The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Task and Motion Planning Is PSPACE-Complete

William Vega-Brown, Nicholas Roy*
CSAIL, MIT
32 Vassar Street, 32-33x
Cambridge, Massachusetts 02139
{wrvb,nickroy } @csail.mit.edu

Abstract

We present a new representation for task and motion plan-
ning that uses constraints to capture both continuous and
discrete phenomena in a unified framework. We show that
we can decide if a feasible plan exists for a given problem
instance using only polynomial space if the constraints are
semialgebraic and all actions have uniform stratified acces-
sibility, a technical condition closely related to both control-
lability and to the existence of a symbolic representation of
a planning domain. We show that there cannot exist an algo-
rithm that solves the more general problem of deciding if a
plan exists for an instance with arbitrary semialgebraic con-
straints. Finally, we show that our formalism is universal, in
the sense that every deterministic robotic planning problem
can be well-approximated within our formalism. Together,
these results imply task and motion planning is PSPACE-
complete.

Introduction

Generalized deterministic robotic planning problems like
mobile manipulation or legged locomotion have been
studied for decades (Lozano-Pérez 1976; Wilfong 1988;
Koditschek 1994). While numerous practical algorithms
have been presented (recent examples include Garrett,
Lozano-Pérez, and Kaelbling (2018) and Dantam et
al. (2018), among many others), many fundamental ques-
tions of decidability and complexity remain open. In partic-
ular, it is not known under what conditions we can decide if
a given deterministic planning problem has a solution, nor
is there an effective decision procedure for the generalized
problem of deterministic task and motion planning (TMP).
Part of the challenge in resolving these questions is that
it is not obvious how to make these questions precise, as
there is no consensus on what defines a TMP problem. In
addition, many obvious approaches fail. For example, one
naive approach to TMP might be to combine a task plan-
ner with a motion planner and arrive at an effective deci-
sion procedure. Unfortunately, this requires choosing start
states and goal states with which to query our motion plan-
ner, and the set of possible motion planning queries is not a

*This research was supported by the US Army Research Labo-
ratory’s RCTA program. Their support is gratefully acknowledged.
Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

10385

priori bounded. This means that designing an effective de-
cision procedure remains difficult, even if the task planner
and motion planner are both complete and correct. Practi-
cal approaches work around this issue in a variety of ways,
but constructing such a decomposition, or even just showing
such a decomposition exists, is the core technical difficulty
in analyzing TMP.

In this paper, we introduce a new intermediate representa-
tion, the continuous constraint contract representation (C).
C? places both the discrete and continuous aspects of a prob-
lem in a single unified framework, and describes the capa-
bilities of a system using an explicit constraint graph be-
tween the state of the world before and after an action. We
show that every robotic planning problem satisfying mild
technical conditions can be accurately represented by a C>
instance, and we use tools from semialgebraic geometry
and geometric control theory to show that if the constraints
can be decomposed in a certain way—a technical property
called uniform stratified accessibility—then we can decide if
a semialgebraic C? instance has a solution using only poly-
nomial space. Furthermore, we show that without this condi-
tion, semialgebraic C? is undecidable. Our algorithm bounds
the complexity of TMP from above, and implies that task
and motion planning is PSPACE-complete.

Complexity Results in Planning

To illustrate the complexity of TMP, consider the special
case of path planning, where an articulated robot with ar-
bitrarily many links must navigate among polygonal obsta-
cles. Reif (1979) proved this problem was PSPACE-hard by
explicitly constructing an oddly-shaped articulated body for
which the feasible paths can simulate any given Turing ma-
chine with a polynomial space bound. Canny matched this
lower bound by constructing a polynomial space algorithm
for the path planning problem, thus proving path planning is
PSPACE-complete (Canny 1988).

Canny’s analysis does not extend to the case of planning
under differential constraints, where not every collision-free
path through configuration space is considered feasible. To
the best of our knowledge there are no known upper bounds
on the complexity of complete planners for differentially
constrained systems, let alone general TMP problems. Still,
Reif’s construction provides a straightforward lower bound

on the complexity of TMP: since a general algorithm for
task and motion planning must solve path planning as a spe-
cial case, the PSPACE-completeness of path planning im-
plies the PSPACE-hardness of TMP. Several recent results
indicate that restricted categories of TMP problems are de-
cidable. For example, Cheng et al. (2007) showed that dif-
ferentially constrained planning is decidable if the set of
permissible controls is finite and if the feasible paths can
be expressed in closed form for any control. Deshpande et
al. (2016) showed the decidability of plan existence for a
class of controllable prehensile manipulation planning do-
mains. Vendittelli et al. (2018) generalized this analysis to
a class of driftless controllable systems. However, these re-
sults do not address task and motion planning in its full gen-
erality, do not extend to optimizing planners in a straightfor-
ward way, and do not address issues of computational com-
plexity.

The Continuous Constraint Contract
Representation

In this section, we describe the continuous constraint con-
tract representation, our novel framework for studying TMP
problems. At a high level, this representation can be under-
stood as a generalization of planning languages like propo-
sitional STRIPS to include continuous variables, require-
ments, and effects. C? uses constraints to encode the struc-
ture of the planning problem. We do not discuss the details
of how to model problems using C? in this document; in-
stead, we focus on the theoretical ideas needed to analyze
our representation.

States and Variables We assume the domain of discourse
has a time-varying state s drawn from a compact set S C
[0,1]™. The restriction to the unit hypercube is arbitrary—
our analysis holds for any compact set. Note that while the
state is a vector of real numbers, not every vector of real
numbers is a valid state; we can easily include discrete infor-
mation by limiting the domain of some elements of the state
vector to a finite set. For example, we could model the state
space of a propositional STRIPS instance by choosing S to
be the set of binary vectors of length n: S = {0,1}" C R™.

In addition, we will often constrain some part of a state
vector s in order to endow it with higher-level meaning. For
example, in a three-dimensional planning problem, we often
need to reason about the poses of arbitrary objects. A three-
dimensional pose £ € SE(3) can be smoothly embedded
into R'2, subject to the constraint that nine of those numbers
constitute a valid rotation matrix. A part of the state vector
with semantic meaning is called a variable, which takes on
a value that can be derived from the world state. That is, for
each variable v € V, there is a domain D, and a function
fv : s = D, that extracts the relevant information from the
state vector and maps it to the appropriate problem-specific
domain. We define the valid state vectors using constraints
gv : 8 — R, so that g, (s) = 0 if and only if the part of the
world state in s corresponding to v is valid. This requirement
is expressed symbolically as g,(f, }(D,)) = {0}. In this
way, we can represent complicated spaces, including arbi-
trary manifolds and complex geometry, using real numbers.

10386

Actions We define the capabilities of an agent using pa-
rameterized actions. Much as in propositional STRIPS, each
action is defined in terms of requirements and effects. Unlike
in propositional STRIPS, each action has a set of continuous
parameters, and these requirements and effects are expressed
in terms of these parameters.

Actions describe the capabilities of the modeled robotic
system in terms of parameterized conditional contracts be-
tween a planner and a controller. Actions are contracts in the
sense that there is a guarantee that if certain requirements
hold, then there is an executable policy that will terminate
in finite time, incur only bounded cost, and ensure that cer-
tain effect conditions hold. Actions are parameterized in the
sense that a single action represents a continuum of possible
control policies, and the specific effect conditions depend on
the choice of parameters.

For example, an action place_object_1 might repre-
sent placing a particular object at some specified coordi-
nates. The choice of target pose would be represented by
a parameter @ € ® C R™ for some m € N. Much as we
represented arbitrary variables using real numbers, here we
represent arbitrary parameter spaces using constrained sub-
sets of the reals.

We will use the notation a € A to refer to an action,
and a € |],., ©, to refer to an action together with its
parameters. We define the requirements and effects of an ac-
tion a in terms of two functions f, : S x ®, — S and
ga : S X ©®, — R. The function f,(s,0) defines the ef-
fects of the action. If the system is in state s and executes
action a with parameters 6, then at some point in the future
the system will reach state s’ = f,(s, 0). The set of states
reachable by an action is called the image of the action, de-
noted PosT(a) = {s’|3s,0 : f(s,0) = s'}. The function
Ja(s, 0) defines the requirements; an action is feasible from
a state s if and only if there exist parameters 6 such that
Ja(s,0) = 0. The set of states for which an action is feasi-
ble is called the preimage of the action, denoted PRE(a) =
{s|30 : f.(s,6) = 0}. Finally, we define the set of pairs of
states that are connected by an action as the connected set
CoN(a) = {(s,s")|30 : fu(s,0) =" N ga(s,0) =0}.

This formalization is extremely expressive. First, it
is a strict generalization of languages like propositional
STRIPS; positive and negative preconditions correspond to
requiring a variable take on a value of 1 or 0, respectively,
and we can define propositional STRIPS effects by con-
structing the function f, (s, @) that leaves every variable un-
changed but assigns the desired value (0 or 1) to the target
variables. Second, it can define the capabilities of very com-
plicated switching-mode control systems.

Planning Problems We define a C? instance T as a 5-
tuple (S, A, s0,S,,C), where S is the set of possible world
configurations, A is a collection of actions, sg € s is an
initial state, S, C & is a set of possible goal states, and
C:S x| l,ca — Rxo is a cost function mapping each pair
of state and parameterized action to the cost of executing the
action from that state. A C? instance contains all the infor-
mation needed to specify a well-defined planning problem.
A plan p is a sequence of actions (ay,...,a,) together

with their parameters. The length of a plan |p| is the number
of actions it contains. The frace of a plan Trace (p) is the
sequence of states the system reaches when executed from
the initial state s. A feasible planisaplanp = (a1,...,ay)
whose trace Trace (p) = (s, . .., Sy) satisfies

e s is the initial state for the instance,
° VZ 6 [1’N]7 Si = fai_l(sifl)’
o Vi€ [1,N], ga,(si) =0, and

° SNESg.

An optimal plan is a feasible plan whose cost C(p)
> C(si—1,a;) is no greater than the cost of any other
feasible plan. An e-near optimal solution is a feasible plan
whose cost is no more than 1 + € times the cost of an opti-
mal plan.

We can then formally define two important decision prob-
lems related to planning. First, the problem of plan existence
is to decide, given a C? instance T, whether a feasible plan
exists. Second, the decision form of the optimization prob-
lem asks whether, given a C? instance 7, a plan of cost less
than c exists. Note that if we can solve the optimization prob-
lem, then we can compute the cost of the optimal plan ar-
bitrarily accurately by repeatedly solving the optimization
problem for a sequence of cost thresholds chosen by (for ex-
ample) binary search.

Semialgebraic C* Domains

In order to analyze the problems of plan existence and opti-
mal planning, we must first decide how the constraints defin-
ing each action and axiom are specified. In line with prior
research on the complexity of robot motion planning (Reif
1979; Schwartz and Sharir 1986; Canny 1988), we focus on
systems defined by semialgebraic sets. A set S is semialge-
braic if it can be described by a Tarski sentence, a quantified
Boolean combination of polynomial equalities and inequali-
ties. For example, the sentence Jz : ar?4+br+c=0Az >0
defines the set of possible coefficients of a quadratic equa-
tion that has a positive real solution. A sentence with no
free variables is either true or false. V& : z2 > 0 and
Vy3dx : x? < y are both Tarski sentences; the former hap-
pens to be true, while the latter is false.

It is a remarkable and important observation that any set
defined by a Tarski sentence that includes the quantifiers
vV or 3 can also be defined without quantifiers: real alge-
braic geometry supports quantifier elimination. This result
is the Tarski-Seidenberg theorem (Tarski 1948; Seidenberg
1954), which can be used to show that the closure, interior,
and complement of a semialgebraic set are all semialgebraic
sets, as is the distance between semialgebraic sets. In addi-
tion, there are effective algorithms for deciding a variety of
questions about semialgebraic sets, such as whether a set is
empty (that is, whether a system of polynomial equalities
and inequalities has a solution) or whether two points lie on
the same connected component.! These facts underly mod-
ern results on the decidability of motion planning.

"For a more thorough introduction to semialgebraic geometry,
we recommend the short book by Coste (2000).

10387

When we refer to semialgebraic c? domains, we mean
any C® instance in which the constraints are all given by
Tarski sentences defined by polynomials with rational coef-
ficients. We can use semialgebraic constraints to describe
both continuous and discrete phenomena. Most important
manifolds for robotics, such as the special Euclidean groups
SO(2) and SE(3), are semialgebraic sets, and object geome-
try (including meshes) can be modeled as semialgebraic sets.
A binary variable can be represented by a real number sub-
ject to the constraint z;(xz; — 1) = 0, ensuring the permissi-
ble values are 0 and 1. Using these constrained variables, we
can represent complicated ideas. Because semialgebraic sets
can be defined using the Boolean operators {A, VV, =} as well
as the quantifiers {3,V}, any sentence from propositional
logic can be represented as a semialgebraic set. If x, y, z are
binary variables, the propositional sentence = V -y — 2z
is equivalent to the polynomial equality (2% + (1 —y)?)?(1—
22 +22(1—2)? +9%(1 —y)? + 2%(1 — 2)? = 0. The state-
ment “the robot does not collide with an obstacle when it
follows a given spline” can be captured by the Tarski sen-
tence Vt € [0,1],Vz € R3, (2 & Xriobot V E(B)T & Xobs)
where £(t) is the pose of the robot at time ¢, and X0t and
Xobs are semialgebraic sets representing the robot and ob-
stacle geometry.

Stratified C> Domains

Unfortunately, as we will show later in this paper, plan ex-
istence for semialgebraic C* is undecidable. In this section,
we give sufficient conditions under which the problem of de-
ciding if an instance has a solution can be solved using only
polynomial space. In particular, we show that if the instance
admits a stratification for which the actions are uniformly
accessible—technical terms that we define in this section—
then our algorithm uses only polynomial space.

We begin by defining stratification and uniform accessi-
bility, then introduce the notion of uniform stratified acces-
sibility, a particular kind of compatibility between a stratifi-
cation and a C* instance. We show that if a C* instance has
this property of uniform stratified accessibility, then we can
bound the length of any feasible plan. Finally, we use this
bound to construct an algorithm to decide if a stratifiable
semialgebraic C* instance has a feasible plan, and show that
our algorithm requires only polynomial space.

Stratification

A stratification is a way of partitioning a complex config-
uration space into pieces called strata that look like (i.e.,
are homeomorphic to) subsets of Euclidean space. In partic-
ular, in a stratification, each piece has constant dimension,
and the boundary of each piece is covered by other pieces of
strictly smaller dimension. Consider a square; the interior of
the square looks like a two dimensional space, while each of
its four edges look like a one dimensional space. The bound-
aries of the edges are the corners of the square, which look
like zero-dimensional spaces.

Every space we consider in this paper, and essentially ev-
ery space we care about for robotics, admits a stratification.

This is true even if the topology of the space is quite compli-
cated, as in robotic arms or other linkages, or if the config-
uration space has obstacles of arbitrary smoothness. Strat-
ifications are relevant to TMP because they provide some
measure of regularity while still allowing us to describe
actions that reach constrained subspaces, such as grasping
actions in a manipulation problem. If the actions allow us
to control the configuration of the robot on each stratum,
then we can bound the number of actions required to reach
any point on a stratum. If, in addition, the set PRE(a) can
be defined in terms of the strata of a suitable stratification,
then we can bound the number of strata we must reach. To-
gether, these two conditions will allow us to prove that if a
plan exists at all for a given instance, there is a plan whose
length is at most exponential in the length of the input. That
some problems require exponentially long plans should not
be surprising—after all, propositional STRIPS instances can
require exponentially long plans, and C® is a superset of
propositional STRIPS. It may, however, be surprising that
plans need only ever be exponentially long, despite the fact
that there are uncountably many states in the domain.

Formally, a stratification of the configuration space S of
a C? instance 7 is a finite collection X of subsets of s called
strata satisfying three technical conditions: each o € X has
constant dimension; the strata are pairwise disjoint and cover
the space, so that every s € S is an element of exactly one
stratum o € ¥; and the frontier cl(o) \ o of each stratum
o € ¥ is the union of some members of > with dimensions
strictly smaller than dim o. A semialgebraic stratification is
a stratification in which each stratum is defined by a semial-
gebraic formula.

Uniform Accessibility

Recall that for each action, there is an associated function
fa(s, @) mapping the initial state s and the selected param-
eters O to the resulting state s’. This is a discrete-time dy-
namical system.> Such systems can exhibit a variety of ex-
otic behavior in general, but if they are accessible they are
generally quite tame (Jakubczyk and Sontag 1990). Loosely
speaking, a system is accessible if the parameters 6 actually
behave like a control signal: if some parameters 6 take the
system to a state s, we can reach any nearby s with small
changes to 6.

Formally, an action a is accessible if for any s € PRE(a),
the set {s'|30 : s’ = fa(s, 0)} has a non-empty interior, and
for any s’ € PoST(a), the set {s|30 : s’ = fa(s,0)} has a
non-empty interior. That is, for any point s there is a point 2
and a radius ¢ > 0 such that every point in the ball B(z,d)
is reachable from s in one step, and conversely there is a 2’
such that s is reachable from every point in the ball B(z, J)
in one step.

While accessibility is enough to categorize the reachable
space under arbitrarily long plans, it is insufficient to bound
plan length. This is because the amount of free space that is

Note that systems of this type are called discrete-time because
they were first studied as an extension of continuous-time dynami-
cal systems. We do not actually discretize time in this paper, as the
actions in our plans are not indexed by time.

10388

reachable from any point can become arbitrarily small. Con-
sider fa(s,0) =s-(0+ 3), where's € [0,1] and 6 € [0, 1].
This system is accessible, but as it moves closer and closer to
zero, the speed with which it moves decreases. This means it
takes n steps to reach the state %, and that there is no bound
on the number of steps needed to reach any reachable state.
We introduce the notion of uniform accessibility’ to avoid
this issue.

We say a system is uniformly accessible if there exists a
radius 6 > 0—independent of the state s—such that for any
point s every point in some ball B(z’,d) is reachable from
s in one step, and s is reachable from every point in some
ball B(z,d) in one step. As we will show, if a system is uni-
formly accessible and its state space is bounded, then every
reachable state is reachable by a plan of length O(24™ <),

Uniform Stratified Accessibility

For robotic planning, accessibility is often too stringent of a
condition to require. In any problem involving contact-based
manipulation, the accessible space will be restricted to the
subspace where non-grasped objects do not move. To ac-
commodate this, we introduce a notion of uniform stratified
accessibility, asking that each state in a ball of radius ¢ be
reachable from some state near the initial state. That is, we
require that there is some J such that if (s,s’) € Con(a) C
o x o', then for all z, there exists 2’ such that the interior of
{s” € ¢’/|3s € B(z,0)No : (s,s") € CoN(a)} contains
a ball B(z’,d) N o’. Note that if the state space is discrete,
as it would be in a pure task planning problem, each strata
will contain only a single point. Consequently, discrete sys-
tems always have uniform stratified accessibility for small
enough 6.

This condition is complex, but meshes nicely with our in-
tuitive understanding of controllability. If we can break the
configuration space into a finite number of pieces such that
on each piece we can move around more-or-less freely, than
the instance is stratifiable. This is closely related to the no-
tion of stratified controllability developed by Goodwine and
Burdick (2001). The constant ¢ is related to the size of the
geometry; a problem with very fine geometry might require
a very small 4, in order to ensure that an action can actu-
ally reach every point in a ball of radius J. Observe that if
the stratification is semialgebraic, the statement that an in-
stance has uniform stratified accessibility can be expressed
as a Tarski sentence—which means there is an effective al-
gorithm using only polynomial space to both decide if an
instance is stratifiable, and to choose the largest § for which
it is stratifiable.

Deciding Stratifiable Semialgebraic C*

We are now ready to formulate the main result of this paper.
We say that a C? instance 7 is stratifiable if there is a strat-
ification X of its configuration space and a constant 6 > 0
such that each action a € A has the uniform stratified acces-
sibility property with radius J, and such that the preimage of
each action, the goal set, and the singleton set containing

3The terminology is a direct analogy to standard notions like
uniform convergence and uniform continuity.

just the initial state all must be elements of the stratification.
Most standard instances of TMP are stratifiable, including
all instances with semialgebraic geometry where each action
either leaves an object fixed or allows free motion through
free space. In this section, we show that if a semialgebraic
C? instance is stratifiable, then we can decide if a plan ex-
ists using polynomial space. Note the algorithm we present
does not need to know the stratification itself, just its size;
the decision procedure we give accepts as input an instance
7, a natural number |X|, and a constant 6 > 0.

First, we show that if an instance is stratifiable and has a
feasible plan, then there is an upper bound on the length of
the shortest plan.

Theorem 1. Let X be a stratification compatible with a C*
instance L that has uniform stratified accessibility with con-
stant 6. Then either the instance T has no solution, or it has

d
IZIAIL (2)"], where
d is the dimension of s and (; is the volume of the unit ball
in R?,

a solution of length at most N*

Proof. Note first that for any § > 0 there is a set of
Ns = {i (%)d—‘ balls that cover the unit cube. Thus if

Cd

there there is a plan p = (ay,...,ay) of length N > N*
with trace (so,---,sn), there must exist ¢ < j such that
a; = aj, ||Si—1 — Sj_1|| < 20,s; € O'/, S; € o’. Since
si,s; € B(Z/,0) N o', it follows from the definition of
stratified accessibility that there are parameters for a,; ; that
reach some point in B(s;j41,d) N 0j41. This argument can
be repeated until we reach the end of the plan. The result
is a feasible plan (ay,...,a;,a;11,aj42,...,ay) of length
N — j 41, which is strictly less than N. Because we can do
this whenever N > N*, we can iteratively shorten any plan
until we arrive at a plan of length N*. Thus provided a plan
exists, we can construct a plan of length at most N*. 0

Our decision algorithm closely resembles Savitch’s algo-
rithm (Savitch 1970), which can be used to decide proposi-
tional STRIPS plan existence. Recall that for discrete plan-
ning, we can check for the existence of a plan of length
less than N linking two states by recursively checking if
there exists a plan of length N/2 to some state, and a plan
of length N/2 from that state to the goal. This process in-
volves a maximum recursion depth of log,(N) (using con-
stant space at each level). Since the longest possible plan
in a propositional STRIPS instance has length exponential
in the number of predicates, this means we can decide plan
existence using only polynomial space.

In the context of semialgebraic C®, there are uncountably
many possible intermediate states s’, so we cannot simply
enumerate them. However, given a semialgebraic set Sy, we
can decompose the set of states reachable from some state in
S into a finite number of cells, each of which is a semialge-
braic set. Furthermore, we can enumerate these cells using
only polynomial space (Basu, Pollack, and Roy 2016). This
forms the core of our algorithm; starting with the bound N*
on the length of the shortest plan that we calculated in The-
orem 1, we recursively enumerate the semialgebraic cells

10389

reachable using a plan of length at most N*/2. This algo-
rithm is defined in detail in Algorithm 1.

Algorithm 1 An algorithm to enumerate reachable subsets
in semialgebraic C>.
1: function REACH(n € N, semialgebraic sets Sy, S1)

2: if n = 1 then

3: for each action a € A do

4: Spre < PRE(a)

5: Spost <— APPLY (@, Spre)

6: for set S in DECOMPOSE(Spost) do

7: yield INTERSECTION(S, S7)

8: else

9: for each action a € A do
10: Spre < PRE(a)
11: for set S in REACH(|[n/2], Sy, Spre) do
12: Spost < APPLY(a, S)
13: for set S” in REACH([n/2], Spost, S1) do
14: yield S’

Note that the yield keyword inherits its meaning from
the Python programming language: it returns the indicated
value, then suspends execution until the next time the caller
requests a value. Algorithm 1 invokes several subroutines
not defined in this paper. The subroutine DECOMPOSE(x)
generates a decomposition of the semialgebraic set x into
basic semialgebraic cells. It can be implemented using the
algorithms in chapter 14 of Basu et al. (2016). The sub-
routine PRE(a) returns the semialgebraic set of all con-
figurations from which action a is valid. The subroutine
APPLY(a, S) returns the semialgebraic set of states reach-
able from some state in S by action a. Finally, the subrou-
tine INTERSECTION(S1, S2) returns the intersection of two
semialgebraic sets as a semialgebraic set.

We claim that Algorithm 1 will generate all semialgebraic
sets reachable in a plan of length n. The first branch of the
function (lines 3-7) covers the base case, generating a de-
composition of the space reachable from Sy in a single step.
The second branch (lines 9-14) is the recursive case; it gen-
erates a decomposition of the subset of .S; reachable from S
in at most n + 1 steps. The function recurses to enumerate
the reachable subsets of the set from which each action can
be executed, then recurses again to enumerate the subsets of
S that can be reached after executing that action.

Algorithm 1 has a recursion depth of O(logn), and uses
polynomial space at any point in the computation. That is,
if the C* instance can be encoded in a string of length 7 on
some Turing machine, Algorithm 1 requires space polyno-
mial in m and time exponential in m.

The correctness of Algorithm 1 and the upper bound
given in Theorem 1 suggest a straightforward decision pro-
cedure: invoke Algorithm 1 to check for plans of length

“ZHA%J (%)d linking s¢ to some state in S,. This pro-
cedure is given in Algorithm 2.
Algorithm 2 returns True if and only if there is a state

in S, reachable from sy via a plan of of length less than
n. Since a plan exists if and only if a plan of length less

Algorithm 2 An algorithm for determining plan existence.

1: function PLANEXISTS(semialgebraic sets sg, Sy, 0 €
R>o)

2 ne B4 (3]

3: if REACH(n, {so},Sy) yields anything then
4: return True

5: else

6:

return False

than n exists, Algorithm 2 is correct. Since our bound
on plan length is exponential in the size of the input
and Algorithm 2 requires space logarithmic in the length
bound and polynomial in the size of the input, it fol-
lows that Algorithm 2 uses only polynomial space. Specif-
ically, if the description involves polynomials of degree at
most r in a space of dimension d, Algorithm 2 requires
O((log, 2] + log, | A| + dlog, %) (dlogy(r))°™M) space.
This allows us to prove the PSPACE-completeness of strat-
ified semialgebraic C>.

Theorem 2. Stratified semialgebraic C3 is PSPACE-
complete.

Proof. Algorithm 2 decides plan existence using only poly-
nomial space; this establishes that plan existence is in
PSPACE. As argued in a previous section, any finite propo-
sitional STRIPS instance with binary variables can be ex-
pressed as an instance of stratified semialgebraic C* by re-
placing binary variables with real variables subject to the
constraint x;(1 — x;) = 0. Since this construction is only
polynomially larger than the original propositional proposi-
tional STRIPS instance and since planning using proposi-
tional STRIPS is PSPACE-complete (Bylander 1994), plan
existence is PSPACE-hard. Because plan existence for strat-
ified semialgebraic C? is PSPACE-hard and in PSPACE, it
is PSPACE-complete. O

Finally, observe that it is straightforward to extend Al-
gorithm 2 into an algorithm for the optimization problem.
Given a C? instance Z and any cost threshold ¢, we can con-
struct an augmented C? instance Z; from Z by adding a vari-
able c that does not appear in any preconditions and whose
value is the total cost incurred by all prior actions. If the goal
of Zz includes the semialgebraic constraint ¢ < ¢, we can
use Algorithm 2 to decide if a plan exists that incurs cost at
most ¢. This construction requires only one additional vari-
able and thus only polynomially more space than deciding
if a plan exists at all; accordingly, near-optimal planning for
stratified semialgebraic C® is also PSPACE-complete.

Undecidability of Non-stratifiable C*

‘We have shown that plan existence is decidable for stratified
semialgebraic C* instances. In this section we study the con-
verse, and show that there is no algorithm to decide the more
general problem of plan existence for semialgebraic C* in-
stances that may or may not be stratifiable. In fact, we can
show that for any Turing machine 7" and string w, there is a

10390

semialgebraic C* instance Z that has a solution if and only
if T" accepts w. To prove this, we first establish a connec-
tion between semialgebraic C* and Diophantine equations,
i.e., equations of the form p(x) = 0 with x € R* and p a
polynomial with integer coefficients.

Theorem 3. Let p(x) = 0 be a Diophantine equation in k
variables of degree d, i.e., a polynomial in x1,...,x) with
integer coefficients. Then there is a semialgebraic C? in-
stance L, with k variables and degree at most kd that has a
solution if and only if there exist natural numbers x1, . .., Ty
such that p(xq,...,x,) = 0.

Corollary 1. There is no algorithm to determine whether or
not a semialgebraic C* instance has a solution.

Proof. The proof is constructive. We will create a C* in-
stance for which the reachable states are precisely the in-
verse natural numbers, i.e., of the form (i, cee ﬁ) We
then construct a polynomial of degree at most kd that has
a solution in the inverse natural numbers if and only if
p(z) = 0 has a solution in the natural numbers.

The instance has k variables V = {v1,..., vy}, each with
a domain v; € (0, 1], and k actions A = {ay, ..., ax}. Each
action has no parameters, and has postcondition v}, = v:il
with all other variables unchanged. This is semialgebraic—
it is the unique solution to the quadratic polynomial v v}, +
v, — v = 0, which has integer coefficients. Observe that
if we apply ay, from a state where vy, = % for some natural
number n, then v}c n%rl Consequently, if our instance

has initial state s = (1,...,1), then a state is reachable if
and only if it is of the form (n%, ce i) for some natural
numbers nq, . ..,n; € N*.

Next, construct a polynomial ¢(s) that has a solu-
tion if and only if p(x) has a solution. Let d; be the

maximal exponent of x; in p, and let q(vy,...,vx) =
p(1/v1,...,1/v) T1; v Then since v; > 0Vi, [], v >
0. Consequently, we have 0 = p(%,...,%k_) —

q(v1,...,v) = 0. Furthermore, if ¢(s) = 0 for % € NVi,
then p(z1,...,x) = 0 with z; € NVi.

Let S; = {s : ¢(s) = 0}, and s = (1,...,1). Then
the C? instance Z, = (V,A,,s0,8,) has a solution if and
only if S, contains a point in the inverse natural numbers,
which is true if and only if p(x) has a solution in the natural
numbers. O

Theorem 3 implies that an algorithm to decide if a C*
instance is solvable would imply an algorithm to decide if
a Diophantine equation is solvable. Hilbert’s tenth problem
(Hilbert 1902) asked for such an algorithm, and Matiya-
sevi¢, Robinson, Davis, and Putnam (Matiyasevi¢ 1970;
Davis 1973) proved no such algorithm can exist. Thus, there
is no algorithm to decide if an arbitrary semialgebraic C>
instance has a solution. O

Stratified Semialgebraic C? is universal

While we have shown that stratified semialgebraic C? is
PSPACE-complete, it is not obvious that our results extend

to TMP more generally. While semialgebraic sets can cap-
ture arbitrary shapes, in general the solution to arbitrary dif-
ferential equations are not semialgebraic. However, if a sys-
tem is defined by differential constraints that are piecewise-
analytic, then the reachable sets can be approximated by
semialgebraic sets arbitrarily well. This implies that if we
relax the objective of planning to include some small toler-
ance for inaccuracy—which we always do, when we imple-
ment algorithms using floating point arithmetic—then semi-
algebraic C is in a sense as good as any other representa-
tion. That is, semialgebraic C? is universal: it can model any
robotic system arbitrarily well. In this section, we formalize
and prove this claim.

We first observe that a dynamical system with piecewise-
analytic differential constraints can be described by a strati-
fied C? instance with analytic constraints.

Theorem 4. Let the dynamics & = f(x,u) be piecewise-
analytic in the sense of Sussmann (1979). If the system is
stratified controllable in the sense of Goodwine and Bur-
dick (2001), then there is a stratified C? instance whose ac-
tions represent piecewise-analytic vector fields, in which the
constraints can be expressed as equalities and inequalities
involving only analytic functions.

A proof of this theorem is beyond the scope of this paper;
however, in our previous work (2016), we proved essentially
the same result as part of our proof of asymptotic optimal-
ity. Essentially, the proof involves constructing a foliation
on each stratum of a motion planning problem; the leaves
of these foliations are the states reachable without leaving a
particular stratum.*

Unfortunately, there is no hope of an algorithm to decide
plan existence for semianalytic C*. This is a consequence of
Richardson’s theorem (1969), which shows that there is no
algorithm to decide if an arbitrary semianalytic set is empty,
even for highly restricted subsets of analytic functions. For
example, Laczkovich (2003) showed that if F is the set of
functions formed by substituting x, sin 2™, and sin(z sin ™)
into an arbitrary polynomial with integer coefficients, then
there is no algorithm to decide if there exists such that
f(z) > 0, nor is there an algorithm to decide if there exists
x such that f(x) = 0. Consequently, there exist instances of
C? with semianalytic constraints for which we cannot even
decide if a plan of length one exists.

However, analytic functions on a C? domain can be
well-approximated by algebraic functions. In particular,
Baouendi and Goulaouic (1971; 1974) showed that if f is
an analytic function defined on a compact set K C R", then
there exist constants «, 5 > 0 such that for any n € N, there
is a polynomial p,, of degree n with

sup | f(z) — pu(x)| < 2°7°m.
reK

While constructing such a polynomial may be difficult, this
is sufficient to show that we can solve a relaxed version
of the plan existence problem for compact semianalytic do-
mains.

“In the notation of control theory, the strata are called modes
and the leaves of the foliations are called orbits.

10391

Theorem 5. For any semianalytic instance I and pos-
itive €, there is a corresponding semialgebraic instance
T with maximal degree O(loge) such that any plan P
feasible for T is nearly feasible for I. Let d(p,p’) =
sup, inf; || Trace (p) (s)—Trace (p) (¢)|| be the distance be-
tween two plans. If Preas|Z] is the set of feasible plans for T,
then

P € Preas|Z] <= 3p € Preas|Z] : d(p, D) < €.

Together, the results of the previous sections imply that
we can decide plan existence in any planning domain with
piecewise-analytic differential constraints to any degree of
precision using only polynomial space. While the set of all
TMP problems is not well-defined, no formulation of which
we are aware is not a special case of the more general set of
problems with piecewise-analytic constraints. In this sense
then, we can claim that TMP, or more generally, all deter-
ministic robotic planning, are PSPACE-complete.

Comparison to Standard Formalisms

Our framework is non-standard, and one might object that
it is too inclusive: many problems we can represent using
stratified semialgebraic C* do not resemble practical robotic
planning problems. However, as a consequence of the uni-
versality of semialgebraic C*, our complexity results apply
not just to problems given in our representation, but to TMP
more generally. In particular, any representation for robotic
systems that includes task planning or motion planning as
a special case is in some sense equivalent to semialgebraic
C3, and is therefore PSPACE-complete. This is highly rel-
evant to recent efforts in the robotic planning community to
establish a common representation for TMP problems.

For example, Lagriffoul et al. (2018) proposed a standard-
ized representation for benchmarking TMP. The language
they describe is contained within stratified semialgebraic C?,
and thus all of our decidability and complexity results extend
readily to those benchmark problems. Other frameworks,
like the extended action specification of Garrett et al. (2016)
or the logic-geometric programming described by Toussaint
and Lopes (2015; 2017), can also be interpreted as special
cases of the C? representation.

Implications of PSPACE-completeness

We have shown that task and motion planning is PSPACE-
complete. The algorithm we provide is not practical; it dis-
cards most of the structure in the planning problem, and
makes no use of heuristics or other standard techniques.
Still, its existence has several important ramifications. First,
the universality of semialgebraic C* implies sufficient con-
ditions for a specification language. Any language that can
specify arbitrary semialgebraic C* is “as good as” any
other language. These conditions are highly relevant to the
ongoing effort to standardize a specification language for
TMP. Second, task and motion planning is asymptotically
no harder than task planning or motion planning alone. This
is the best result we could have hoped for; provided we re-
strict our attention to controllable systems, there is no subtle

interaction that makes hybrid planning even harder than the
already-hard constituent planning problems. Finally, Corol-
lary 1 highlights the importance of discrete structure; with-
out a stratification, the problem quickly stops even resem-
bling motion planning. This points to the fundamental im-
portance of symbolic reasoning as a tool for understanding
continuous decision-making.

References

Basu, S.; Pollack, R.; and Roy, M.-F. 2016. Algorithms
in Real Algebraic Geometry, volume 10 of Algorithms and
Computation in Mathematics. Springer-Verlag.

Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence 69(1-
2):165-204.

Canny, J.
MIT Press.

Cheng, P.; Pappas, G.; and Kumar, V. 2007. Decidability of
motion planning with differential constraints. In Proceed-
ings of the IEEE International Conference on Robotics and
Automation (ICRA).

Coste, M. 2000. An introduction to semialgebraic geometry.
Istituti Editoriali e Poligrafici Internazionali.

Dantam, N.; Kingston, Z.; Chaudhuri, S.; and Kavraki, L.
2018. An incremental constraint-based framework for task
and motion planning. The International Journal of Robotics
Research 37(10):1134-1151.

Davis, M. 1973. Hilbert’s tenth problem is unsolvable. The
American Mathematical Monthly 80(3):233-269.

Deshpande, A.; Kaelbling, L. P.; and Lozano-Pérez, T. 2016.
Decidability of semi-holonomic prehensile task and motion
planning. In Workshop on the Algorithmic Foundations of
Robotics.

Garrett, C. R.; Lozano-Pérez, T.; and Kaelbling, L. P. 2016.
FFRob: Leveraging symbolic planning for efficient task and
motion planning. The International Journal of Robotics Re-
search.

Garrett, C. R.; Lozano-Pérez, T.; and Kaelbling, L. P. 2018.
Sampling-based methods for factored task and motion plan-
ning. The International Journal of Robotics Research 37(13-
14):1796-1825.

Goodwine, B., and Burdick, J. 2001. Controllability of
kinematic control systems on stratified configuration spaces.
Transactions on Automatic Control 46(3):358-368.

Hilbert, D. 1902. Mathematical problems. Bulletin of the
American Mathematical Society 8(10):437-479.

Jakubezyk, B., and Sontag, E. 1990. Controllability of

nonlinear discrete-time systems: A Lie-algebraic approach.
SIAM Journal on Control and Optimization 28(1):1-33.

Koditschek, D. 1994. An approach to autonomous robot
assembly. Robotica 12(02):137-155.

Laczkovich, M. 2003. The removal of 7 from some undecid-
able problems involving elementary functions. Proceedings
of the American Mathematical Society 131(7):2235-2240.

1988. The complexity of robot motion planning.

10392

Lagriffoul, F.; Dantam, N.; Garrett, C.; Akbari, A.; Srivas-
tava, S.; and Kavraki, L. 2018. Platform-independent bench-
marks for task and motion planning. Robotics and Automa-
tion Letters 3(4):3765-3772.

Lozano-Pérez, T. 1976. The design of a mechanical as-
sembly system. Master’s thesis, Massachusetts Institute of
Technology.

Matiyasevic, Y. V. 1970. The Diophantineness of enumer-
able sets. Doklady Akademii Nauk 191(2):279-282.

Reif, J. 1979. Complexity of the mover’s problem and gener-
alizations. In IEEE Symposium on Foundations of Computer
Science, 421-427.

Richardson, D. 1969. Some undecidable problems involv-
ing elementary functions of a real variable. The Journal of
Symbolic Logic 33(4):514-520.

Savitch, W. 1970. Relationships between nondeterministic
and deterministic tape complexities. Journal of computer
and system sciences 4(2):177-192.

Schwartz, J., and Sharir, M. 1986. Motion planning and
related geometric algorithms in robotics. In Proceedings of
the International Congress of Mathematicians, 1594—-1611.

Seidenberg, A. 1954. A new decision method for elementary
algebra. Annals of Mathematics 365-374.

Sussmann, H. 1979. Subanalytic sets and feedback control.
Journal of Differential Equations 31(1):31-52.

Tarski, A. 1948. A decision method for elementary algebra
and geometry. Technical Report R-109, RAND Corp.

Toussaint, M., and Lopes, M. 2017. Multi-bound tree search
for logic-geometric programming in cooperative manipula-
tion domains. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA).

Toussaint, M. 2015. Logic-geometric programming: An
optimization-based approach to combined task and motion
planning. In Proceedings of the International Joint Confer-
ence on Artificial Intelligence (IJCAI).

Vega-Brown, W., and Roy, N. 2016. Asymptotically opti-
mal planning under piecewise-analytic constraints. In Pro-
ceedings of the Workshop on the Algorithmic Foundations of
Robotics (WAFR).

Vendittelli, M.; Laumond, J.-P.; and Mishra, B. 2018. De-
cidability in robot manipulation planning. arXiv preprint
arXiv:1811.03581.

Wilfong, G. 1988. Motion planning in the presence of mov-
able obstacles. In Proceedings of the Fourth Annual Sympo-
sium on Computational Geometry, 279-288. ACM.

