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Abstract

In this paper, we propose an online multi-object tracking
(MOT) approach that integrates data association and single
object tracking (SOT) with a unified convolutional network
(ConvNet), named DASOTNet. The intuition behind integrat-
ing data association and SOT is that they can complement
each other. Following Siamese network architecture, DASOT-
Net consists of the shared feature ConvNet, the data associ-
ation branch and the SOT branch. Data association is treated
as a special re-identification task and solved by learning dis-
criminative features for different targets in the data associ-
ation branch. To handle the problem that the computational
cost of SOT grows intolerably as the number of tracked ob-
jects increases, we propose an efficient two-stage tracking
method in the SOT branch, which utilizes the merits of cor-
relation features and can simultaneously track all the existing
targets within one forward propagation. With feature sharing
and the interaction between them, data association branch and
the SOT branch learn to better complement each other. Using
a multi-task objective, the whole network can be trained end-
to-end. Compared with state-of-the-art online MOT methods,
our method is much faster while maintaining a comparable
performance.

Introduction

Online multi-object tracking aims at estimating the loca-
tions of multiple objects in the video sequence and yielding
their individual trajectories in a sequential manner. It has a
wide range of applications in casual video analysis systems
such as video surveillance, robot navigation and autonomous
driving.

Benefiting from the advances in object detection, the
tracking-by-detection paradigm has become popular for
MOT in the past decade. Online MOT Methods based on
this paradigm mainly focus on associating detection results
in each frame provided by a pre-defined object detector with
existing tracks, namely the data association problem. How-
ever, detection results are not always reliable. Due to the
heavy dependency on the performance of the pre-defined ob-
ject detector, these data association based online MOT meth-
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Figure 1: Examples of detection results (left), tracking re-
sults using data association (middle) and tracking results of
single object tracker (right). The top row shows the case of
non-accurate bounding box and the bottom row illustrates
the case of missing detection.

ods inherently fail to track some targets in case of missing
detection or non-accurate bounding box.

To handle this problem, some previous works (Xiang,
Alahi, and Savarese 2015; Chu et al. 2017; Zhu et al. 2018)
have attempted to introduce single object tracking (SOT)
into MOT problem. These works expect to utilize the merits
of single object tracker in tracking target by searching for the
best matched location without the help of object detections.

However, there are some problems with these methods.
First, the data association model and single object tracker
used in existing methods (Xiang, Alahi, and Savarese 2015;
Zhu et al. 2018) are isolated. It makes the whole MOT algo-
rithm complicated and cumbersome. What’s more, separate
training data association model and single object tracker can
not utilize information from each other. Single object tracker
will make redundant efforts in many easy cases (e.g. targets
#1 and #5 in Fig. 1) that can be well handled by data asso-
ciation model. Data association model can not obtain better
samples from tracking results of single object tracker (e.g.
targets #2 and #9 in Fig. 1) for training. In this paper, we
integrate data association and SOT into a unified network,
which consists of the feature ConvNet, the data association
branch and the SOT branch. The two branches can share
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convolutional features from the feature ConvNet. Further-
more, we introduce interaction between the two branches to
better utilize information from each other during network
training. Specifically, we only use targets that are not cor-
rectly associated in the data association branch to train the
SOT branch, which makes the SOT branch focus on deal-
ing with the cases that the data association fails to handle.
Besides, the tracking results obtained from the SOT branch
are treated as supplement to detection results, which are also
used to train the data association branch.

Another problem is that the tracking speed drops dramati-
cally as the number of tracked objects increases, since exist-
ing methods simply apply individual single object tracker for
each tracked target. It greatly limits the practical application
of these methods. To handle this problem, we propose an ef-
ficient two-stage tracking method in the SOT branch, which
can simultaneously track all the existing targets within one
forward propagation. In the first stage, we introduce lo-
cal correlation operation on the feature maps of two input
frames to compute correlation features for all positions in
the feature map and then simultaneously obtain correlation
heatmaps for all existing targets using ROI-Pooling. Trans-
lation of targets across two input frames can be estimated
from these heatmaps. To account for changes in object scale
and aspect ratio, the estimated positions of targets are then
refined using conventional bounding box regression in the
second stage.

To sum up, the contributions of this work are as follows:
First, we set up a unified network for integrating data

association and single object tracking, called DASOTNet,
which can be trained end-to-end. With the feature sharing
and interaction between them, data association and SOT
learn to better complement each other.

Second, we propose an efficient two-stage tracking
method in the SOT branch of DASOTNet, which can simul-
taneously track all the existing targets within one forward
propagation.

With the proposed DASOTNet, we build an online MOT
approach that integrates data association and SOT. Evalua-
tions on challenging MOT16 and MOT17 (Milan et al. 2016)
benchmarks demonstrate the effectiveness of the proposed
online MOT algorithm.

Related Work

Multi-object Tracking. With the development of object de-
tection methods (Felzenszwalb et al. 2010; Girshick 2015),
the tracking-by-detection paradigm has become popular for
MOT. Methods (Huang, Wu, and Nevatia 2008; Pirsiavash,
Ramanan, and Fowlkes 2011; Milan, Roth, and Schindler
2014; Bae and Yoon 2014) based on this paradigm treat
the MOT task as a data association problem and generate
trajectories of objects by linking detections across consecu-
tive frames. Data association based MOT methods take ad-
vantages of information from multiple detections and tar-
gets simultaneously, which can usually obtain better re-
sults compared to tracking each target individually. How-
ever, the performance of pre-defined object detector is in-
evitably imperfect. Illumination fluctuation, pose variation

and occlusion in crowded scenes may cause unreliable de-
tections, such as false positive, missing detection, and non-
accurate bounding box. Most works use detections from
both past and future frames to handle noisy detections in
batch mode. They consider MOT as a global optimiza-
tion problem in various forms such as network flow (Pir-
siavash, Ramanan, and Fowlkes 2011; Zhang, Li, and Neva-
tia 2008), continuous energy minimization (Milan, Roth,
and Schindler 2014), k-partite graph (Dehghan, Modiri As-
sari, and Shah 2015), subgraph multi-cut (Tang et al. 2015)
and so on. However, methods in batch mode are not suit-
able for causal applications. On the contrary, data asso-
ciation based online MOT methods (Bae and Yoon 2014;
Hong Yoon et al. 2016) link detections to existing targets
sequentially, which can only use the information up to the
current frame. As a consequence, they can not handle unre-
liable detections well.

In recent years, single object trackers have been intro-
duced in online MOT task to alleviate the dependency on
the quality of detections. For example, Xiang, Alahi, and
Savarese apply a simple single object tracker to keep track-
ing each target individually and resort to data association
when the tracking results becomes unreliable. Using a simi-
lar pipeline, Zhu et al. adopt a more complicated single ob-
ject tracker and design a dual matching attention network
for data association. Chu et al. design a deep ConvNet to
utilize single object tracker throughout the whole tracking
process and focus on handling tracking drifts problem with
spatial-temporal attention mechanism. However, the data as-
sociation and single object tracker used in these works are
isolated, which can not take full use of the relation between
them. Besides, since these methods apply individual single
object tracker for each target, they all suffer from the prob-
lem that the computational cost grows dramatically as the
number of tracked targets increases. In this paper, we pro-
pose an online MOT algorithm with a neat network that in-
tegrates data association and SOT into a unified framework.
With the help of feature sharing and interaction between data
association and SOT, they learn to better complement each
other. To handle the computation complicity problem when
applying SOT to MOT, we propose an efficient two-stage
SOT method that can track all the existing targets simulta-
neously.
Correlation Features. The idea of using local correlation
operation on features of two images is originally proposed
by Dosovitskiy et al. for estimating optical flow and adopted
in other video tasks recently, e.g. video semantic segmenta-
tion (Zhu et al. 2017b) and video object detection (Zhu et
al. 2017a; Feichtenhofer, Pinz, and Zisserman 2017). The
work in D&T (Feichtenhofer, Pinz, and Zisserman 2017) is
mostly related to our tracking method in the SOT branch,
which also uses correlation features to track objects across
frames. However, the manner of utilizing correlation fea-
tures in our work is quite different from D&T. Correlation
features are directly used to regress the target bounding box
across frames in D&T, which is a relatively hard problem.
While our SOT branch divides this problem into two sub-
problems and adopts a two-stage method to handle them.
First, we use correlation features to obtain the coarse trans-
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Figure 2: The overall architecture of the proposed DASOT-
Net. It consists of three modules: feature ConvNet, data as-
sociation branch and single object tracking branch. These
two branches interact with each other during joint training.

lation of the target across frames, which is simpler and more
in line with the nature of correlation features. Then we re-
fine the target bounding box using image features by bound-
ing box regression to account for imprecise translation es-
timation and changes in scale and aspect ratio, which can
not be handled by correlation features well. Besides, D&T
focus on improving the performance of video object detec-
tion aided by tracking, while we aim at solving online multi-
object tracking task.

DASOTNet

The overall architecture of the proposed network is illus-
trated in Fig. 2. Given a set of two input images It1 , It2 ∈
R

H×W×3 at frame t1 and t2, our network first pushes them
through a feature ConvNet to compute convolutional fea-
ture maps Ft1 ,Ft2 ∈ R

H′×W ′×C that are shared by tasks
of data association and SOT. On top of the shared feature
maps, two branches are built for tasks of data association and
SOT respectively. We introduce interaction between these
two branches during joint training. The whole network can
be trained end-to-end.

Feature ConvNet

The feature ConvNet used in our work has a similar archi-
tecture to FPN (Lin et al. 2017a). Specifically, we use the
truncated ResNet-50 network (He et al. 2016) pre-trained on
the ImageNet classification task (Deng et al. 2009) as the
backbone network and build the top-down pathway with the
outputs of the last three residual blocks. We take the merged
feature map of conv3 as the output of the feature ConvNet
that has the stride of 8 with respect to the input images.

Data Association Branch

In this work, we consider data association in online MOT
as a special re-identification task and solve it by learning
discriminative features for representing different targets in
the data association branch. Fig. 3 shows the details of the
data association branch. Specifically, given the correspond-
ing regions of interest (RoIs) of two input frames, denoted as
Rt1 = {bt1i }Nt1

i=1 and Rt2 = {bt2i }Nt2

i=1 respectively, where
b = (bx, by, bw, bh) specifies the coordinates of the center

of the bounding box and its width and height in pixels, we
apply position-sensitive ROI pooling (PSROI-Pooling (Dai
et al. 2016)) for each frame to aggregate position-sensitive
feature maps, produced from an additional convolutional
layer that operates on the output of the shared feature Con-
vNet. The layer outputs a bank of k2D position-sensitive
feature maps corresponding to a k × k spatial grid of which
each point represents a D-dimensional feature vector at rel-
ative positions to be used in the PSROI-Pooling operation.
PSROI-Pooled features of each RoI are then global average
pooled and L2-normalized to obtain the final feature repre-
sentation f(b) ∈ R

D for each RoI. After that, we calculate
the similarity matrix S ∈ R

Nt1×Nt2 among RoIs of two
frames as:

S = [sij ]Nt1×Nt2 , sij = 〈f(bt1i ),f(bt2j )〉, (1)

where 〈·, ·〉 stands for inner-product of two vectors. Since the
feature we used is L2-normalized, it is equal to the cosine
similarity.

We aim at learning discriminative features for represent-
ing different targets such that the cosine similarity is high
for the same target while low for different targets, which can
be treated as a binary classification problem. We scale the
cosine similarity sij with bias to obtain the corresponding
classification score s′ij as:

s′ij =
{
a1(sij − b), sij − b ≥ 0

a2(sij − b), sij − b < 0,
(2)

where a1, a2 and b are pre-defined parameters. We set a1 =
10, a2 = 4, b = 0.7 in our experiments.

Let yij ∈ {0, 1} and pij = 1/(1+ exp(−s′ij)) ∈ [0, 1] be
the ground-truth label and the estimated probability for the
class with label 1, respectively. We design a variant of focal
loss (Lin et al. 2017b):

LDA(S) = −
Nt1∑
i

Nt2∑
j

wij log(p
′
ij)

wij =
exp(β(1− p′ij))∑Nt1

m

∑Nt2

n exp(β(1− p′mn))

p′ij =
{
1− pij , yij = 0

pij , otherwise,

(3)

where β ≥ 0 is a hyper-parameter that adjusts the relative
importance of different samples (we set β = 5 in our exper-
iments).

Single Object Tracking Branch

Directly applying existing single object trackers to MOT
task needs to consecutively add new trackers into the sys-
tem as new targets appear, which causes the tracking speed
to slow down intolerably as the number of tracked targets
increases. To handle this problem, we propose an efficient
tracking method, containing two stages: correlation track-
ing and position refinement, in the SOT branch, which can
simultaneously track all the existing targets within one for-
ward propagation of the network. Fig. 4 shows the details of
the SOT branch.
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Figure 4: The details of the single object tracking branch.

Correlation Tracking. At the first stage, we first com-
pute correlation feature maps Xt1,t2

corr
1 for all positions be-

tween the feature maps Xt1 ,Xt2 ∈ R
H′×W ′×C′

of two in-
put frames, produced by an extra convolutional layer with
the output L2-normalized along the channel dimension. This
layer operates on the output of the shared feature ConvNet.
It’s cumbersome and unnecessary to take all possible circu-
lar shifts in the feature map into consideration, since dis-
placements of the same targets across two adjacent frames
is limited. Therefore, we only conduct the correlation op-
eration in a local square neighbourhood with the maximum
displacement d as:

Xcorr(i, j, p, q) = 〈Xt1(i, j),Xt2(i+ p, j + q)〉, (4)

where p, q ∈ [−d, d] are offsets around the location (i, j) in
the feature map. Thus the correlation feature map Xcorr is
of size H ′×W ′×(2d+1)×(2d+1), which is then reshaped
to the size of H ′ × W ′ × (2d + 1)2. Note that the correla-
tion operation is conducted on two L2-normalized feature
maps in our work, the feature vector at the location (i, j) in
the correlation feature map Xcorr actually encodes the co-
sine similarity between the feature at the location (i, j) in
Xt1 and the feature at each location of a local neighborhood
around location (i, j) in Xt2 .

We then adopt ROI-Pooling with RoIs Rt1 on the corre-
lation feature map to simultaneously obtain the ROI-Pooled
correlation feature map xi ∈ R

k×k×(2d+1)2 for each RoI
bt1i in the frame t1. The ROI-Pooled correlation feature map
xi is then spatial global average pooled and reshaped to a
heatmap Hi ∈ R

(2d+1)×(2d+1). The displacement of RoI
bt1i from frame t1 to frame t2 can be estimated by the lo-
cation of the maximum in the heatmap Hi. Learning the
heatmap is formulated as a binary classification problem.

1Hereafter we ignore the superscript t1, t2 unless it is needed.

For each heatmap Hi, there is only one positive location
with label 1 in its ground-truth heatmap H∗

i , and all other
locations are negative. During training, we treat locations
within a local neighborhood of the ground-truth positive lo-
cation as also positive, but with soft labels. The range of
the local neighborhood is determined based on the size of
the RoI by ensuring that the bounding box with the dis-
placement within the neighborhood would have at least 0.7
IoU (intersection over union) with the ground-truth bound-
ing box. We then assign soft labels to the locations within
the local neighborhood by an unnormalized 2D Gaussian,
exp(− 1

2 (
x2

σ2
x
+ y2

σ2
y
)), with the center at the ground-truth lo-

cation. σx and σy are set to 1/6 of the horizontal and ver-
tical range of the local neighborhood respectively. During
training, similar problems are also encountered as training
the similarity matrix in the data association branch (Sec. ).
Similarly, we scale the heatmap with bias to obtain the cor-
responding classification score by applying Eq. 2 to the
heatmap and use a variant of focal loss with the augmented
ground-truth heatmap:

LCT (H) = − 1

Z

2d+1∑
i

2d+1∑
j

w′
ij log(p

′
ij)

w′
ij =

{
exp(β(1− p′ij)), yij = 0

yαij exp(β(1− p′ij)), otherwise,

(5)

where Z =
∑2d+1

i

∑2d+1
j w′

ij and α is the hyper-parameter
which controls the contribution of each point within the local
neighborhood (we set α = 2 in our experiments).

Position Refinement. Based on the displacement esti-
mated from the heatmap Hi, we can obtain the pre-
dicted position of RoI bt1i in frame t2, denoted as b̂i =

(b̂i,x, b̂i,y, b̂i,w, b̂i,h). However, the predicted position b̂i
may be inaccurate in two aspects. First, the estimated dis-
placement is relatively coarse compared to the input image,
since the heatmap is obtained from the feature maps with the
stride of 8. When we re-map the heatmap to the input image,
some precision may be lost. Besides, the predicted position
does not account for changes in object scale and aspect ratio.

To handle these problems, we resort to bounding box re-
gression for position refinement. Specifically, an extra con-
volutional layer is added to the output of the feature Con-
vNet, which produces a bank of 4k2 position-sensitive re-
gression feature maps. Given the predicted position b̂i of
RoI bt1i , a PSROI-Pooling operation is performed on these
regression feature maps to predict the transformation Δi =

(Δi,x,Δi,y,Δi,w,Δi,h) that maps the predicted position b̂i
to the ground-truth box b∗i . b∗i = (b∗x, b

∗
y, b

∗
w, b

∗
h) is assigned

to the ground-truth box of the RoI at frame t2 that has the
same target ID as RoI bt1

i .
Following (Girshick 2015), we use the smooth L1 loss to

train the transformation as:
LREG(Δ) =

∑
j∈{x,y,w,h}

smoothL1
(Δ∗

j −Δj)

smoothL1
(x) =

{
0.5x2, |x| < 1

|x| − 0.5, otherwise,

(6)
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where Δ∗ = (Δ∗
x,Δ

∗
y,Δ

∗
w,Δ

∗
h) are the ground-truth re-

gression targets defined as:

Δ∗
x = (b∗x − b̂x)/b̂w Δ∗

y = (b∗y − b̂y)/b̂h

Δ∗
w = log(b∗w/b̂w) Δ∗

h = log(b∗h/b̂h),
(7)

During online tracking process, the SOT result b̃ is obtained
by applying the inverse operation of Eq. 7 to the predicted
position b̂ with the transformation Δ.

Joint Training

To make full use of the relation between data association
and SOT, we introduce interaction between the two branches
during network training. Specifically, we take two frames
It1 , It2 within the frame gap T0 as inputs. RoIs for frame t1
are sampled to ensure each of them has at least 0.5 IoU with
one of the ground-truth bounding boxes at frame t1, which
are used to simulate the targets at frame t1. RoIs for frame t2
are detection results at frame t2. The target ID of each RoI is
assigned by the label of the ground-truth box with the max-
imum IoU. We first evaluate the data association result be-
tween targets at frame t1 and detections at frame t2 and push
the RoIs of remaining targets that are not correctly associ-
ated into the SOT branch. The outputs of the SOT branch,
i.e. the SOT results of these remaining targets, are then used
as supplement to detections at frame t2 for training data as-
sociation branch.

To jointly learn the data association branch and the SOT
branch, we use a multi-task loss that consists of LDA in the
data association branch, LCT for correlation tracking and
LREG for position refinement in the SOT branch. Our net-
work will predict a cosine similarity matrix S, N heatmaps
{Hi}Ni=1 and N transformations {Δi}Ni=1. The overall loss
function is defined as:

L = LDA(S) + λ1
1

Ntra

N∑
i

Ii LCT (Hi)

+ λ2
1

Nfg

N∑
i

ci LREG(Δi),

(8)

where λ1, λ2 are hyper-parameters that control the balance
among the three losses (we set λ1 = λ2 = 1 in our exper-
iments). Ii is a indicator value for RoI bt1

i . Ii = 1 if there
exists target at frame t2 that has the same target ID as the RoI
bt1
i , otherwise, Ii = 0. ci is also a indicator value for RoI

bt1
i , which indicates that whether the predicted position b̂i

obtained from the heatmap Hi of RoI bt1
i belongs to fore-

ground. ci = 0 when Ii = 0 or the IoU overlap between
the predicted position b̂i and its corresponding ground-truth
box b∗

i is less than 0.5. Otherwise, ci = 1. Ntra =
∑N

i Ii
and Nfg =

∑N
i ci.

Online MOT Algorithm With DASOTNet

Overview

Based on the off-line trained DASOTNet, we propose an
online MOT algorithm that integrates the data association

and SOT into a unified framework. Given detections in each
frame, we first compute the similarity between existing tar-
gets and detections and perform data association using Hun-
garian algorithm (Munkres 1957). For the remaining tar-
gets that are not associated due to missing detection or
non-accurate bounding box, the corresponding single object
tracking results are used as their positions.

Specifically, at each frame t, the inputs to the feature Con-
vNet are two images It−1, It at frame t − 1 and frame t.
The RoIs for these two frames are bounding boxes of all ex-
isting targets at frame t − 1 and all detections at frame t,
respectively. Thus, we can obtain the SOT results of all the
existing targets at frame t − 1 and the features of all detec-
tions at current frame t with one forward propagation of our
DASOTNet. We then compute the affinity matrix A between
targets (including all the existing targets in frame t − 1 and
untracked targets in history frames) and detections in terms
of appearance and motion:

A = [aij ], aij = aappij amot
ij , aappij =< F̄(Oi),f(b

D
j ) >

amot
ij = exp

⎛
⎝−1

2

⎛
⎝( b̄i,x−bDj,x

bDj,w

)2

+

(
b̄i,y−bDj,y

bDj,h

)2
⎞
⎠
⎞
⎠ ,

(9)

where aappij and amot
ij indicate appearance and motion affin-

ity between target Oi and detection Dj , respectively. F̄(O)
represents the feature of target, which is the average of
historical features of the target. b̄ = (b̄x, b̄y, b̄w, b̄h) and
bD = (bDx , b

D
y , b

D
w , b

D
h ) denote the position of the target pre-

dicted by a simple motion model using Kalman filter and
the bounding box of detection, respectively. The Hungarian
algorithm is applied to the affinity matrix A with a thresh-
old τa for the minimum affinity. After that, we evaluate the
similarity of each un-associated target at frame t− 1 and its
corresponding SOT result b̃. The SOT result b̃ will be used
as the position of the target if the similarity is higher than τs.
Otherwise, the target is considered as untracked at frame t.

Target Management

For target initialization, we set a threshold τd and only de-
tections with the detection score over τd are used. For target
termination, we stop tracking the target if it is not associ-
ated with any detection over τt successive frames or exits
the field of view. Besides, to alleviate the influence of false
positive detections, we also terminate the target if it is not
associated with any detection in any of the first τi frames
since the target is initialized.

Experiments

Datasets. We evaluate our online MOT algorithm on
MOT16 and MOT17 benchmark datasets. MOT16 dataset
collects 14 (7 for training, 7 for test) video sequences in
unconstrained environments and provides public object de-
tections (DPM (Felzenszwalb et al. 2010)). MOT17 con-
tains the same sequences as MOT16 with more accurate
ground truth, in which each sequence is provided with 3
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Table 1: The performance on validation set. DA and SOT
respectively stand for only using data association and sin-
gle object tracking. DA+SOT means a combination of sep-
arately trained data association and single object tracking
during online tracking. DASOT is the proposed method.

Method MOTA↑ IDF1↑ MT↑ ML↓ IDS↓ FPS↑
DA 29.6% 37.4% 27 120 427 11.8
SOT 24.4% 25.7% 18 133 1539 10.1

DA+SOT 31.5% 39.4% 32 113 402 6.7
DASOT 35.7% 42.3% 34 110 251 9.4

sets of detections (DPM (Felzenszwalb et al. 2010), Faster-
RCNN (Ren et al. 2015) and SDP (Yang, Choi, and Lin
2016)) for more comprehensive evaluation. The ground truth
annotations of training sequences are released. We split
training sequences in MOT16 dataset into training set and
validation set. The two sets have roughly the same num-
ber of frames. We then conduct alation studies on validation
set with the DASOTNet trained using split training set. The
ground truth annotations of test sequences in these datasets
are not released and the tracking results are automatically
evaluated by the benchmark. So we use the test sequences
with the DASOTNet trained using all the training sequences
for comparison with various state-of-the-art MOT methods.
Evaluation Metrics. We use the metrics suggested in
MOT16 (Milan et al. 2016) benchmark for evalua-
tion, which includes Multiple Object Tracking Accuracy
(MOTA) (Bernardin and Stiefelhagen 2008) that combines
False Positives (FP), False Negatives (FN) and the Identity
Switches (IDS), ID F1 score (Ristani et al. 2016) (IDF1, the
ratio of correctly identified detections over the average num-
ber of ground truth and computed detections), the ratio of
Mostly Tracked targets (MT) and the ratio of Mostly Lost
targets (ML).
Implementation Details. The proposed algorithm is imple-
mented using python with Caffe (Jia et al. 2014). All extra
convolutional layers added to the output of feature ConvNet
have the same kernel size of 1×1 and the parameters in these
layers are Gaussian randomly initialized with std = 0.01. k
for PSROI-Pooling is set to 7. The dimension of feature for
data association D and the channels of feature map used in
correlation tracking C ′ are set to 40. The thresholds τa and
τs are set to 0.6 and 0.7 respectively. The thresholds τt and
τi in target management are set to 30 and 3 respectively. The
detection score threshold τd for target initialization is set to
0.25, 0.5 and 0.4 for detections from (Felzenszwalb et al.
2010), (Ren et al. 2015) and (Yang, Choi, and Lin 2016),
respectively. The frame gap T0 is set to 10. The maximum
displacement d for correlation tracking is set to 25 for train-
ing and 10 for testing. For off-line training DASOTNet, we
use the SGD optimizer with momentum 0.9, weight decay
5 × 10−4 and learning rate initialized at 10−3 and dropped
to 10−4 after 20k iterations for split training set and 40k it-
erations for all training sequences.

Performance Analysis

The Impact of Integration. As shown in Table 1, the
combination of data association and SOT can improve track-

Table 2: Tracking speed (FPS) and the average number of
tracked targets per frame in some sequences of MOT16 test
set. Experiments are conducted on a 2.6 GHz CPU and a
TITAN Xp.

Seq MOT16-12 MOT16-14 MOT16-07 MOT16-03
FPS 9.0 8.9 8.5 7.6
Num 9.2 24.6 32.6 69.7

ing performance compared to using one of them separately,
which demonstrates that data association and SOT can com-
plement each other. Besides, with the help of feature shar-
ing and interaction between data association and SOT joint
training, our method achieves better performance and less
computation cost (save 45% memory and speed up 40%)
compared to combination of separately trained data associ-
ation and SOT during online tracking, which demonstrates
the effectiveness of the proposed DASOTNet.

The Impact of Two-Stage SOT Method. We also con-
duct several experiments to demonstrate the contribution of
the proposed two-stage tracking method in the SOT branch.
First, we disable the SOT module and only use the data as-
sociation module to track targets, which is the baseline al-
gorithm. We set the state of the target as lost and leave the
position of the target at frame t as empty if it is not asso-
ciated with any detections at frame t in the baseline algo-
rithm. Denote l as the maximum number of frames allowed
for SOT module adding the SOT results. In other words, if
a target is not associated in data association from frame t
to frame t + L (L ≥ l), the SOT results of the target from
frame t+ l to frame t+L can not be added as the position of
the target. We then gradually add SOT results with different
tracking methods via increasing l to compare their impacts
on the performance in terms of MOTA. The experimental
results are shown in Fig. 5. We can see that our two-stage
tracking method performs best compared to D&T (Feicht-
enhofer, Pinz, and Zisserman 2017) and a simple method
based on Kalman Filter. Note that the performance of MOTA
is persistently improved as l increases using our method,
which demonstrates that our method can better utilize cor-
relation features than D&T (Feichtenhofer, Pinz, and Zisser-
man 2017) and is more suitable for MOT.

Table 2 shows the tracking speed of the proposed method
and the average number of tracked targets per frame in some
sequences of MOT16 test set. As shown in the table, the
number of tracked targets has little effect on the tracking
speed of our method, which demonstrates the efficiency of
the proposed two-stage SOT method.

Evaluation on MOT Benchmarks

We evaluate our algorithm, denoted by DASOT, on the test
sequences of MOT16 and MOT17 benchmarks against sev-
eral state-of-the-art online MOT methods. All the compared
methods and ours use the same public detections provided
by the benchmark. For fair comparison, we do NOT use the
bounding box regression to modify the original public de-
tection, although it can improve performance. In all the ex-
periments, the bounding box regression is only used in the
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Table 3: Quantitative results of our method (denoted by DASOT) and several state-of-the-art online MOT trackers on MOT16
and MOT17 test sequences. Values in bold highlight the best results. The arrows indicate low or high optimal metric values.

Dataset Method MOTA↑ MT↑ ML↓ FP↓ FN↓ IDS↓ IDF1↑ FPS↑

MOT16

CDA DDAL (Bae and Yoon 2017) 43.9% 10.7% 44.4% 6450 95175 676 45.1% 0.5
DCCRF (Zhou et al. 2018) 44.8% 14.1% 42.3% 5613 94133 968 39.7% 0.1

RAR (Fang et al. 2018) 45.9% 13.2% 41.9% 6871 91173 648 48.8% 0.9
STAM(Chu et al. 2017) 46.0% 14.6% 43.6% 6895 91117 473 50.0% 0.2

DMAN (Zhu et al. 2018) 46.1% 17.4% 42.7% 7909 89874 532 54.8% 0.3
AMIR (Sadeghian, Alahi, and Savarese 2017) 47.2% 14.0% 41.6% 2681 92856 774 46.3% 1.0

DASOT (ours) 46.1% 14.6% 41.6% 8222 89204 802 49.4% 9.0

MOT17

GMPHD KCF (Kutschbach et al. 2017) 39.6% 8.8% 43.3% 50903 284228 5811 36.6% 3.3
SAS (Maksai and Fua 2019) 44.2% 16.1% 44.3% 29473 283611 1529 57.2% 4.8

DMAN (Zhu et al. 2018) 48.2% 19.3% 38.3% 26218 263608 2194 55.7% 0.3
HAM SADF (Yoon et al. 2018) 48.3% 17.1% 41.7% 20967 269038 1871 51.1% 5.0

DASOT (ours) 48.0% 19.9% 34.9% 38830 250533 3909 51.3% 9.1

l

(11,33.7)

(10,34.0)

(30,35.7)

Figure 5: The performance curve of different single object
tracking methods in terms of MOTA.

single object tracking branch.
Table 3 presents the quantitative comparison results.

Overall, our algorithm DASOT achieves a comparable
MOTA score with the state-of-the-art online methods on
both benchmarks with a much faster tracking speed. Since
our algorithm uses single object tracking result as the posi-
tion of the target that is not associated by data association,
it will introduce more FP error. On the contrary, the number
of FN, MT and ML will be reduced. As expected, DASOT
performs best in terms of ML and FN on both benchmarks
and achieves the best performance in MT metric on MOT17
benchmark. In terms of IDS and IDF1, our method performs
worse than state-of-the-art online methods (Chu et al. 2017;
Zhu et al. 2018), mainly due to that we do not specially de-
sign the attention mechanism for handling occlusion as these
methods.

To better illustrate the effectiveness of the proposed al-
gorithm, we visualize the relation between tracking perfor-
mance (MOTA) and tracking speed (FPS) of our algorithm
and several state-of-the-art online MOT methods. As shown
in Fig. 6, our algorithm strikes a better balance between ac-
curacy and speed compared to other online MOT methods.

Conclusion

In this work, we integrate data association and single object
tracking into a unified network DASOTNet, which can be
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Figure 6: Tracking performance (MOTA) and tracking speed
(FPS) of the proposed method and other state-of-the-art on-
line MOT methods on MOT16 and MOT17 datasets. Each
marker indicates a tracker. Higher and more right is better.

trained end-to-end. With the help of feature sharing and in-
teraction between data association and single object track-
ing, they learn to better complement each other. To han-
dle the tracking speed problem when applying single object
tracking to MOT, we design an efficient two-stage tracking
method, which utilizes the merits of correlation features and
can simultaneously track all the existing targets in one for-
ward propagation. With the offline trained DASOTNet, we
build an online MOT algorithm and demonstrate its effec-
tiveness on public MOT benchmarks.
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