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Abstract

Existing co-localization techniques significantly lose perfor-
mance over weakly or fully supervised methods in accu-
racy and inference time. In this paper, we overcome com-
mon drawbacks of co-localization techniques by utilizing
self-supervised learning approach. The major technical con-
tributions of the proposed method are two-fold. 1) We de-
vise a new geometric transformation, namely point symmet-
ric transformation and utilize its parameters as an artificial la-
bel for self-supervised learning. This new transformation can
also play the role of region-drop based regularization. 2) We
suggest a heat map extraction method for computing the heat
map from the network trained by self-supervision, namely
class-agnostic activation mapping. It is done by computing
the spatial attention map. Based on extensive evaluations, we
observe that the proposed method records new state-of-the-
art performance in three fine-grained datasets for unsuper-
vised object localization. Moreover, we show that the idea
of the proposed method can be adopted in a modified manner
to solve the weakly supervised object localization task. As a
result, we outperform the current state-of-the-art technique in
weakly supervised object localization by a significant gap.

1 Introduction

Object localization and detection aim to identify and locate
the object of interest within an image. Recently, deep convo-
lutional neural networks (CNNs) trained with the large scale
annotated datasets achieve remarkable performance in ob-
ject localization and detection task (Redmon et al. 2016; Liu
et al. 2016). These models adopt fully supervised learning,
thus require pixel-level annotations such as bounding box or
segmentation mask. Unfortunately, pixel-level annotations
are quite expensive and time-consuming to acquire, thereby
often unavailable in practice. To relax the need for pixel-
level annotations, several recent works (Zhou et al. 2016;
Zhang et al. 2018; Choe and Shim 2019) have developed
weakly supervised object localization (WSOL) techniques,
which only utilize image-level labels.

Moving toward much weaker supervision, several recent
studies suggest solving a co-localization problem, which
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Figure 1: Demonstrating our point symmetric transforma-
tion (PST). Left: original input image, middle: result of ap-
plying large translation (i.e. the half of image resolution) to
the direction A as depicted in Figure 3 with zero padding,
right: result of PST (i.e. applying large translation with re-
flection padding).

only has an image collection of a single class object without
any assumptions. Existing co-localization techniques extract
hand-crafted features or learned features, obtain many object
proposals from the features, and then refine them for local-
ization (Tang et al. 2014; Joulin, Tang, and Fei-Fei 2014;
Wei et al. 2019). However, these techniques commonly
have significant drawbacks in accuracy compared to fully or
weakly supervised techniques. Also, they are computation-
ally very expensive because of generating region proposals.

In this paper, we focus on tackling unsupervised object lo-
calization through co-localization. The goal of our method is
1) to improve the co-localization accuracy and 2) to achieve
the computational efficiency for real-time performance. To
this end, we utilize the CNN classifier trained with self-
supervised learning approach. The proposed technique is
inspired by the fact that existing WSOL techniques sig-
nificantly improve the localization accuracy and inference
speed by analyzing the discriminative features extracted
from CNN classifiers. As a natural extension, we follow the
design principle of Class Activation Mapping (CAM) (Zhou
et al. 2016), one of the pioneer WSOL techniques, which
mines and tracks the interesting object from the feature of in-
put images. Whereas WSOL techniques utilize image-level
labels to train the CNN classifier, our method uses no prior
knowledge (e.g. labels) to train the CNN. Instead, we em-
ploy the self-supervised learning paradigm, one of the most
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Figure 2: Effects of point symmetric transformation under various settings. The leftmost is the original input image. Each image
from the second-left to the rightmost is the results of applying PST as shown in Figure 1, where translation parameter tx(= ty)
varies from 1.0 to 3.0, respectively.

powerful training schemes in unsupervised learning.
The key idea of self-supervised learning is to gener-

ate artificial labels of data for providing surrogate supervi-
sion. Therefore, the network model learns to extract mean-
ingful representations for predicting those labels. Among
various self-supervised techniques, our method is particu-
larly motivated by (Gidaris, Singh, and Komodakis 2018;
Zhang et al. 2019a) because of its impressive performance
in a classification task. Similar to RotNet (Gidaris, Singh,
and Komodakis 2018) but specialized for localization prob-
lem, we devise a new geometric transformation, namely
point symmetric transformation (PST), and train the net-
work model for predicting artificial labels (i.e. parameters
of the geometric transformation). We highlight that PST is
designed to implicitly perform the regional dropout by eras-
ing the large portions of objects during transformation. Be-
cause the regional dropout is a well-known technique for
improving the localization, our PST is a particularly effec-
tive transformation for self-supervising the localization task.
Afterward, similar to CAM, we track the features that con-
tribute the most for the prediction and localize their regions
in the image. However, because co-localization does not in-
volve to predict class labels, unlike CAM, we cannot track
the class activations. Instead, we extract class-agnostic ac-
tivations by aggregating the contributions from all parame-
ters for generating the heat map. We call this method class-
agnostic activation mapping (CAAM), and it is simply done
by computing the spatial attention of feature map. By com-
bining self-supervised learning approach and CAAM, we
construct PsyNet, a novel and effective solution for unsu-
pervised object localization. Moreover, the proposed model
with a simple modification can be adopted to WSOL prob-
lem and also substantially improves the accuracy. The major
contributions of this study are summarized as follows.

• On three benchmarks, we achieve substantial improve-
ments over existing state-of-the-arts in unsupervised ob-
ject localization. More surprisingly, PsyNet outperforms
the state-of-the-art weakly supervised techniques, in
terms of the GT-known localization accuracy.

• To the best of our knowledge, we are the first to intro-
duce self-supervised learning approach in the problem of
unsupervised object localization. Beyond simple adapta-
tion, we introduce PST, a transformation for addressing
the common issue in object localization.

• We show that our CAAM is effective to generate heat map
from the CNN trained with self-supervised learning.

• PsyNet with a simple modification is also an effective so-
lution for weakly supervised object localization. As a re-
sult, we achieve the new state-of-the-art performance in
weakly supervised object localization.

The source code for this work is available at https://github.
com/FriedRonaldo/PsyNet.

2 Related Work

2.1 Self-supervised Learning

Self-supervised representation learning is one of the most
powerful training schemes in unsupervised learning. These
self-supervised learning methods usually utilize artificial la-
bels, which can be easily generated from the data. Then,
meaningful feature representations are learned while the net-
work is trained with artificial labels. For example, in (Doso-
vitskiy et al. 2014), various transformations are applied to
each image, and convolutional neural networks (CNNs) are
trained to classify the label of transformed images. (Doer-
sch, Gupta, and Efros 2015) predict the relative position of
two randomly given patches in an image. Other than that,
several studies train CNNs to solve Jigsaw puzzles (Noroozi
and Favaro 2016) or to colorize gray-scale image (Larsson,
Maire, and Shakhnarovich 2016).

Recently, (Gidaris, Singh, and Komodakis 2018) propose
to train CNNs by identifying the rotational transformation
applied to the input images. Interestingly, with this simple
transformation, they reported an impressive performance on
an image classification task. We are motivated by the suc-
cess of (Gidaris, Singh, and Komodakis 2018) and devise
a geometric transformation for extracting meaningful repre-
sentations without the annotations.

2.2 Object Localization with Weak Supervision

Fully supervised object localization techniques need expen-
sive annotations (i.e. pixel-level annotations) to train the
CNN classifier. WSOL addresses this issue with weak su-
pervision (i.e. an image label). The most representative tech-
nique is class activation mapping (CAM), which utilizes the
CNN classifier to mine and track the most discriminative
features of the target object. CAM is used to extract a heat
map from most of WSOL techniques (Zhou et al. 2016;
Zhang et al. 2018; Singh and Lee 2017; Choe and Shim
2019).

Because WSOL techniques rely on the classifier, they
commonly face the issue that the network only focuses on
the most discriminative part of the object. To address this
problem, (Singh and Lee 2017) propose Hide-and-Seek,
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Figure 3: Overview of training procedure of the proposed method. T0(·) and T1(·): rotation by 270◦ and point symmetric
transformation by (+1,−1), D in this example, respectively, yi:predicted label of each transformation Ti(·), ci: ground truth
label of each transformation.

which randomly drops patches of the input image to enforce
the network for covering the integral object. Attention-based
Dropout Layer (ADL) (Choe and Shim 2019) utilizes an at-
tention map to learn the integral extent of the object.

Co-localization tackles the task by utilizing much weaker
supervision, a set of images containing a single class object.
For example, (Tang et al. 2014) perform co-localization in
real-world settings by utilizing SIFT (Lowe 2004). (Li et al.
2016) devise the pre-trained fully connected network as a
feature extractor to conduct co-localization. (Wei et al. 2019)
localize objects by evaluating the correlations between de-
scriptors of the samples extracted by the pre-trained model.

3 Self-supervised Object Localization

To enjoy the strong performance gain reported in recent un-
supervised representation learning algorithms (Noroozi and
Favaro 2016; Gidaris, Singh, and Komodakis 2018), we em-
ploy self-supervised learning approach for unsupervised ob-
ject localization. As with (Gidaris, Singh, and Komodakis
2018; Zhang et al. 2019a; Feng, Xu, and Tao 2019), we de-
sign a network model that predicts geometric transforma-
tions applied to a single image. Once the transformation pa-
rameters are determined, they serve as labels, and the image-
label pairs can be arbitrarily generated. Utilizing those of ar-
tificial labels as surrogate supervision, it is possible to lead
the network model to learn meaningful representation.

Compared to existing self-supervised techniques (Gidaris,
Singh, and Komodakis 2018; Zhang et al. 2019a), the pro-
posed method is novel in two aspects. 1) We propose a
novel geometric transformation, namely point symmetric
transformation (PST), for self-supervised learning. This new
transformation is specialized to address the common is-
sue in a fine-grained object localization task. 2) We in-
troduce class-agnostic activation mapping (CAAM), a new
and effective method of generating the heat map from self-
supervised network model. State-of-the-art techniques in
weakly-supervised object localization utilize class activa-

tion mapping (CAM) (Zhou et al. 2016) to obtain a heat
map from the network model. CAAM is inspired by CAM
but modified to handle the model trained by self-supervised
learning. The details of the proposed method will be pre-
sented in the following sections.

3.1 Point Symmetric Transformation

To alleviate the overfitting problem of neural networks, vari-
ous studies (Singh and Lee 2017; DeVries and Taylor 2017;
Choe and Shim 2019) have proposed model regularization
techniques through regional dropout. These techniques drop
several regions of the input image or feature map at ran-
dom or intentionally during training. Because they tend to
hide the important image regions (i.e. the most discrimina-
tive parts) during training, regional dropout techniques pre-
vent the network from focusing only on the most discrim-
inative parts. Instead, the model is guided to learn the less
discriminative part as all. By applying the regional dropout
techniques, (DeVries and Taylor 2017) achieve the meaning-
ful gain in the classification accuracy while (Choe and Shim
2019) significantly improve the localization accuracy.

The problem of focusing only on the most discriminative
parts is particularly more serious in the fine-grained object
localization. For example, to distinguish red-winged black-
bird from the rusty blackbird, the network should focus on
the color of wings to improve the classification accuracy.
This clearly degrades the accuracy of object localization
that should cover the integral extent of objects. Therefore,
we should recognize such common challenges of the fine-
grained object localization and design the self-supervised
technique to address this problem effectively. To this end,
we propose a point symmetric transformation (PST) for self-
supervised learning, which induces the effect of the regional
dropout.

PST is defined as follows. First of all, a large translation
(i.e. greater than the half of image resolution) is applied to
the input image. Afterward, an undefined region after shift-
ing is filled with reflection padding. We visualize PST in
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Table 1: Effects of different heat map extraction methods
and different geometric transformations. Transformations
include rotation (R) by [0◦, 90◦, 180◦, 270◦], point sym-
metric transformation (S) and scaling (C) by [0.7, 1.0, 1.3].
In the following experiments, we use this notation.

Average Max Spatial
(Multi-CAM) (Multi-CAM) Attention

R(·) 60.82 60.82 80.51
S(·) 36.35 36.35 66.98
S(R(·)) 26.34 63.84 83.78
S(R(C(·))) 21.87 42.27 58.66

Figure 1. As seen from this figure, PST effectively erases the
large portions of the target object, but only leaves the small
square regions of the target object. Consequently, applying
PST can be interpreted as a transformation of conducting
translation and the regional dropout simultaneously.

Moreover, we claim that our PST smartly handles the is-
sue of how to set the value of undefined regions. As also
discussed by (Singh and Lee 2017), regional dropout tech-
niques are applied only during training, not testing stage.
Then, the statistic of the activations of convolutional lay-
ers for training data does not match that of test data be-
cause the value of undefined regions can introduce the bias
in training data. Existing techniques simply fill the unde-
fined region with the average pixel value by assuming that
the activation distributions follow Gaussians. However, this
assumption is not realistic, thus still unresolved in most of
the dropout techniques. Our PST easily resolves it by utiliz-
ing reflection padding, which is simple but very effective to
reflect the real data statistics during training. Therefore, PST
performs regional dropout without distorting the original ac-
tivation distributions.

Finally, the proposed PST can be utilized for a self-
supervised learning method because we can generate a pair
of image-label by applying PST. The method of defining an
artificial label is based on (Gidaris, Singh, and Komodakis
2018; Zhang et al. 2019a). Specifically, we assign five labels
according to the direction of vertical or horizontal transla-
tion, and train CNN to predict these labels. In addition to
PST, we utilize the rotation transformation for additional su-
pervisions like (Gidaris, Singh, and Komodakis 2018). We
present how to obtain heat map from trained CNN in Sec-
tion 3.2 and our training scheme in Section 3.3.

3.2 Class-agnostic Activation Mapping

Existing WSOL techniques utilize CAM to obtain heat map.
They perform localization by tracking the spatial distribu-
tion of activations, which are feature responses correspond-
ing to the target label. On the other hand, unsupervised ob-
ject localization techniques should generate the heat map
without image-level labels. Therefore, we extract the class-
agnostic activations by aggregating all feature responses
for predicting the geometric transformation. We name this
method as class-agnostic activation mapping (CAAM). As-
suming that the target object appears more frequently in

PST + rotationPSTrotationpretrained-only

Figure 4: Effects of combination of various transformations.
Each image from the leftmost to the rightmost shows the lo-
calization result of pre-trained only, rotation transformation,
PST and PST + rotation transformation, respectively.

the fine-grained datasets, we expect that our network model
learns the features of target objects.

To extract activation for unsupervised object localization,
we explore two simple approaches. 1) Spatial attention map
with channel pooling (Zagoruyko and Komodakis 2016) is
used as a heat map (See Figure 3). This attention map can be
computed by applying an average pooling along the channel
axis on the last feature map of the model. In this way, we
aggregate feature responses to estimate the entire labels, re-
gardless of 1 (i.e. target label) or 0 (i.e. non-target label).
2) We name the second approach by Multi-CAM because it
focuses on the activations from the target labels like CAM.
That is, the activation map is obtained for each target label
similarly to CAM; tracking the spatial distribution of activa-
tions corresponding to a single target label. Afterward, mul-
tiple activation maps for various target labels (e.g. two target
labels are used for representing the combination of transla-
tion and rotations) are then aggregated by either taking an
average or choosing the maximum value. Unlike 1), this ap-
proach only considers the information of the target labels.

Table 1 demonstrates the localization performance among
three different heat map extraction methods mentioned
above. We observe that utilizing the spatial attention map
achieves better localization accuracy than two variants of
Multi-CAM on CUB-200-2011 dataset. We conjecture that
it is because the activation for the entire labels encodes both
negative (such as 0 labels) and positive ( 1 labels) infor-
mation whereas Multi-CAM only uses positive information
corresponding to the target label. Hence, in the remaining
experiments, we decide to use the spatial attention for com-
puting heat map. We note that other strategy for aggregation
such as log-sum-exp does not improve the performance.

3.3 Unsupervised Object Localization via
Self-supervised Approach

We slightly modify existing network models to handle multi-
labels (i.e. allowing the output of network model to have
multiple logits). After this modification, the network is
trained to predict the artificial labels that represent geo-
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metric transformations applied to the input image (see Fig-
ure 3). Formally, we denote x, Fθ, and Ti(0 ≤ i ≤ n) as
the input image, network model parameterized by θ and se-
lected transformations, respectively. The parameters of ran-
domly selected transformations Ti are determined by ran-
domly sampling them from a candidate list of the parameter
of each transformation, and then applied to the input image,
sequentially. Given the transformed image Tn(...T0(x)), the
network Fθ predicts the parameters of transformations. In a
meantime, we extract the spatial attention map A from the
feature map of the last convolutional layer. Formally,

[y0, ..., yn,A] = Fθ(Tn(...T0(x)). (1)

where yi is the estimated parameter of Ti. The network can
be trained by minimizing a loss function L such that

L =

n∑

i=0

H(yi, ci). (2)

where ci is the artificial label of each transformation
Ti and H indicates the cross entropy function, i.e.
H(p, q) = − ∫

x
p(x) log q(x). We use SGD as the optimizer

to train this self-supervised model. Once the network is
trained, we can process the input image in the testing phase
as follows. First, we pass the input to the network and ob-
tain obtain the spatial attention map A. Then, we extract the
bounding box from A using the same method as presented
in (Zhou et al. 2016). This bounding box is our final result,
indicating the object of interest.

4 Experiments

In this section, we analyze the effects of various transforma-
tions that consist of our point symmetric transformation, and
its hyperparameter via ablation study. Then, we evaluate the
performance of the proposed method compared to existing
techniques, including the state-of-the-art.
Backbone network and hyperparameters. For the find-
grained object localization task, we initialize the network us-
ing an ImageNet pre-trained model before training because
it is a common practice in existing studies (Wei et al. 2017;
Zhang et al. 2019b; Wei et al. 2019). As the backbone net-
works, VGG16 (Simonyan and Zisserman 2015) and SE-
ResNet50 (He et al. 2016; Hu, Shen, and Sun 2018) with
the batch normalization (Ioffe and Szegedy 2015) are cho-
sen. The use of batch normalization helps stabilize training
but has no gain in the performance of networks. Then, the
network is trained to predict multi-class artificial labels (i.e.
transformation parameters).
Dataset and evaluation protocol. We conduct experiments
on the fine-grained datasets: CUB200-2011 (Wah et al.
2011), Stanford Cars (Krause et al. 2013) and FGVC-
Aircraft (Maji et al. 2013). We do not use the object dis-
covery benchmark dataset (Rubinstein et al. 2013) because
the size of the dataset is relatively small, thus not suitable
to train the deep neural network. Therefore, we choose the
dataset that is commonly used to train deep neural net-
works for weakly supervised object localization. For eval-
uating the unsupervised localization accuracy, we use GT-
Known localization (GT-Known Loc), which is a standard

Table 2: GT-Known Loc performance according to the
parameter of point symmetric transformation.

Param. of S GT-Known Param. of S GT-Known
1.0 72.06 1.2 67.82
1.5 52.66 1.8 32.51
2.1 47.38 2.4 53.47
2.7 67.73 3.0 69.07

[1, 3) 75.34 - -

metric for unsupervised localization problem. GT-Known
Loc measures the intersection between the known ground
truth bounding box and its estimated bounding box, normal-
ized by their union. If this ratio is greater than or equals to
0.5, then the estimated bounding box is considered as cor-
rect.
Toward weakly supervised learning. The key idea of
the proposed method is 1) spatial attention based activa-
tion mapping and 2) geometric transformation for self-
supervised learning. We employ two ideas and slightly tune
them to solve weakly supervised object localization. First
of all, we replace CAM with our spatial attention based ac-
tivation mapping as-is. In addition, we use our geometric
transformation (i.e. rotation with PST) as a data augmen-
tation rule, generating the augmented data. To evaluate the
weakly supervised localization accuracy, we use three met-
rics as reported in (Zhou et al. 2016; Zhang et al. 2018;
Choe and Shim 2019) : GT-Known localization, Top-1 clas-
sification accuracy (Top-1 Cls) and Top-1 localization accu-
racy (Top-1 Loc). Top-1 Cls measures whether the predicted
label exactly matches the ground truth label. Top-1 Loc de-
termines that the answer is correct if both GT-Known Loc
and Top-1 Cls are correct.

4.1 Ablation Study

Effects of point symmetric transformation parameters.
PST is implemented by performing the large translation fol-
lowed by filling an undefined region with the reflected re-
maining part of the image. We use five possible directions
for translation, which is depicted as [A, B, C, D, E] in Fig-
ure 3 (they are not normalized for the sake of simplicity).
Per training example, these five translations with reflection
padding are applied and their artificial labels are assigned
accordingly. The control parameters of PST are x- and y-
translation and they are denoted as tx and ty . In this paper,
we set tx and ty to be the same absolute value of t.

To investigate the effect of the parameters of PST (tx
and ty), we change the absolute values from 1.0 to 3.0
while the size of an input image is normalized in-between
-1 to 1. Figure 2 illustrates the transformed images when
[tx, ty] = [+t,+t] (1 ≤ t ≤ 3) is applied, and the corre-
sponding GT-Known Loc performance is shown in Table 2.
We note that the transformation with 1.0 indicates the trans-
lation with the half of image resolution and it is equivalent
to the transformation with 3.0 (because 2 is the full image
resolution). We observe that the network performs well
when the parameter approaches 1.0 (or 3.0). We believe
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Figure 5: Qualitative comparison with DDT (Wei et al. 2019). The green and red box are the ground truth and predicted
bounding box, respectively. For each triplet, result from the original, DDT and the proposed method are listed from left to right.

that the higher performance with t = 1.0 comes from
the higher drop rate. That is, the original image is erased
maximally when t = 1.0. Instead of the fixed parameter, we
also examine the effect of the randomly sampled parameter
and find that the random selection performs better than
others. However, the performance of the random selection
is degraded when it is combined with other transformations.
Therefore, we set the absolute value of tx = ty as 1.0 in the
following experiments.

Effects of combining geometric transformations. We an-
alyze the effects of combining various geometric transfor-
mations. For that, five different transformations are chosen,
which are shear, flip, scale, rotation and proposed PST. The
label for rotation transformation represents four possible ro-
tation angles, [0, 90, 180, 270] degrees, as same as (Gidaris,
Singh, and Komodakis 2018). Similarly, we set three pos-
sible labels for shear and scale, and two possible labels for
flip. Due to the page limit, we report the partial results of the
experiment in Table 3.

As described in Table 3, the combination of PST and rota-
tion outperforms any other combinations or any single trans-
formations across all the datasets. In Figure 4, we visual-

Table 3: GT-Known Loc performance according to the
combination of the transformations. During the entire
paper, Bold text refers the best localization accuracy in each
table. H and E denotes horizontal flip and shear, respectively.

Combination CUB200 Cars Aircraft
R(·) 80.51 89.21 87.67
S(·) 66.98 92.89 92.41
C(·) 41.68 83.34 70.48
H(·) 52.59 77.44 87.43
E(·) 51.17 85.86 90.19
S(R(·)) 83.78 95.59 96.61
S(R(C(·))) 58.66 89.96 71.80

ize three localization results: 1) trained with PST only, 2)
trained with rotation only, and 3) trained with the combina-
tion of rotation and PST. Interestingly, the heat map from
rotation tends to have narrower activations. Thus, the re-
sulting bounding box is shrunk. On the other hand, the map
from PST tends to have wider activations, which expands the
bounding box. From this study, we confirm that rotation or
PST itself is also effective, but their combination increases
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Table 4: Comparison with previous works in terms of GT-
Known Loc performance. Note that “*” indicates GT-Known
Loc performance of weakly supervised method.

Dataset Method GT-Known Loc
CAM* 51.09
ACoL* 64.86
ADL* 75.41

Cho et al. 69.37
CUB-200-2011 SCDA 76.79

DDT 82.26
MO 80.45

PsyNet 83.78
PsyNet (SE-Res50) 85.10

FGVC-Aircraft

Cho et al. 36.23
SCDA 94.91
DDT 92.53
MO 94.94

PsyNet 95.59
PsyNet (SE-Res50) 97.81

Stanford Cars

Cho et al. 93.05
SCDA 90.96
DDT 71.33
MO 92.51

PsyNet 96.61
PsyNet (SE-Res50) 98.81

the benefits further. We conjecture that focusing on the com-
mon patterns among classes is advantageous to predict the
correct rotation label. On the other hand, PST encourages
the network to learn the entire extent of an object by drop-
ping a part of the input object. Therefore, we believe that the
proper combination of two transformations encourages the
network to consider the integral object from the input image
well.

4.2 Comparison with the State-of-the-arts

We evaluate the object localization performance of the pro-
posed method qualitatively and quantitatively. For the quan-
titative evaluation, we compare our method to unsuper-
vised and weakly supervised object localization methods us-
ing GT-Known Loc. Specifically, we compare the proposed
method with 1) CAM (Zhou et al. 2016), 2) ACoL (Zhang et
al. 2018) and 3) ADL (Choe and Shim 2019), 4) DDT (Wei
et al. 2019), 5) Cho et al. (Cho et al. 2015), 6) SCDA (Wei
et al. 2017) and 7) mining object (MO) (Zhang et al. 2019b).
Note that 1), 2) and 3) are the most important techniques for
weakly supervised learning, 4) is the competitor for tack-
ling the co-localization problem, and 5), 6) and 7) are the
unsupervised object localization techniques. (MO is not yet
published elsewhere but on arxiv.) The weakly supervised
methods utilize the image-level label during training, and
they predict the bounding box and label simultaneously as
output. Among CAM, ACoL, and ADL, ADL is the current
state-of-the-art technique. On the other hand, the proposed
algorithm considers the co-localization problem, where a
set of images containing the target objects from the same

class is given as a training set. Thus, we compare our re-
sults with DDT, which is the state-of-the-art technique in
co-localization techniques. Unsupervised object localization
techniques utilize a single image without additional data,
and SCDA and MO achieve the best accuracy among un-
supervised techniques except for PsyNet.

Table 4 summarizes the comparison results on three
fine-grained datasets. We observe that our method outper-
forms all the existing techniques, including the state-of-
the-art in weakly, co-localization, and unsupervised local-
ization. DDT, MO, and Cho et al. achieve the second-best
localization accuracy in CUB-200-2011, FGVD-Aircraft,
and Stanford Cars, respectively. In these datasets, the pro-
posed method achieves the localization accuracy to 83.78%,
95.59% and 96.61% with VGG16 network, respectively.
It means that our method earns the performance gain by
3.3%, 0.6%, and 3.5% over the current state-of-the-art per-
formance at each dataset, respectively. By adopting more
powerful backbone network, such as SE-ResNet50 (He et al.
2016; Hu, Shen, and Sun 2018), we can enjoy the additional
performance benefit of 2 %.

Figure 5 visualizes the localization results and qualita-
tively compare the proposed method with DDT on CUB-
200-2011 dataset. We observe that the proposed method
generates more accurate localization maps and bounding
boxes than DDT. For example, DDT tends to capture the
part of the object (only body part is captured in the second
row at the second column) or out of the boundary (in the first
row at the second column) as shown in Figure 5. However,
the proposed method can localize the bird more accurately
than DDT in that the background objects are excluded from
the heat map. Through quantitative and qualitative compar-
ison, we demonstrate that the proposed method is effective
for unsupervised object localization.
Comparing the inference time. Additionally, we try to
compare the inference time of our method with MO and
DDT. MO stated that their execution time is totally about
0.24 second/image on GPU, given CUB-200-2011 dataset.
DDT stated that the average deep descriptor transforming
time is 0.0333 second/image on GPU. On the other hand, the
inference time of our method is about 0.0067 second/image
on GPU, which at least five times faster than DDT and 30
times faster than MO. This shows that the efficiency of our
method in real-time applications.

4.3 Toward WSOL Techniques

We slightly modify the two key ideas of the proposed
method and use them to improve WSOL method. They are 1)
CAAM instead of CAM, and 2) a novel training strategy to
perform self-supervised learning using the newly proposed
PST. First, CAAM can be directly applied to the WSOL
method. Next, the idea of novel PST needs a slight modifi-
cation. Concretely, PST can be used as a data augmentation
policy. In order to further improve performance, PST and
other geometric transformation are applied as data augmen-
tation policies. By introducing two simple training tactics,
we achieve the new state-of-the-art performance in CUB-
200-2011 dataset, with nearly 10 % of performance gain
over the current state-of-the-art. The performance compar-
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Table 5: Modified PsyNet for WSOL is compared with
existing WSOL methods. “M” indicates that the proposed
heat map extraction is used. “A” denotes that PST is used as
a data augmentation policy.

Method GT-Known Loc Top-1 Cls Top-1 Loc
CAM 51.09 67.55 34.41
ACoL 64.86 71.90 45.92
HaS 70.77 69.59 50.80
ADL 75.41 65.27 52.36
PsyNet(M) 80.32 69.67 57.97
PsyNet(A) 61.56 77.25 48.10
PsyNet(M+A) 77.39 75.04 59.37

isons with the existing WSOL techniques are demonstrated
in Table 5. For WSOL task, we use ImageNet pre-trained
network as the previous WSOL works.

To investigate the effects from two different ideas, we first
apply the heat map extraction method (denoted as “M” in
the table), and then add the data augmentation using PST
over the heat map extraction method (denoted as “A” in
the table). We observe that our heat map extraction method
of computing a spatial attention map significantly improves
the performance in terms of both GT-Known Loc and Top-
1 Loc. Previous literatures stated (Singh and Lee 2017;
Choe and Shim 2019) that there exists a trade-off relation-
ship between localization and classification accuracy. Sur-
prisingly, our heat map extraction method does not sacrifice
the Top-1 Cls for improving GT-Known Loc. As a result,
it is possible to fully enjoy the performance gain in Top-
1 Loc. Then, PST and other geometric transformations are
used as data augmentation policies. Although the transfor-
mation based data augmentation moderately degrades GT-
Known Loc, it achieves best Top-1 Loc by significantly im-
proving the classification accuracy. Based on this experi-
ment, we confirm that the proposed method can be success-
fully applied to WSOL on the fine-grained dataset.

5 Conclusion

We proposed a new fine-grained co-localization technique
using self-supervised learning approach. To this end, this pa-
per introduced two important ideas. First, for self-supervised
learning, we devised a novel point symmetric transforma-
tion implicitly possessing the property of regional dropout.
This new transformation is then applied to the input, and its
label is used as an artificial label to train the model. Sec-
ondly, we suggested utilizing the spatial attention map for
computing a heat map. This scheme allows us to extract
the heat map without object label, thus being suitable for
the network trained with self-supervision. Based on exten-
sive evaluations, we confirmed that the proposed method
outperforms existing unsupervised object localization tech-
niques, including the current state-of-the-art. Additionally,
we applied the proposed method with a small modifica-
tion to weakly supervised object localization setting. Con-
sequently, we could achieve the new state-of-the-art perfor-
mance among the same kinds. For the future work, we will

enable the PsyNet to conduct the localization without the
ImageNet pre-trained network and on the ImageNet dataset.
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