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Abstract

Colorization in monochrome-color camera systems aims to
colorize the gray image IG from the monochrome camera us-
ing the color image RC from the color camera as reference.
Since monochrome cameras have better imaging quality than
color cameras, the colorization can help obtain higher quality
color images. Related learning based methods usually sim-
ulate the monochrome-color camera systems to generate the
synthesized data for training, due to the lack of ground-truth
color information of the gray image in the real data. However,
the methods that are trained relying on the synthesized data
may get poor results when colorizing real data, because the
synthesized data may deviate from the real data. We present
a new CNN model, named cycle CNN, which can directly
use the real data from monochrome-color camera systems for
training. In detail, we use the colorization CNN model to do
the colorization twice. First, we colorize IG using RC as
reference to obtain the first-time colorization result IC. Sec-
ond, we colorize the de-colored map of RC, i.e. RG, us-
ing the first-time colorization result IC as reference to obtain
the second-time colorization result R

′
C. In this way, for the

second-time colorization result R
′
C, we use the original color

map RC as ground-truth and introduce the cycle consistency
loss to push R

′
C ≈ RC. Also, for the first-time colorization

result IC, we propose a structure similarity loss to encour-
age the luminance maps between IG and IC to have simi-
lar structures. In addition, we introduce a spatial smoothness
loss within the colorization CNN model to encourage spa-
tial smoothness of the colorization result. Combining all these
losses, we could train the colorization CNN model using the
real data in the absence of the ground-truth color information
of IG. Experimental results show that we can outperform re-
lated methods largely for colorizing real data.

Introduction

With the increasing use of monochrome-color camera sys-
tems in high-end smart phones, e.g. Huawei P30, Mate30,
etc., the colorization problem within these systems is attract-
ing more and more attentions from the academic and indus-
trial communities.

As shown in Fig. 1, colorization in monochrome-color
camera systems aims to colorize the gray image IG from
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(a) Input pair of gray image IG and color image RC. (b)
Our colorization result I∗C.

Figure 1: The input pair of gray image IG and color image
RC are shot by the monochrome and color cameras, respec-
tively. By directly using these real data for training, our al-
gorithm learns to colorize IG using RC as reference.

the monochrome camera using the color image RC from
the color camera as reference. Between the monochrome
and color cameras, there exist different hardwares, e.g. the
color filter array, and different software modules, e.g. white
balance, demosaic, etc. As a result, on the one hand, the
monochrome camera has better light efficiency (Jeon et al.
2016; Dong et al. 2019) than the color camera, and thus the
gray image has higher quality, i.e. signal-noise ratio, than
the color image. This motivates researchers to do the col-
orization so as to get higher quality color images using the
monochrome-color camera systems. On the other hand, the
pair of gray and color images have different luminance, blur,
noises, etc. These cause the difficulty for the colorization.

Among existing methods for colorization within the
monochrome-color camera system, some are traditional
hand-crafted methods, e.g. (Jeon et al. 2016). With the suc-
cessful use of deep learning in various computer vision prob-
lems, some deep learning based methods, e.g. (Dong et al.
2019) are proposed recently, which have shown to be able
to obtain higher accuracy than the traditional ones. How-
ever, in the deep learning methods, e.g. (Dong et al. 2019),
the models usually need ground-truth color information of
the input gray images as annotations for training. Due to
the lack of ground-truth color information in the real data,
as shown in Fig. 2, current methods, e.g. (Jeon et al. 2016;
Dong et al. 2019), usually synthesize data to simulate the
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Figure 2: How the synthesized data and the real data are ob-
tained. The real data are the pair of gray and color images
shot from the monochrome-color camera system. The syn-
thesized data are the pair of gray and color images that are
synthesized using a pair of color images from the dual-color
camera system.

Input gray image IG
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Figure 3: The insight of cycle colorization consistency.
When doing the colorization twice, i.e. firstly (IG,RC) →
IC and secondly (RG, IC) → R

′

C, the second-time col-
orization result R

′

C should arrive back at RC.

real data from the monochrome-color camera system. How-
ever, the degradation models for synthesizing the data may
deviate from the ones in real imaging systems within the
monochrome and color cameras. Thus, the synthesized data
could hardly simulate the real data perfectly. As a result, the
deep learning methods, which are trained relying on the syn-
thesized data, may have very poor results when colorizing
the real data.

To overcome this limitation, in this paper, we propose a
new convolutional neural network (CNN) model and aim to
directly use the real data from the monochrome-color cam-
era system for training.

Our insight is based on the property of cycle colorization
consistency. As shown in Fig. 3, when we do the coloriza-
tion twice, i.e. firstly colorizing IG using RC as reference
and secondly colorizing the gray map of RC, i.e. RG, using
the obtained first-time colorization result IC as reference,
the second-time colorization result R

′

C should arrive back
at RC.

Based on this insight, we propose a new CNN model,
named Cycle CNN, that can be learned directly using the
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Figure 4: The overall structure of our Cycle CNN model.

real data from the monochrome-color system. In detail, as
shown in Fig. 4, we use the colorization CNN to do the col-
orization twice, i.e. firstly colorizing IG using RC as ref-
erence and secondly colorizing RG using IC as reference.
Our objective have three terms, i.e. structure similarity loss,
cycle consistency loss, and spatial smoothness loss. For the
first-time colorization result IC, we introduce the structure
similarity loss to encourage the structure similarity of the
luminance maps between IG and IC. For the second col-
orization result R

′

C, we introduce the cycle consistency loss
to encourage the similarity of the color maps between RC

and R
′

C. In addition, we introduce the spatial smoothness
loss to encourage the spatial smoothness of the colorization
result. We train the colorization CNN model by combining
all these loses. We also use a refinement CNN to refine IC
with IG as guidance to get the final result I∗C.

Experimental results show that we can outperform related
methods largely for the real data from the monochrome-
color camera system.

Our contributions include 1) the cycle CNN structure
that enables to train the model using real data from the
monochrome-color camera systems, 2) the cycle consistency
loss for the second-time colorization result, 3) the structure
similarity loss for the first-time colorization result, and 4)
the spatial smoothness loss for spatial smoothness of the col-
orization result.

Related Works

The existing colorization tasks can be divided into four
kinds, i.e. automatic colorization, scribble-based coloriza-
tion, reference-based colorization, and monochrome-color
dual-lens colorization.

In automatic colorization, the input is only a single gray
image and the algorithms need to automatically colorize it
without any reference. Recent deep learning based methods,
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e.g. (Zhang, Isola, and Efros 2016) and (Iizuka, Simo-Serra,
and Ishikawa 2016), make great progress to solve this prob-
lem. However, these methods are not proper for our problem
because they fail to make use of the color image from the
color camera, which contains much useful color information
for colorizing the gray image from the monochrome camera.

In the scribble-based colorization task, the input includes
a single gray image and several color scribbles which are
drawn by humans. And the methods, e.g. (Zhang et al. 2017)
and (Levin, Lischinski, and Weiss 2004), use the color scrib-
bles as guidance to propagate the colors to the whole im-
age. These methods are not suitable for our problem because
there exist no scribbles in the monochrome-color camera
system.

In the reference-based colorization task, the input in-
cludes an input gray image and a reference color image.
Different from our problem, the reference image is shot in
different locations and/or at different time and the contents
within the pair of images just share similar semantics. Be-
cause the inputs are different from ours, the methods, e.g.
(Welsh, Ashikhmin, and Mueller 2002; Ironi, Cohen-Or, and
Lischinski 2005; Gupta et al. 2012; Furusawa et al. 2017;
He et al. 2017; 2018; 2019), usually firstly search seman-
tically similar pixels between the images and then prop-
agate the colors of the matching pixels to the whole im-
age. Welsh et al. (Welsh, Ashikhmin, and Mueller 2002)
assume that pixels with the same grayscale intensity will
have the same color, and use the luminance value as the
feature to search for matching pixels. Ironi et al. (Ironi,
Cohen-Or, and Lischinski 2005) use discrete cosine trans-
form coefficients as the feature to search sparse matching
pixels, copy the color of matching pixels for pixels in high
confidence regions and then colorize pixels in low confi-
dence regions by color propagation (Levin, Lischinski, and
Weiss 2004). Gupta et al. (Gupta et al. 2012) extract fea-
tures of superpixels by averaging feature values of all pixels
among each superpixel, search for matching pixels by fea-
ture matching and use space voting for spatial consistency.
Furusawa et al. (Furusawa et al. 2017) propose a reference-
based colorization algorithm for colorizing manga images.
The assumption for manga images are not always correct
for general images. Thus, their results are not always good
enough for solving our problem. He et al. (He et al. 2018;
2019) and Zhang et al. (Zhang et al. 2019) propose deep
learning based algorithms for image and video colorization.
But, they assume the pair of images are visually very differ-
ent but semantically similar. Due to different assumptions
from our problem, they do not consider locality and spatial
smoothness and the proposed loss minimizes the semantic
differences. Due to different loses, their results are not al-
ways faithful to the correct colors.

The monochrome-color dual-lens colorization task can be
seen as a special case of reference-based colorization. Jeon
et al. (Jeon et al. 2016) propose a stereo matching method to
search for best-matching pixels, and correct colors in occlu-
sion regions by applying spatial consistency of neighboring
pixels over the whole image. Dong et al. (Dong et al. 2019)
proposed a deep CNN for solving this problem and could
achieve higher accuracy. However, they rely on synthesized
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ResNetIG
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Figure 5: The structure of our structure similarity CNN
model.

data to train the model. As discussed in the Introduction Sec-
tion, the real data are quite different from the synthesized
data, and their performances on the real data have big de-
crease.

Like sparseness, smoothness, etc., cycle consistency is
also a marvelous and general property and can be utilized
for solving different vision problems, e.g. image translation
(Zhu et al. 2017), visual tracking (Wang, Jabri, and Efros
2019), super resolution (Wang et al. 2019), etc. In this pa-
per, we make use of it for solving the colorization problem
towards real monochrome-color camera systems.

Besides colorization, there exist some other enhancement
problems in the multiple-camera system, like video retarget-
ing (Li et al. 2018), deblur (Zhou et al. 2019), style transfer
(Chen et al. 2018), etc. But, these methods cannot be directly
used for our problem.

The difficulty of collecting ground-truth maps for training
is also met in some other vision problems, e.g. depth estima-
tion (Godard, Aodha, and Brostow 2017), image translation
(Zhu et al. 2017), etc. And supervised learning methods are
not always the most suitable solution. We share similar in-
sights with these methods and propose a self-supervised col-
orization method in this paper.

Method

Overview

Our goal is to learn the colorization CNN model M which
maps any given pair of gray and reference color images
AG and BC to the colorization result AC, i.e. M :
{AG,BC} → AC. The training data are the real data from
monochrome-color camera systems, as shown in Fig. 2.

As shown in Fig. 4, our cycle CNN framework does the
colorization using the colorization CNN M twice. First, we
colorize the input gray image IG using the color image RC

as reference. Second, we colorize the de-colored image of
RC, named RG, using the first-time colorization result IC
as reference. During the second-time colorization, we use
the horizontally flipped maps of RG and IC to input the
colorization CNN M and do the flip for the result again
to get the second-time colorization result R

′

C. It is because
the model M always search colors of pixels in the range of
(j, i) to (j, i + d − 1) in the reference image for each pixel
(j, i) in the input gray image, and the corresponding pixels
in IC locate in the opposite search range, i.e. from (j, i) to
(j, i − d + 1). By doing the flip operations, we can enable
the model M to perform the second-time colorization with-
out changing any model structure. Within the colorization
CNN model, for any given pair of gray and reference color
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Figure 6: The colorization CNN model M that colorize the
given input gray image AG using the input color image BC

as reference to obtain the colorization result AC.

images AG and BC, we follow (Dong et al. 2019) to learn
the 3-D weight volume W between pixels of AG and BC.
And the colorization result AC is obtained by the weighted
average operation between W and BC. In the colorization
CNN model, our objective have three terms, i.e. structure
similarity loss, cycle consistency loss, and spatial smooth-
ness loss. The structure similarity loss is to encourage the
structure similarity of the luminance maps between input
gray image IG and the first-time colorization result IC. The
cycle consistency loss is to encourage the similarity of the
color maps between the reference color image RC and the
second-time colorization result R

′

C. The spatial smoothness
loss is to encourage the spatial smoothness of the coloriza-
tion result.

We also use the refinement CNN to refine the first-time
colorization result IC with IG as guidance to get the final
result I∗C.

Structure similarity loss

We propose the structure similarity loss to measure the struc-
ture similarity between the luminance maps of IC and IG,
i.e. IYC and IYG. Our insight is that if the colorization is per-
fect, not only the color information, i.e. Cb and Cr, should
be correct, but also the luminance maps should have similar
structures. IYG and RY

C have different intensities, due to dif-
ferent luminance, blur, noise, etc., during the imaging pro-
cess of the monochrome and color cameras. So, traditional
loss metrics, e.g. L1 loss, L2 loss, etc, are not effective for
our case.

We propose a CNN model to learn a deep metric to obtain
the structure similarity loss between IYG and IYC. As shown
in Fig. 5, we use two ResNet to extract the features of IYG
and IYC respectively. In addition, motivated by the success
of SSIM (Wang et al. 2004), we also extract the luminance
map l, the contrast map c and the structure map s between
IYG and IYC as the features (please refer to more details in
(Wang et al. 2004)). Then, we feed these five features to a
ResNet to estimate the final structure similarity map SSM ,
and the structure similarity loss is obtained by

Lss = 1− μ(SSM(IG, IC)), (1)
where μ is the average operation.

To train the CNN model, we synthesize a dataset. First,
we use the monochrome-color dual-camera system to shoot
pairs of images in the distant view. Second, we use SIFT
feature and projective transform to register the pairs of im-
age. Among the registered results, we manually select and
crop out the sub-regions where all pixels are perfectly reg-
istered and there exist no occlusions at all. The sub images

ResNet
Concatenate ResNet

IC
Cb/Cr

IC
*Cb/Cr

IG
Y

Figure 7: The refinement CNN model that refines the col-
orization result IC using the input gray image IG as guid-
ance to obtain the final result I∗C.

are named JG and JC. Then, to simulate the structure dis-
tortions between IYC and IYG, we propose to generate several
random warping maps and use these maps to warp JG and
JC. The warped images are named J̇G, J̇C.

The pair of J̇C and JG are used as the input, and the SSIM
quality map (Wang et al. 2004) between J̇G and JG is used
as the ground-truth structure similarity map. We train the
model using L1 loss. The random seeds include randomly
values with sizes of 1 × 1, 2 × 2, 3 × 3, 4 × 4, 5 × 5, and
we interpolate the seeds to the size of JG using Bicubic to
obtain the random warping maps. The mean and variance of
the random values of the seeds are 0 and {1, 5, 10, 20, 40}.
In our colorization CNN model, we use the pre-trained struc-
ture similarity network to generate the structure similarity
loss.

Cycle consistency loss

To encourage the similarity of the color maps between the
reference color image RC and the second-time colorization
result R

′

C, we propose the cycle consistency loss to measure
the differences between RC and R

′

C. We use SSIM as the
metric and we measure both Cb and Cr color channels, i.e.

Lcc = 1− 1

2
(SSIM(RCb

C ,R
′Cb
C ) + SSIM(RCr

C ,R
′Cr
C )),

(2)

Spatial smoothness loss

We introduce the spatial smoothness loss to encourage spa-
tial smoothness of the W volume in the colorization CNN
M so as to obtain spatial smooth colorization result. We as-
sume that neighboring pixels should have similar weights,
so the loss is defined as

Lsmooth =
1

N

∑

(j,i,k)

∑

(j′,i′,k′)∈Ω(j,i,k)

|Wj,i,k −Wj′,i′,k′ |.

(3)
where Ω is the 6-neighboring pixels in the three dimen-

sions.

Full objective

Combining all above losses, the overall objective we aim to
optimize is:

L = λ1Lss + λ2Lcc + λ3Lsmooth, (4)
where λ1, λ2, and λ3 control the relative importance of the
corresponding terms respectively. The values are set as λ1 =
1, λ2 = 1, and λ3 = 0.1 in this paper. With the guidance
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(a) Input gray and color images. (b) Zhang et al. (c) Iizuka et al. (d) Welsh et al. (e) Gupta et al. (f) Furusawa et al. (g) Ours.

Figure 8: Examples to compare the colorization results of the automatic colorization methods of Zhang et al., and Iizuka et al.,
and the reference-based colorization methods of Welsh et al., Gupta et al., Furusawa et al., with ours.

of these losses, we successfully learn the colorization CNN
without the ground-truth color information for training.

Color refinement

The first-time colorization result IC may have errors in oc-
clusion regions. To correct these errors, we use the input
gray image IG as guidance to refine the colorization result.
We follow (Dong et al. 2019) to build the network. As shown
in Fig. 7, the input gray image IG is fed into a ResNet to get
its feature. The extracted feature and IC are concatenated
and then fed into another ResNet to get the residue color
map Φ(IC, IG). By adding IC and Φ(IC, IG), the final col-
orization result I∗C is obtained. To train this model, we use
the second-time colorization results R

′

C as inputs and the
original input color image RC as ground-truth, and we use
L2 loss for training.

Network architecture

We follow (Dong et al. 2019) to build the colorization CNN
model and refinement CNN model. The pipeline is shown in
Figs. 6 and 7. The ResNet has 18 convolution layers in to-
tal. The first residue block is with 5× 5 kernel. The follow-
ing 16 layers are 8 repeated residue blocks and each residue
block consists of 2 convolution layers with 3×3 kernel and a
residue connection. BatchNorm layers and ReLu layers are
added after each convolution layer. The filter number n of
the 18 layers of ResNet is a hyper-parameter, which is set as
16 in this paper. 2) In the refinement module, the ResNets
have similar network structure. The difference is that in the
last layer the filter number is 1 and no BatchNorm layer or
ReLu layer is added.

Experimental Results

Dataset

We use one monochrome camera and one color camera to
shoot 1000 pairs of gray and color images to build the
dataset, named Real Dataset. The monochrome and color
cameras are rectified using the method of (Bradski and
Kaehler 2008). The cameras are the monochrome and color
versions of the same camera, i.e. the MVCAM-SU1000C
camera.

Implementation details

The proposed deep convolutional network is implemented
with TensorFlow. All models are optimized with RMSProp
and a constant learning rate of 0.001. We train with a batch
size of 1 using a 256× 512 randomly located crop from the
input images. The images of the dataset is randomly divided
into the training set, which contains 700 pairs of images,
and the testing set, which contains 300 pairs of images. All
the models are run on a server with an Intel I7 CPU and 4
NVIDIA Titan-X GPUs. The training time is about 15 hours
and the testing time is about 0.4 seconds for 780× 1024 test
images.

Comparison algorithms:

We compare with state-of-the-art reference-based coloriza-
tion algorithms, i.e. Welsh et al. (Welsh, Ashikhmin, and
Mueller 2002), Ironi et al. (Ironi, Cohen-Or, and Lischin-
ski 2005), Gupta et al. (Gupta et al. 2012), Furusawa et al.
(Furusawa et al. 2017), He et al. 2018 (He et al. 2018), and
He et al. 2019 (He et al. 2019), automatic colorization al-
gorithms, i.e. Zhang et al. (Zhang, Isola, and Efros 2016)
and Iizuka et al. (Iizuka, Simo-Serra, and Ishikawa 2016),
and monochrome-color dual-lens colorization algorithms,
i.e. Jeon et al. (Jeon et al. 2016) and Dong et al. (Dong et
al. 2019).

Comparison with other colorization methods on
Real Dataset

The qualitative results are shown in Figs. 8 and 9. As
shown, our method has better results than the compari-
son methods. The automatic colorization methods (Iizuka,
Simo-Serra, and Ishikawa 2016; Zhang, Isola, and Efros
2016) have wrong colors in most regions. It is because the
input in these methods is only one single gray image, and
the reference color image, which could provide much useful
color information during the colorization, is not utilized at
all. Welsh et al.’s method does not have good performance,
because their assumption, i.e. pixels with the same grayscale
intensity will have the same color value, is not true for many
images. Gupta et al.’s method does not perform well, espe-
cially for objects with complicated textures. It is because
the features of each superpixel are obtained by averaging
the feature values of all pixels in the superpixel, which will
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(a) Input gray and color images. (b) Jeon et al. (c) Dong et al. (d) Ironi et al. (e) He et al. 2018. (f) He et al. 2019. (g) Ours.

Figure 9: Examples to compare the colorization results of the monochrome-color dual-lens colorization methods of Jeon et al.,
and Dong et al., and the reference-based colorization methods of Ironi et al., He et al. 2018, He et al. 2019, with ours.

(a) Input gray and color images. (b) No Lcc. (c) No Lsmooth. (d) No Lss. (e) SSIM for Lss. (f) Ours.

Figure 10: Example results in the ablation study.

decrease the accuracy of correspondence searching for our
problem. Furusawa et al.’s result is not good enough because
the method assumes that the images are manga images but
in our problem the images are general images. Ironi et al.’s
method has problems for edges and small objects because
many unoccluded pixels are wrongly marked as occluded
pixels, and thus the colorized pixels of unoccluded pixels
are not enough for color propagation. Jeon et al.’s method
is designed for monochrome-color system, but the hand-
crafted pipelines are not competing with our deep learning
based model. Dong et al. have poor results because they are
trained on synthesized data. Among the synthesized data,
the pixels between the pair of gray and color images always
have the same luminance and the distortions, e.g. blur and
noise, are manually added. On the contrary, in the real data,
the pixels between the pair of gray and color images usu-
ally have different luminance and the distortions are compli-
cated and blind. Due to different characteristics of data in the
synthesized and real datasets, Dong et al. have poor results
for real data. He et al.’s results, including (He et al. 2018;
2019) could not achieve high accuracy. They are designed
under the assumption that the pair of images are visually
very different but semantically similar. Due to different as-
sumptions from our problem, they do not consider locality
and spatial smoothness and their losses minimize the se-
mantic differences. Many pixels in the reference image may
have similar semantics and thus this causes many inconsis-
tent correspondence matches, which will cause wrong col-
orization.

A user study is also performed. There are 30 annotators

(a) Input pair of gray and color images. (b) Our
first-time and second-time results.

Figure 11: Examples of our first-time colorization results
and second-time colorization results.

Table 1: Average SSIM values of the second-time coloriza-
tion results of different methods on the Real Dataset.

Welsh Ironi Gupta Jeon Furusawa He18 Zhang Iizuka Dong He19 Ours
SSIM 0.861 0.892 0.872 0.906 0.841 0.898 0.831 0.851 0.871 0.902 0.954

in total. The annotation choices include five score level, i.e.
‘Perfect’, ‘Few Errors’, ‘Partly Wrong’, ‘Mostly Wrong’,
and ‘Totally Wrong’. The annotators are asked to annotate
every colorization result of the 10 comparing methods and
ours. The whole set of images in the user study are 100
pairs that are randomly selected from our Real Dataset. And
each annotator annotates 1100 colorization results in total.
To avoid outlier annotation, we will let each annotator ran-
domly re-annotate some results and see the annotations as
outlier if the annotation differences are beyond one score
level. The results are shown in Fig. 12. This shows we can
get ‘Perfect’ and ‘Few Errors’ scores in most cases and our
method gets much higher perceptual scores than the others.

Objective evaluation is also performed by evaluating
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Figure 12: User study results.

Table 2: Average SSIM values of the first-time colorization
results and the second-time colorization results of different
methods on the four synthesized datasets. CT, MB, ST, and
SF are short for the datasets of Cityscapes, Middlebury, Sin-
tel, and SceneFlow, respectively

First-time colorization Second-time colorization
CT MB ST SF CT MB ST SF

Welsh 0.897 0.906 0.795 0.813 0.907 0.948 0.819 0.836
Ironi 0.897 0.940 0.918 0.890 0.901 0.947 0.923 0.897

Gupta 0.948 0.896 0.933 0.869 0.951 0.902 0.945 0.883
Jeon 0.953 0.958 0.943 0.927 0.953 0.950 0.959 0.928

Furusawa 0.841 0.860 0.794 0.795 0.842 0.869 0.789 0.797
He18 0.951 0.949 0.948 0.919 0.963 0.952 0.956 0.924
Zhang 0.460 0.746 0.687 0.279 0.435 0.723 0.691 0.294
Iizuka 0.757 0.677 0.852 0.411 0.758 0.681 0.851 0.413
Dong 0.982 0.981 0.983 0.988 0.986 0.984 0.986 0.991
He19 0.952 0.953 0.947 0.921 0.958 0.951 0.953 0.923
Ours 0.983 0.983 0.984 0.989 0.987 0.984 0.988 0.992

the SSIM values between the second-time colorization re-
sults and the input color image. Due to the lack of ground-
truth color information of input gray images, we cannot per-
form objective evaluation for the first-time colorization re-
sults. But, according to the cycle consistency property, the
second-time colorization results can still reflect the coloriza-
tion quality to some extend. So we use all the methods to
do the colorization twice. The results are in Table 1, which
show that we outperform largely than the other methods.

Comparison with other colorization methods on
Synthesized Dataset

Due to the importance of objective evaluation, we perform
our method on the traditional synthesized dataset of (Dong et
al. 2019; Jeon et al. 2016). The datasets include Cityscapes
(Cordts et al. 2016), Middlebury (Scharstein and Pal 2007),
Sintel (Butler et al. 2012), and SceneFlow (Mayer et al.
2016). We use all the comparing methods and ours to do
the colorization twice, and the objective results are shown
in Table 2. As shown, on the four synthesized datasets, we
could still have higher results than all the other methods.
The reason is that, although most of our colorization CNN
and refinement CNN models are similar with (Dong et al.
2019), we add the spatial smoothness loss into the coloriza-
tion CNN model and the cycle colorization structure, i.e.
colorizing twice, actually augments the training data in two
times. We also test the linear correlation coefficients (LCC)
between our first-time colorization results and second-time
colorization results on the four datasets. The results are
shown in Table 3. As shown, they have very high correla-
tion. This verifies our insight of cycle colorization consis-

Table 3: LCC between the SSIM values of our first-time col-
orization results and our second-time colorization results on
the four synthesized datasets.

CT MB ST SF
LCC 0.9884 0.9844 0.9915 0.9917

Table 4: Ablation study. We show average SSIM values of
the second-time colorization results of different variants of
our model on the Real Dataset.

SSIM
No cycle consistency loss 0.8140

No structure similarity loss 0.9192
No spatial smoothness loss 0.9432

SSIM as structure similarity loss 0.9236
Ours 0.9547

tency and provide support that the results in Table 1 could
reflect the colorization quality of different methods.

Ablation study

The ablation study compares a number of different model
variants and justifies our design choices. We wish to eval-
uate the importance of the key ideas in this paper: the cy-
cle consistency loss, the structure similarity loss, the spatial
smoothness loss. So we remove each of these losses and re-
train the model. Table 4 shows the summary performance
of different model variants. Fig. 10 shows some subjective
examples. The results show that any of these variants will
degrade the colorization accuracy. This verifies the contri-
butions of all these losses.

Conclusions

We have presented a novel CNN model for colorization in
real monochrome-color dual-lens system. It can be trained
directly using the real data from monochrome-color camera
systems. The proposed method uses the CNN model to do
the colorization twice. In addition, we introduce the cycle
consistency loss, the structure similarity loss, and the spatial
smoothness loss. Our method achieves superior performance
than the state-of-the-art methods for colorizing real data.
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