1.79%
MAML (Finn, Abbeel, and Levine 2017) Initialization 33.78 ± 1.64% 43.67 ± 1.79%
Reptile (Nichol, Achiam, and Schulman 2018) Initialization 32.39 ± 1.81% 41.65 ± 1.93%
SGAP-Net (Ours) Metric 37.27 ± 1.61% 57.05 ± 1.73%

lies in the original distribution of data: the average samples
of TUHOI-FS are much less than those of HICO-FS. There-
fore, the few-shot HOI task is more difficult on TUHOI than
that on HICO. Our work makes an attempt to apply semantic
information to generate class prototypes for few-shot learn-
ing in HOI scene. And our results on both datasets demon-
strate the effectiveness of our approach in complex human-
centered scenarios.

Figure 5: Visualization of performance with different exper-
imental sets on HICO-FS.

We visualize the performance with different experimental
sets on HICO-FS dataset to test the stability of our model, as
shown in Fig. 5. We test SGAP-Net 10 times from 1-shot to
5-shot of 5-way. It can be observed that the bias between the
maximum and the minimum on 5-way 1-shot is the smallest
one. With the increase of shots, the fluctuations of models
increase gradually. The average values are computed as the
accuracy of the experiment sets (red line in Fig. 5). The most
significant improvements on average value occur on 5-way

2-shot, in which it increases over 7% than that on 5-way
1-shot. It is due to the fact that more samples from classes
provide strong support to the classifier.

We also examine experimental results on those categories
shown in Fig.1, where categories in blue are in the training
set and the others are in the test/val set. We take Prototypical
Networks (Snell, Swersky, and Zemel 2017) as a baseline to
provide the experimental evidence. Concretely, Prototypical
Networks achieve the accuracy of 28.65% on ‘hold-orange’
and 39.76% on ‘eat-orange’ in terms of 5-way 1-shot. By
contrast, our SGAP-Net achieves accuracy of 35.39% on
‘hold-orange’ and 72.97% on ‘eat-orange’ in terms of 5-
way 1-shot, which outperforms Prototypical Networks 6.7%
and 33.2%, respectively. For the task of 5-way 5 shot, our
SGAP-Net achieves 9.56% and 26.1% performance im-
provement on ‘hold-orange’ and ‘eat-orange’. Similar re-
sults are achieved on other categories, which brings signifi-
cant performance gain on 5-way 1-shot and 5-way 5-shot.

Ablation Studies

We conduct ablation studies to evaluate the impacts of each
component in our SGAP-Net in Table 4. We consider the
following variants:

PN is Prototypical Networks (Snell, Swersky, and Zemel
2017) as the baseline for SGAP-Net.

SGAP (w Verb) is the PN that only includes the verb la-
bels.

SGAP (w Noun) is the PN that only includes the noun
labels.

SGAP (w/o AE) utilizes information of verb and noun by
adding linearly without attention-erasing.

SGAP (w/o PS) replaces the PS-Module by the desicion
method in PN.
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Table 4: Ablation studies of SGAP-Net on HICO-FS.

Methods 5-way 1-shot 5-way 5-shot
PN 32.56 ± 1.59% 42.49 ± 1.75%
SGAP (w Verb) 35.86 ± 1.63% 54.49 ± 1.86%
SGAP (w Noun) 35.56 ± 1.66% 54.68 ± 1.87%
SGAP (w/o AE) 32.03 ± 1.56% 49.06 ± 1.84%
SGAP (w/o PS) 37.48 ± 1.67% 56.79 ± 1.90%
SGAP-Net(ours) 38.16 ± 1.65% 58.39 ± 1.87%

We can observe that applying a single type of semantic in-
formation improves the result over 3% compared with Pro-
totypical Networks, as shown in Table 4. It is proved that
semantic-guided attention mechanism is effective for few-
shot HOI recognition. If both noun and verb information are
included in the model and are combined linearly, we ob-
serve that it performs even 0.4% worse than Prototypical
Networks on the 5-way 1-shot task. This is a reasonable phe-
nomenon since stacking attention representations will entan-
gle with each other. Then we utilize verb and noun semantic
embedding based on attention-erasing and obtain improve-
ment with almost 6% than Prototypical Networks. Mean-
while, we find results are almost unaffected when exchang-
ing the order of two types of semantic information, which
demonstrates that the method of attention-erasing works ef-
fectively on twice guidance.

PS-Module on miniImageNet

To prove the effectiveness of the PS-Module on the general
few-shot learning task, we evaluate our PS-Module on mini-
ImageNet (Vinyals et al. 2016), which is a popular dataset
for few-shot learning. The performance is summarized in
Table 5. They both utilize 4 layers of CNN to extract visual
features. Our PS-Module achieves the improvement of 0.8%
on the 5-way 1-shot task and 1.1% on the 5-way 5-shot task
on miniImageNet dataset. It demonstrates that our proposed
PS-Module is also capable of improving the performance
of conventional few-shot classification. Simultaneously, we
find PS-Module reduces the variance of accuracies by em-
ploying a strict decision method, which strengthens the sta-
bility of our model to perform in the real scene.

Table 5: The effectiveness of PS-Module on miniImageNet.

Methods 5-way 1-shot 5-way 5-shot
Prototypical Net 44.32 ± 0.86% 63.73 ± 0.72%
PS-Module 45.14 ± 0.76% 64.85 ± 0.68%

Quantitative analysis

Threshold τ in step function. An experiment is imple-
mented to further evaluate the influences of the threshold τ
of the step function in Eq.(3). We fix the scaling parameter
at the default value (α = 0.5) and vary the threshold of step
function τ from 0 to 3. The corresponding experimental re-
sults are presented in Fig. 6. This step function is designed to
preserve highlight information of features. From the results,
we find that the performance of SGAP-Net with different

thresholds of step function shows the same trend on both ex-
periment sets, which achieves the apex when τ = 1.5. Be-
sides, when there is no parameter to control the intensity of
attention-erasing (τ = 0), the performance of the models is
the worst. With τ increasing over 1.5, the results also show a
decline. We consider that inadequate attention-erasing may
cause bias of feature representation.

(a) The few-shot HOI recogni-
tion results on 5-way 1-shot.

(b) The few-shot HOI recogni-
tion results on 5-way 5-shot.

Figure 6: Impact of varied thresholds τ on HICO-FS dataset.

Scaling parameter α. We further investigate the influence
of parameter α in Eq. (10), which controls the scaling pa-
rameter of measuring the distance prototypes shift, and the
results are shown in Fig. 7. It can be observed that the per-
formance is improved continuously with the increase of α
until the performance reaches their peak when α = 0.5 on
the task of 5-way 5-shot and then start to decrease gradually.
The performance on the task of 5-way 1-shot is different
from that on 5-way 5-shot. It is due to that the only support
sample provided by the task of 5-way 1-shot can not gen-
erate a stable class prototype in metric space. Despite obvi-
ous fluctuations on the task of 5-way 1-shot, our model also
achieves the best performance at α = 0.5. Through the ob-
servation, we can conclude that incorporating an appropriate
ratio of query samples into prototypes can steadily improve
the performance of few-shot HOI recognition.

(a) The few-shot HOI recogni-
tion results on 5-way 1-shot.

(b) The few-shot HOI recogni-
tion results on 5-way 5-shot.

Figure 7: Impact of varied scaling parameter α on HICO-FS
dataset.

Conclusion
This paper formulated HOI recognition as a few-shot learn-
ing task into a meta-learning framework to alleviate instance
imbalance and combinatorial explosion challenges. In this
work, we have proposed SGAP-Net that learns a metric
space where HOI recognition can be performed by com-
puting distances to prototype representations of each class.
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The SIGMA-Module in it generates discriminative proto-
types via erasing and stacking attention from the class se-
mantic of verb and noun labels. And the PS-Module in it is
designed by different decision methods in training and test-
ing, which achieves performance gain by a super-parameter
regulating shift distance. In addition, Two human-object in-
teraction datasets, HICO-FS and TUHOI-FS, are released
to few-shot HOI. Extensive experiments have demonstrated
that our proposed SGAP-Net is superior to the state-of-the-
art approaches.
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