The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Parallel AND/OR Search for Marginal MAP

Radu Marinescu, Akihiro Kishimoto
IBM Research
Dublin, Ireland
{radu.marinescu, akihirok } @ie.ibm.com

Adi Botea*

Eaton
Dublin, Ireland
adibotea@eaton.com

Abstract

Marginal MAP is a difficult mixed inference task for graph-
ical models. Existing state-of-the-art algorithms for solving
exactly this task are based on either depth-first or best-first
sequential search over an AND/OR search space. In this paper,
we explore and evaluate for the first time the power of parallel
search for exact Marginal MAP inference. We introduce a new
parallel shared-memory recursive best-first AND/OR search
algorithm that explores the search space in a best-first manner
while operating with limited memory. Subsequently, we de-
velop a complete parallel search scheme that only parallelizes
the conditional likelihood computations. We also extend the
proposed algorithms into depth-first parallel search schemes.
Our experiments on difficult benchmarks demonstrate the ef-
fectiveness of the parallel search algorithms against current
sequential methods for solving Marginal MAP exactly.

Introduction

Graphical models provide a powerful framework for rea-
soning about conditional dependency structures over many
variables. The Marginal MAP (MMAP) query asks for the
optimal configuration of a subset of variables that has the
highest marginal probability. More specifically, MMAP dis-
tinguishes between maximization variables (called MAP vari-
ables) and summation variables, and it is more difficult than
either max- or sum-inference tasks alone primarily because
summation and maximization operations do not commute,
forcing processing along constrained variable orderings that
may have significantly higher induced widths (Dechter 1999).
This implies larger search spaces for search algorithms or
larger messages when using message-passing schemes.

In general, MMAP is NP*"-complete and it can be NP-hard
even on tree structured models (Park 2002). Still, MMAP is
often the appropriate task where hidden variables or uncertain
parameters exist. It can also be treated as a special case of the
more complicated frameworks of decision networks (Howard
and Matheson 2005; Liu and Ihler 2013).

State-of-the-art exact algorithms for MMAP are based on
either depth-first or best-first search over an AND/OR search

*This work was performed while the author was affiliated with
IBM Research, Ireland.
Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

10226

space that is sensitive to the underlying problem structure.
Specifically, AOBB is a recent algorithm that traverses the
context minimal AND/OR search graph in a depth-first man-
ner and uses a heuristic evaluation function to prune the
search space in a typical branch and bound fashion (Mari-
nescu, Dechter, and Thler 2014). AOBF is a memory in-
tensive algorithm that explores the AND/OR search space
in a best-first rather than depth-first manner (Marinescu,
Dechter, and Thler 2015). This enables AOBF to visit sig-
nificantly smaller search spaces than AOBB which some-
times translates into important time savings as well as con-
siderably fewer conditional likelihood evaluations. The re-
cursive best-first search algorithm called RBFAOO uses a
threshold controlling mechanism to drive the search in a
depth-first like manner and thus is able to operate within
restricted memory (Marinescu, Dechter, and IThler 2015).
These algorithms are most effective when guided by heuris-
tics based on weighted mini-bucket elimination which is
enhanced with cost-shifting schemes (Liu and Ihler 2011;
Marinescu, Dechter, and Ihler 2014).

Up until now, all these advanced search-based MMAP
solvers were developed primarily as sequential search algo-
rithms. One way to extract substantial speed-ups from the
hardware and further improve the performance is to resort
to parallel processing. Indeed, parallel search has been suc-
cessfully applied in several Al areas, such as planning (Kishi-
moto, Fukunaga, and Botea 2013), satisfiability (Chrabakh
and Wolski 2003), and game playing (Campbell, Hoane, and
Hsu 2002; Silver et al. 2016). Solving graphical models in
parallel, especially in shared-memory multi-core architec-
tures, has been explored recently in the context of pure MAP
queries only (Kishimoto, Marinescu, and Botea 2015).

In this paper, we explore and evaluate the power of shared-
memory parallel search for solving MMAP exactly, which
to the best of our knowledge has not been attempted be-
fore. More specifically, we develop SPRBFAOO-MMAP, a
new parallel recursive best-first AND/OR search algorithm
for MMAP. The algorithm maintains a single cache table
which is shared amongst the threads so that each thread can
effectively reuse the search effort performed by the others.
In addition, the algorithm associates with each node a so-
called virtual g-value that captures both the estimated cost

of the subproblem below it as well as the number of threads
currently working on that subproblem. This mechanism en-
sures an effective and balanced exploration of the search
space. Although we can show that SPRBFAOO-MMAP is
correct whether or not is a complete search scheme remains
open. Therefore, we also introduce a complete parallel search
scheme called SPRBFAOO2-MMAP that uses a single mas-
ter thread to conduct the search over the MAP variables in
a recursive best-first search manner and parallelizes only
the conditional likelihood computations using a set of slave
threads. Subsequently, we extend the proposed parallel best-
first search algorithms into parallel depth-first search schemes.
Our empirical evaluation on various difficult benchmarks
for MMAP demonstrates conclusively that the new parallel
AND/OR search schemes improve considerably over current
state-of-the-art sequential AND/OR search approaches, in
many cases leading to considerable speed-ups (up to 8-fold
using 12 threads) especially on the harder problem instances.

Background

A graphical model is a tuple M = (X, D, F), where X =
{X; : i € V} is a set of variables indexed by set V and
D = {D; : i € V} is the set of their finite domains of
values. F = {¢,(X,) : a € F} is a set of discrete non-
negative real-valued factors indexed by set F', where each 1,
is defined on a subset of variables X, C X, called its scope.
Specifically, ¢, : Q. — R4, where), is the Cartesian
product of the domains of each variable in X,,. primal graph
whose vertices are the variables and whose edges connect
any two variables that appear in the scope of the same factor.
The model M defines a factorized probability distribution on
X

1
P(x) = 7 H Va(Xa)
aEF
The partition function, Z = [],cp a(Xa), normalizes
the probability.

Let Xy = {X1,..., X, } be a subset of X called MAP
variables and Xg = X \ X, be the complement of X/,
called SUM variables. The Marginal MAP (MMAP) task
seeks an assignment X}, to variables X 5, having maximum
probability. This requires access to the marginal distribution
over X s, which is obtained by summing out variables Xg:

Therefore, x3, = argmax,, >, [[,cp ¥a(Xa)-

AND/OR Search Spaces

Significant recent improvements in search for MMAP infer-
ence have been achieved by using AND/OR search spaces,
which often capture problem structure far better than stan-
dard OR search methods (Dechter and Mateescu 2007,
Marinescu, Dechter, and Ihler 2014). The AND/OR search
space is defined relative to a pseudo tree of the primal graph,
which captures problem decomposition.

ey

Definition 1 (pseudo tree). A pseudo tree of an undirected
graph G = (V, E) is a directed rooted tree T = (V, E') such
that every arc of G not in E' is a back-arc in T connecting a
node in T to one of its ancestors. The arcs in E' may not all
be included in E.

10227

(wq [eC] [eD] [AD]

(b) Pseudo tree

(c) AND/OR search graph

Figure 1: A simple graphical model.

For MMAP, we need to restrict the collection of pseudo
trees to valid ones only. Specifically, given a graphical model
M with primal graph G, a pseudo tree T of G is valid for the
MAP variables Xy if T restricted to X 5, forms a connected
start pseudo tree T' having the same root as 7 (i.e., 7’ has
the same root and is a connected subgraph of 7).

Given a graphical model M = (X,D,F) with primal
graph G and valid pseudo tree 7 of G, the AND/OR search
tree ST based on 7 has alternating levels of OR nodes cor-
responding to the variables, and AND nodes correspond-
ing to the values of the OR parent’s variable, with edge
weights extracted from the original functions F' (for details
see (Dechter and Mateescu 2007)). Identical sub-problems,
identified by their context (the partial instantiation that sep-
arates the sub-problem from the rest of the problem graph),
can be merged, yielding an AND/OR search graph. Merg-
ing all context-mergeable nodes yields the context minimal
AND/OR search graph, denoted C'r. The size of C'r is expo-
nential in the induced width of G along a depth-first traversal
of T (also known as the constrained induced width).

Definition 2 (solution subtree). A solution subtree Zp; of
C'r relative to the MAP variables Xy is a subtree of Cy
restricted to Xy that: (1) contains the root of C; (2) if an
internal OR node n € Cr is in &y, then n is labeled with a
MAP variable and exactly one of its children is in &z, (3)
if an internal AND node n € C'r is in &) then all its OR
children which denote MAP variables are in I .

Each node n in C1 can be associated with a value v(n)
capturing the optimal marginal MAP value of the conditioned
sub-problem rooted at n, while for a sum variable it is the
likelihood of the partial assignment denoted by n. Clearly,
v(n) can be computed recursively based on the values of n’s
successors: the OR nodes labeled by MAP variables (resp.
SUM variables) perform maximization (resp. summation),
while the AND nodes perform multiplication.

Example 1. Figure 1 shows a graphical model with 8 bi-
valued variables and 11 binary factors, where the MAP
and sum variables are Xy = {A,B,C,D} and Xg =
{E,F,G, H}, respectively. Figure la is the primal graph
while Figure 1b is a valid pseudo tree whose MAP variables
form a start pseudo tree (dashed lines denote back-arcs). Fig-
ure Ic displays the context minimal AND/OR search graph
based on the pseudo tree (the contexts are shown next to the
pseudo tree nodes). A solution subtree corresponding to the
MAP assignment (A=0,B=1,C=1,D=0) is shown in red.

Exact Sequential Search Schemes for MMAP

The current best performing exact methods for solving
MMAP are based on either depth-first or best-first sequen-
tial search over an AND/OR search space. Specifically,
depth-first AND/OR Branch and Bound (AOBB) (Marinescu,
Dechter, and Ihler 2014) explores in a depth-first manner
the context minimal AND/OR search graph while keeping
track of the value of the best solution found so far (a lower
bound on the optimal MMAP value). It uses this value and the
heuristic function to prune away portions of the search space
that are guaranteed not to contain the optimal solution in a
typical branch and bound manner. Best-First AND/OR Search
(AOBF) (Marinescu, Dechter, and Thler 2015) is a variant
of AO* (Nilsson 1980) that explores the context minimal
ANDY/OR search graph in a best-first rather than depth-first
manner. This enables AOBF to visit a significantly smaller
search space than AOBB which sometimes translates into im-
portant time savings as well as considerably fewer conditional
likelihood evaluations. Recursive Best-First AND/OR Search
(RBFAOO) (Marinescu, Dechter, and Thler 2015) extends
Recursive Best-First Search (RBFS) (Korf 1993) to MMAP
queries and uses a threshold controlling mechanism to drive
the search in a depth-first like manner. The algorithm may
operate in linear space, however, for efficiency, it may use a
fixed size cache table to store some of the nodes (based on
contexts). In practice, RBFAOO outperformed dramatically
both AOBB and AOBF on a variety of benchmarks.

Weighted Mini-Bucket Heuristics

The effectiveness of the above search algorithms greatly de-
pends on the quality of the upper bound heuristic function
that guides the search. More specifically, they use a recently
developed weighted mini-bucket (WMB) based heuristic
(Liu and Ihler 2011) which can be pre-compiled along the
reverse order of the pseudo tree (Kask and Dechter 2001;
Marinescu, Dechter, and Ihler 2014). First, WMB improves
the naive mini-bucket bound (Dechter and Rish 2003) with
Holder’s inequality. For a given variable Xy, the mini-
buckets Q- associated with X, are assigned a non-negative
weight wy, > 0, such that > wy, = 1. Then, each
mini-bucket r is eliminated using a powered sum operator,
(X x, f(X)1/wrr)wkr The cost shifting scheme (or repa-
rameterization) is performed across mini-buckets to match
the marginal beliefs (or "moments”) to further tighten the
bound. The single-pass message passing algorithm yields a
scheme denoted by WMB(%), where ¢ is called the ¢-bound
and controls the accuracy of the approximation.

10228

Parallel AND/OR Search for MMAP

In this section, we present the first parallel AND/OR search
algorithms for solving MMAP exactly in shared memory
environments. We extend a previous parallel search approach
called SPRBFAOQ that was introduced recently for pure
MAP queries (Kishimoto, Marinescu, and Botea 2015). The
idea is to search the context minimal AND/OR graph in paral-
lel using multiple threads and associate both MAP and SUM
nodes with so-called virtual g-values which capture the esti-
mated cost of the corresponding subproblems as well as the
number of threads working on them. This ensures an effec-
tive and balanced exploration of the corresponding subspaces
(Kaneko 2010). More importantly, since we parallelize the
search below SUM nodes our approach is directly applicable
to counting or sum-inference tasks as well.

Parallel Recursive Best-First Search

Algorithm 1 describes our parallel recursive best-first
AND/OR search approach for MMAP which we denote here-
after by SPRBFAOO-MMAP for consistency. The algorithm
initiates parallelism by spawning a number of threads that
all start from the root node of the search space and run in
parallel (lines 1-5). The threads share one cache table, which
allows them to effectively reuse the results of each other. A
cache table entry corresponds to a node n and contains the
following information: a g-value g(n) that is an upper bound
on the optimal value of node n and is typically provided by
the heuristic evaluation at the node (i.e., the WMB(%) value),
a flag n.solved indicating whether n is solved optimally, a
virtual g-value vq(n), a best known solution cost 3(n) for
node n, the number of threads currently working on n, and a
lock. Two threshold values n.th and n.thlb are maintained
for each node n and they may differ from one thread to an-
other. More specifically, n.th indicates the next best upper
bound to node n, whereas n.thlb gives a lower bound on the
best solution cost known for n so far and is only relevant to
OR nodes labeled by MAP variables. When accessing a cache
entry, threads lock it temporarily for other threads. Ctxt(n)
identifies the context of n, which is further used to access
the corresponding cache entry. The methods SaveCache()
and ReadCache() store and, respectively, retrieve from cache
the following values associated with the node context: ¢(n),
n.solved, vq(n) and 3(n), respectively. Algorithms 2 and 3
show how the best child node and, respectively, an unsolved
child node is selected for expansion.

Function RBFS(n) (lines 6-41 in Algorithm 1) describes
the procedure invoked on each thread. When a thread exam-
ines a node n, it first increments in the cache the number
of threads working on that node (line 7). Then it decreases
vg(n) by dividing it with ¢ > 1, and stores the new value
in the cache (line 8). The virtual g-value vg(n) is initially
set to ¢(n) and, as more threads work on solving n, vg(n)
decreases due to the repeated divisions by . In effect, vg(n)
reflects both the estimated cost of node n (through its g(n)
component) and the number of threads working on n. Com-
puting vg(n) this way allows us to dynamically control the
degree to which threads overlap when exploring the search
space. When a given area of the search space is more promis-
ing than others (i.e., a node with a larger vq value), more than

Algorithm 1: SPRBFAOO-MMAP

Input: Graphical model M = (X, D, F), pseudo tree 7,
heuristic A (), Xy = X \ X, N CPU cores
1 Function SPRBFAOO-MMAP () :
2 | forall i from I to N do
3 root.th = 0; root.thlb = —oco
4 LLaunch RBF'S (root) on a separate thread

|_return optimal cost (as 7oot’s g-value in cache)

Function RBFS (n) :
IncrementNrThreadsInCache(Ctxt(n))
DecreaseVQInCache(Ctxt(n))
if ch(n) = () then
q = 1; solved = true
SaveCache (Ctxt(n), q, solved, q, q)
DecrementNrThreadsInCache(Ctxt(n))
return

e ® 9 &

11
12
13

14 GenerateChildren (n)

15 | if n is an OR node then

16 while true do

17 if n is labeled by MAP variable then

18 (Cbest, vq,vq2,q, f) = BestChild (n)

19 n.thlb = max(n.thib,)

20 if vg < n.thV q < n.thlbV n.solved then
21 | break

Chest-th = max(n.th,vqa/0) /Win,c,..,)
¥Cbest~thlb — n'thlb/w(nycbest>

else if n is labeled by SUM variable then

(q,vq,8) = sum (n)
if vg < n.th V n.solved then break
| Cbest = UnsolvedChild(n); Chest.th =0

gRBF S (Cbest)

22
23

24
25
26
27

28

else if n is an AND node then
while true do
(¢,vq, B) =Prod(n)
n.thlb = max(n.thlb,)
if vg < n.th V n.solved then break
(Cbests Geypar > Vqeyosy) = UnsolvedChild (n)
Chest-th = vq(Cpest) - (n.th/vq)
Chest-thlb = q(cpest) - (n.thib/q)
RBE'S (Cpest)

29
30
31
32
33
34
35
36
37

38
39

if n.solved VV NrThreadsCache(Ctxzt(n)) = 1 then
| vq +q

DecrementNrThreadsInCache(Ctxt(n))

| SaveCache (Ctxt(n), q, n.solved, vq, bs)

40
41

one thread are encouraged to work together within that area.
On the other hand, when several areas are roughly equally
promising, threads should diverge and work on different ar-
eas. Indeed, the tests on lines 20, 26 and 33 prevent a thread
from working on a node n if vq(n) < n.th. A smaller vq(n),
which increases the likelihood that vg(n) < n.th, may reflect
a less promising node (i.e., small g-value), or many threads
working on n, or both. Therefore, the virtual g-values pro-
vide an automated and dynamic mechanism for tuning the
number of threads working on solving a node n based on
how promising that node is.

10229

Algorithm 2: BESTCHILD(n)

Input: node n (OR node labeled by MAP variable)
1 ¢q=q2=vq=1vq2 = [= —o0 and n.solved = false
2 forall n’s child c; do
if Ctxt(c;) € Cache then
L(qci7 Se;» Ve, , Be;) = ReadCache (Ctxt(c;))

else
ge; = h(ci); se, = false
vge; = h(ci); Be; = —00

Ge; = W(n,e;) * q(cz), Vqc; = W(n,c;) * 'Uq(Ci)
5 = max(ﬂ, W(n,cy) * 561-

if g, > q V (ge; = ¢ A —n.solved) then

| n.solved = s¢;; q = qe,

12
13

if vge, > vq A —s.; then
| vg2 = vq; vq = Vqe,; Chest = Ci

| elseif (vge, > vga2 A —sc,;) then vg2 = vge,

14

15 return (Coest, vq, vq2, ¢, B)

Algorithm 3: UNSOLVEDCHILD(n)

Input: node n
1 forall n’s child c; do
if Ctxt(c;) € Cache then
L(in s Scis Vqe,, Be;) = ReadCache (Cixt(c;))
else
qe; = h(ci); sc, = false
Vqe; = h(ci); fe; = —00
if —s., then
qubest = Vqc;s 49 = qc;

Chest < Ci ﬂ — Bci

10 return (Cpest, UVqvest, ¢, 3)

Following the expansion of the current node n, the node
values vq, ¢ and 3 are updated using the values of its children
(lines 18, 25, 31). The thread backtracks to n’s parent if at
least one of the following conditions hold: vg(n) < n.th,
discussed earlier; g(n) < n.thlb i.e., a solution containing
n cannot possibly beat the best known solution; or the node
is solved. The solved flag is true iff the node value has been
proven to be optimal. Notice that we prune with n.thlb only
at OR nodes labeled by MAP variables.

The best successor cp.; 0f a node is selected as follows.
At OR node n labeled by a MAP variable, ¢ is the child
with the largest vg among all children not solved yet (see
method BESTCHILD). At OR nodes labeled by summation
variables as well as at AND nodes, any unsolved child can
be chosen (see method UNSOLVEDCHILD). Subsequently,
the thresholds of node cp.s; are updated and the algorithm
recursively processes Cpest-

Notice that when updating the threshold n.th we use the
overestimation parameter § > 1 (line 22) to minimize the
node re-expansion rate (Marinescu, Dechter, and Ihler 2015)
as well as the vq- instead of the g-value to obtain the thread
coordination mechanism presented earlier. In contrast, the
threshold n.thlb is updated in a consistent way with 5(n)

and the current g-values of n and its children (lines 19, 23,
32 and 36, respectively).

When a thread backtracks to n’s parent, if either n’s solved
flag is set or no other thread currently examines n, the thread
sets vg(n) to g(n) (lines 38-39). Finally, the thread decre-
ments in the cache the number of threads working on n (line
40) and saves in the cache the recalculated vq(n), ¢(n), S(n),
and the solved flag (line 41).

To discuss whether or not search can return an optimal
solution tree cost, we extend to parallel search the notion
of memory requirement linear in the search depth and the
branching factor along the path, which is introduced in (Korf
1993; Kishimoto, Marinescu, and Botea 2019). An additional
structure linear to the number of MAP variables is necessary
to return an actual assignment.

Definition 3. Given a search problem and an amount of
memory available, we say that the reasonable memory re-
quirement is satisfied if, for any path that could be explored
in the search, the memory for each thread is sufficient to
store all nodes along the current paths, together with all their
siblings.

If ¢ is the number of threads, b is the maximum branching
factor, and d is the maximum depth of a path explored in the
problem at hand, we need at least O (bdt) memory. Under the
reasonable memory requirement, it follows that:

Theorem 1 (correctness). Algorithm SPRBFAOO-MMAP
guided by an admissible heuristic returns optimal solutions.

Proof. The optimal solution cost v(n) is calculated by using
the g-values rather than the vg-values in the cache table. It is
therefore sufficient to prove that all the g-values in the cache
table are always admissible.

Let T}, be the state of the cache table immediately after the
k-th save is performed in the cache table. Let gx(n) be the
value saved in T}, for n if that value exists in T, or h(n) if n
is not preserved in T}. We prove this by induction on k in an
analogous way to (Akagi, Kishimoto, and Fukunaga 2010;
Kishimoto, Marinescu, and Botea 2015).

T} has only admissible values since no result is stored.

Assume that the above property holds for 7j. Then,
gr(n) > v(n) holds for any node n. The g-value gi41(n),
saved in Tj1, is then calculated as: (1) If n is a terminal
leaf node in the SUM tree then gx11(n) = wv(n) holds;
(2) If n is an internal OR node in the SUM tree, then
e+1(n) = >, au(ci) = >, v(ci) = v(n), where ¢; is n’s
child; (3) If n is an internal AND node in the SUM tree, then
Gk+1(n) = I ar(ci) > [1; v(ci) = v(n), where ¢; is n’s
child; (4) If n is an internal OR node in the MAP tree, then
Qet+1(n) = w(N, Crest) - i (Cpest) = max; (w(n, ¢;) - qi(ci))
holds where ¢; is n’s child c¢pes; is the best child of n. Addi-
tionally, because g (¢;) > v(¢;), qe+1(n) > max;(w(n, ¢;)-
v(c;)) = v(n) holds; (5) If n is an internal AND node in the
MAP tree g1(n) = [[; ax(ci) > [1; v(ci) = v(n) holds,
where ¢; is n’s child. Hence, T} 1 contains only admissible
values. O

Although SPRBFAOO-MMAP is correct, its completeness
remains open. We conjecture that SPRBFAOO-MMAP is
also complete, and leave the analysis as future work.

10230

A Complete Parallel Search Scheme

We next describe a scheme called SPRBFAOO2-MMAP that
is both correct and complete for MMAP. The idea is to use
one master thread to manage the search over the MAP vari-
ables, and a set of slave threads that share one cache table
and are dedicated to solving only the conditioned summation
subproblems. More specifically, when the master reaches a
conditioned summation subproblem, it signals the slaves to
start searching the subproblem in parallel. Then, the master
waits for the slaves to finish and subsequently propagates
back the results to update the g-values of the nodes labeled
by MAP variables. These steps are repeated until an optimal
solution is found.

All slaves start searching at the same root node of the con-
ditioned summation subproblem. When a slave expands a
node it reorders the children generated randomly to encour-
age diversification and focus the search on regions that have
not been examined by other threads. The shared cache table
is used to alleviate the duplicated search effort performed
by the threads. The algorithm can easily be implemented on
top of SPRBFAOO-MMAP, but we omit the details for space
reasons.

The following lemma which is a modification to Lemma 7
in (Kishimoto, Marinescu, and Botea 2019) holds. The proof
of Theorem 3 below requires the lemma.

Lemma 2. Assume that SPRBFAOO2-MMAP examines a
node n with th(n) = b, where th(n) is a threshold at node n.
Then, the master/slave of SPRBFAOO2-MMAP backtracks to
n in finite time with either b > q(n) and/or n is marked as
solved/deadend.

Theorem 3 (correctness and completeness). Algorithm
SPRBFAOO2-MMAP guided by an admissible heuristic is
correct and complete.

Proof sketch. The correctness is proven in a similar way to
Theorem 1. Therefore, we give a proof sketch to the complete-
ness. The master thread of SPRBFAOO2-MMAP conducts
a sequential recursive best-first AND/OR search (RBFAOO)
over the MAP variables. From Theorem 3.2 in (Kishimoto
and Marinescu 2014) we know that RBFAOO search for the
pure MAP task is complete.

We prove that SPRBFAOO2-MMAP eventually expands
a new SUM node in finite time. We assume that no new
unsolved SUM node is expanded after a certain time has
passed. Let [p(n) be the length of the longest path to node n
from the root. Let S be a set of unsolved SUM nodes which
have been expanded before but hold th(n) < g(n) for each
node n € S an infinite number of times.

Let npqqp = argmax,, gIp(n). Since n,4,’s children are
visited at most a finite number of times, there exists an con-
stant value k (stemming from children’s g-values) which
holds q(nq4s) > k. Let m be a node where SPRBFAOO2-
MMAP starts descending during no new node expansion.
Because of the reasonable memory requirement, m is always
preserved in memory. In addition, Lemma 2 requires th(m)
to continue to be decreased. This leads to th(n;,q.) < k in
a finite number of visits to n,,.,. Hence, n,,,, needs to be
expanded with th(n,,q.) < k. Lemma 2 indicates that & >

instance AOBB* | RBFAOO SPAOBB | SPRBFAOO | SPRBFAOO2 | SPAOBB2
p01.2 0.02 0.02 0.00 (5) 0.01 (4) 0.01 (2) 0.01 (2)
p01.3 0.09 0.08 0.02 (6) 0.02 (4) 0.02 (4) 0.02 (5)
p01.4 0.31 0.32 0.06 (6) 0.05 (6) 0.07 (5) 0.07 (4)
p01.5 1.03 1.02 0.17 (6) 0.16 (6) 0.23 (5) 0.22 (5)
p01.6 3.34 3.35 0.47 (7) 0.45 (7) 0.67 (5) 0.7 (5)
p01.7 10.75 10.7 1.48 (7) 1.43 (8) 2.07 (5) 2.04 (5)
pO1_8 34.99 35.38 4.28 (8) 4.54 (8) 6.58 (5) 6.58 (5)
p01.9 191.95 197.85 34.26 (6) 34.00 (6) 39.99 (5) 40.54 (5)
p0O1_10 811.13 796.84 124.65 (7) 122.63 (6) 164.72 (5) 161.78 (5)
pO1_11 oot oot 502.45 (-) 502.64 (-) 112321 (-) | 1105.94 (-)
p01_12 oot oot | 1965.02 (-) 1935.61 (-) oot oot
[overhead p [[[6.77% [6.90% [12.51% [12.37%]

Table 1: CPU time (sec) for solving the planning instances. Time limit 1 hour, 12 CPU cores. “oot” is “out of time”.

domain [AOBB¥ | SPAOBB [RBFAOO | SPRBFAOO
P=20%
#solved | #solved speedup | overhead p #solved | #solved | speedup | overhead p
pedigree 9 10 (3/7/11) 15.21% 9 10 | (5/7/10) 9.93%
pdb 13 19 (4/8/12) 21.95% 13 19 | (4/7/12) 25.48%
P=50%
pedigree 22 25 (2/5/12) 51.14% 24 25 | (2/6/17) 20.76%
pdb 71 90 (1/8/63) 38.89% 69 90 | (1/6/10) 32.21%
P =80%
pedigree 71 77 (1/5/16) 68.97% 71 77 (1/5/8) 33.76%
pdb 171 181 | (1/8/437) 168.02% 169 182 | (1/5/12) 73.57%

Table 2: Number of solved instances (#solved), speedup (min/avg/max) and average search overhead (p) for the pedigree and

pdb domains. Time limit 1 hour, 12 CPU cores.

q(Nmaz) holds and/or 1y, is marked as solved/deadend in
finite time, which is a contradiction to the assumption. []

We note that the dacopt algorithm introduced recently
for solving pure MAP queries in parallel (Otten and Dechter
2012) uses a similar master-slaves architecture, but is fun-
damentally different from SPRBFAOO2-MMAP because:
1) it is a distributed memory scheme that does not allow
any communication between the slave processes, 2) caching
information and bounds are not exchanged between the
slave processes, and 3) it assumes a particular distributed
grid computational environment (called condor). In contrast,
SPRBFAOO2-MMAP is a shared-memory algorithm suitable
for current multi-core architectures where cache table entries
(and therefore bounds) are shared between the slave threads.
Therefore, a direct comparison with daocopt is outside the
scope of this paper. Extending our approach to distributed
memory environments is one direction of future work that
we are currently investigating.

Parallel Depth-First Branch-and-Bound Search

Algorithm SPRBFAOO-MMAP uses an overestimation tech-
nique (via parameter 6 > 1 in line 22) to encourage the search
to keep examining the current subtree so that the number of
node re-expansions is minimized. Hence, setting J to a large
value effectively turns the search into a depth-first branch
and bound search. Therefore, two parallel depth-first search
schemes called SPAOBB-MMAP and SPAOBB2-MMAP

10231

can be obtained from algorithms SPRBFAOO-MMAP and
SPRBFAOO2-MMAP, respectively, by using § = oo, which
effectively sets the threshold n.th to 0.

Experiments

We evaluate empirically the performance of the proposed
parallel search schemes on standard benchmark problems for
MMAP. All algorithms were implemented in C++ (64-bit)
and the experiments were run on a 2.0GHz IBM Cloud virtual
machine with 12 cores and 64GB of RAM.

Our benchmark set includes three domains from genetic
linkage analysis (pedigree), computational protein design
(pdb) and probabilistic conformant planning (planning),
respectively. Since the original pedigree and pdb prob-
lems are pure MAP tasks (Elidan, Globerson, and Heine-
mann 2012), we generated 5 synthetic MMAP instances
for each pure MAP instance by randomly selecting P%
of the variables to act as MAP variables, where we chose
P € {20,50,80}. Intuitively, the three P values correspond
to hard (P = 20), medium (P = 50) and easy (P = 80) con-
ditioned summation subproblem. Therefore, we created 110
pedigree and 200 protein instances for each value of P (a to-
tal of 930 instances). The planning instances are derived
from probabilistic conformant planning with a finite time
horizon (Lee, Marinescu, and Dechter 2016). Specifically,
we considered instances corresponding to the probabilistic
version of the classical slippery gripper planning problem
with different time horizons (Kushmerick, Hanks, and Weld

planning: average speedups vs number of cores

127 —O— SPAOBB
~/~—~ SPRBFAOO
10
Qo
-g 8
[
[
Q
wn
e
I
4
>
©
4
2
2 a 6 8 10 12
number of cores
pdb: average speedups vs number of cores
121 —O— SPAOBB
~/~—~ SPRBFAOO
10
Q
-g 8
()
[
Qo
)
g\ 6
o
3
>
©
4
2

2 4 10

6 8
number of cores

Figure 2: Average speedups for the first 9 planning in-
stances in Table 1 (left) and 50 difficult pdb instances (right)
with varying numbers of cores. Time limit 1 hour.

1995). Computing an optimal policy to the planning prob-
lem is equivalent to solving exactly a MMAP query over the
dynamic Bayesian network (DBN) encoding of the original
planning problem (Lee, Marinescu, and Dechter 2016).

We compare our parallel algorithms SPAOBB-MMAP and
SPRBFAOO-MMAP! against their sequential search coun-
terparts, AOBB* and RBFAOO. Algorithm AOBB* is ob-
tained from RBFAOO by setting § = oo and therefore its
behavior is different from the original AOBB (Marinescu,
Dechter, and Ihler 2014). In addition, we ran the two com-
plete variants, namely SPAOBB2 and SPRBFAOO?2. The
parallel search algorithms ran with 12 threads each and
all competing algorithms used the same heuristic function
WMB(7) with the i-bound set to 10 for pedigree and
planning domains, and to 2 for the pdb domain, respec-
tively. The time limit was set to 1 hour and all algorithms
used a 10GB cache table to record partial search results.
When the cache table is full, the algorithms use the Small-

"We drop the -MMAP suffix from all names, for simplicity.

10232

TreeGC strategy (Nagai 1999) to discard R% entries with
small subtrees. As in (Akagi, Kishimoto, and Fukunaga 2010;
Kishimoto and Marinescu 2014), we set R to 30. For numer-
ical stability, our implementation solves MMAP as a mini-
mization problem in log space as suggested in (Marinescu
et al. 2018) and therefore we used parameters 6 = 1 and
¢ = 0.01, respectively.

Table 1 shows the CPU time in seconds obtained on the
planning instances. The number displayed in parenthesis
next to the CPU time denotes the speedup with respect to the
corresponding sequential search algorithm. We also compute
the parallel search overhead (Marsland and Popowich 1975),
denoted by p, and average it over those instances that were
solved by both sequential and parallel search. Specifically, p

i = . #par _
is defined as p = 100 (#Seq 1

denote the number of nodes expanded by the parallel and
the sequential search algorithm. Intuitively, p can explain the
overhead incurred by parallel search compared with sequen-
tial search due to duplicated search effort (i.e., expanding the
same node multiple times by different threads). record

Both SPAOBB and SPRBFAOO improve considerably
over their sequential counterparts, in some cases achieving up
to an 8-fold speedup. Furthermore, both parallel algorithms
solve two additional problem instances (pO1_11 and p01_12)
within the 1-hour limit. Their average search overhead is less
than 7% which explains in part the effectiveness of parallel
search on this domain.

SPAOBB2 and SPRBFAOO?2 are competitive only on the
easier problem instances. However, on the more difficult ones
they suffer due to a much higher search overhead, lock over-
head as well as poor load balancing due to blocking the main
thread during the parallel conditional likelihood computa-
tions. This is why we did not run these two algorithms on the
pedigree and pdb domains.

Table 2 summarizes the results in the pedigree and pdb
domains. We show the number of problem instances solved
(#solved), the speedup and the average search overhead (p)
with respect to sequential search. The second column gives
the domain size k, the average constrained induced width w
and the average induced width of the conditioned summa-
tion subproblems w}, respectively. The table is divided into
three horizontal blocks each corresponding to a MAP ratio
value P. The numbers shown in the speedup columns indi-
cate the minimum, average and maximum speedups obtained
for that particular benchmark. The parallel search algorithms
SPAOBB and SPRBFAOO consistently solve more prob-
lem instances compared with the corresponding sequential
search ones. They are also considerably faster, in some cases
achieving on average up to 8-fold speedups (e.g., pdb with
P = 50%). We also see that as the ratio of MAP variables
increases, the search overhead increases as well, and this may
explain the relatively mild slow down observed on the corre-
sponding problem instances. We notice several outliers (i.e.,
superlinear speedups), especially in the case of SPAOBB,
but these are most likely due to the actual information (in
particular the lower bounds) written in the cache table by
the different threads which in turn allows for more effective
pruning of the search space. For completeness, in Figure 3 we

), where #par and #seq

pedigree instance (P = 20%)

104
o AOBB* vs SPAOBB
A RBFAOO vs SPRBFAOO
510
Q
&2
s o 2
©
Q
2102
K
s
©
Q
z oA
O 10t
0
&0
=2
1004
10° 10t 10? 103 104
CPU sequential search (sec)
10¢ pedigree instance (P = 50%)
o AOBB* vs SPAOBB
A RBFAOO vs SPRBFAOO
510
[E IN
“)
e ot &
S o A
©
g 2
o] 10 o @ [¢}
©
©
Q
2
S0
10
A
o7
0 A
1004
10° 10* 10? 103 104
CPU sequential search (sec)
104 pedigree instance (P = 80%)
o AOBB* vs SPAOBB
A RBFAOO vs SPRBFAOO
/00
9 10° p
) g [N
= on A
= g
o o QA
2102 Ao
CU
2 *
e ’ A
s O@A
g 1 g A fo
10 Q
s Oﬁ%
o,
: W O
o
/o
100 - QZ
10° 10* 10? 103 104

CPU sequential search (sec)

pdb instance (P = 20%)

104
O AOBB* vs SPAOBB
A RBFAOO vs SPRBFAOO
< 10°
[
@2
< &
[}
5 8 I
% 102 6
] a
s 6
g 8
2
o
O 101
o
1004
10° 10t 102 103 104
CPU sequential search (sec)
10t pdb instances (P = 50%)
o AOBB* vs SPAOBB
A RBFAOO vs SPRBFAOO
o
510 0
g
: | %ZE
=
S
g | " om (AQQ
210 o
[)
= & éé%% o
5 o fo%- 3
e 8
=) &
a Q6 @
O 101 C%
&*°
o
oo
100 A, o
10° 10t 102 103 104
CPU sequential search (sec)
100 pdb instance (P = 80%)
o AOBB* vs SPAOBB
A RBFAOO vs SPRBFAOO
o
= 10° Ao ©
g % #o
5 of a®
] oa
£ 102 o & &l
] o 6 o
T , 6%
g 0”808 apch
2) o&f@ﬁ
o 9030
Gpae’
o % 9o
leRe)
100 e /&m)
10° 10t 102 103 104

CPU sequential search (sec)

Figure 3: CPU time (sec) for sequential vs parallel search on pedigree (left) and pdb (right) instances. Time limit 1 hour.

also plot the running times (on a log scale) of the sequential
versus parallel search algorithms, clearly showing the benefit
of parallel search.

In Figure 2 we plot the average speedup obtained by
SPAOBB and SPRBFAQOQO, on the subset of 9 planning
instances (p01_-2 to p01_10) as well as on 50 difficult pdb
instances for increasing numbers of CPU cores. Note that
all the instances considered were solved by both sequential

10233

and parallel search algorithms. The speedups obtained are
consistent with the behavior observed in the 12-core setup.

Conclusion

In this paper, we presented a new shared-memory parallel re-
cursive best-first AND/OR search scheme for solving MMAP
exactly. The algorithm uses the so-called virtual g-values to

enable the threads to work on promising regions of the search
space with effective reuse of the search effort performed by
other threads. Subsequently, we proposed a complete parallel
scheme that conducts the search over the MAP variables in a
single master thread and solves the conditioned summation
subproblems in parallel using a set of slave threads. We also
extended the proposed parallel best-first search algorithms
into parallel depth-first search schemes. Our experiments
demonstrated that the new parallel search algorithms im-
proved considerably over current state-of-the-art sequential
AND/OR search approaches, in many cases leading to con-
siderable speed-ups (up to 8-fold using 12 threads) especially
on hard problem instances.

References

Akagi, Y.; Kishimoto, A.; and Fukunaga, A. 2010. On
transposition tables for single-agent search and planning:
Summary of results. In Symposium on Combinatorial Search
(SoCS), 1-8.

Campbell, M.; Hoane, A.; and Hsu, F. 2002. Deep Blue.
Artificial Intelligence 134(1-2):57-83.

Chrabakh, W., and Wolski, R. 2003. Gradsat: A parallel SAT
solver for the Grid. Technical report, University of California
at Santa Barbara.

Dechter, R., and Mateescu, R. 2007. AND/OR search spaces
for graphical models. Artificial Intelligence 171(2-3):73-106.

Dechter, R., and Rish, I. 2003. Mini-buckets: A gen-
eral scheme of approximating inference. Journal of ACM
50(2):107-153.

Dechter, R. 1999. Bucket elimination: A unifying framework
for reasoning. Artificial Intelligence 113(1-2):41-85.

Elidan, G.; Globerson, A.; and Heinemann, U. 2012.
PASCAL 2011 probabilistic inference challenge.
http://www.cs.huji.ac.il/project/PASCAL/.

Howard, R., and Matheson, J. 2005. Influence diagrams.
Decision Analysis 2(3):127-143.

Kaneko, T. 2010. Parallel depth first proof number search.
In AAAI Conference on Artificial Intelligence, 95—100.

Kask, K., and Dechter, R. 2001. A general scheme for
automatic search heuristics from specification dependencies.
Artificial Intelligence 129(1-2):91-131.

Kishimoto, A., and Marinescu, R. 2014. Recursive best-first
AND/OR search for optimization in graphical models. In
Uncertainty in Artificial Intelligence (UAI), 400-409.

Kishimoto, A.; Fukunaga, A.; and Botea, A. 2013. Evalua-
tion of a simple, scalable, parallel best-first search strategy.
Artificial Intelligence 195:222-248.

Kishimoto, A.; Marinescu, R.; and Botea, A. 2015. Parallel
recursive best-first and/or search for exact map inference in
graphical models. In Advances in Neural Processing Infor-
mation Systems (NIPS), 928-936.

Kishimoto, A.; Marinescu, R.; and Botea, A. 2019. Depth-
first memory-limited AND/OR search and unsolvability in

cyclic search spaces. In International Joint Conference on
Artificial Intelligence (IJCAI), 1280-1288.

10234

Korf, R. 1993. Linear-space best-first search. Artificial
Intelligence 62(1):41-78.

Kushmerick, N.; Hanks, S.; and Weld, D. 1995. An algorithm
for probabilistic planning. Artificial Intelligence 76(1-2):239—
286.

Lee, J.; Marinescu, R.; and Dechter, R. 2016. Applying
search based probabilistic inference algorithms to probabilis-
tic conformant planning: Preliminary results. In Proceedings
of International Symposium on Artificial Intelligence and
Mathematics (ISAIM).

Liu, Q., and Ihler, A. 2011. Bounding the partition function
using Holder’s inequality. In Int’l Conference on Machine
Learning (ICML), 849-856.

Liu, Q., and Ihler, A. 2013. Variational algorithms for
marginal MAP. Journal of Machine Learning Research
14:3165-3200.

Marinescu, R.; Lee, J.; Dechter, R.; and Ihler, A. 2018.
AND/OR search for marginal MAP. Journal of Artificial
Intelligence Research 63(1):875-921.

Marinescu, R.; Dechter, R.; and Ihler, A. 2014. AND/OR
search for marginal MAP. In Uncertainty in Artificial Intelli-
gence (UAI), 563-572.

Marinescu, R.; Dechter, R.; and Thler, A. 2015. Pushing for-
ward marginal MAP with best-first search. In International
Joint Conference on Artificial Intelligence (IJCAI), 696-702.

Marsland, T., and Popowich, F. 1975. Parallel game-tree
search. IEEE Transactions on Pattern Analysis and Machine
Intelligence 7(4):442-452.

Nagai, A. 1999. A new depth-first search algorithm for
AND/OR trees. Master’s thesis, Department of Information
Science, University of Tokyo.

Nilsson, N. J. 1980. Principles of Artificial Intelligence.
Tioga, Palo Alto, CA.

Otten, L., and Dechter, R. 2012. A case study in complexity
estimation: Towards parallel branch-and-bound over graph-
ical models. In Uncertainty in Artificial Intelligence (UAI),
665-674.

Park, J. 2002. MAP complexity results and approximation
methods. In Uncertainty in Artificial Intelligence (UAI), 388—
396.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,
D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the game of Go with deep neural networks
and tree search. Nature 529:484-489.

