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Abstract

Representations of sequential data are commonly based on
the assumption that observed sequences are realizations of an
unknown underlying stochastic process, where the learning
problem includes determination of the model parameters. In
this context, a model must be able to capture the multi-modal
nature of the data, without blurring between single modes.
This paper proposes probabilistic Bézier curves (N -Curves)
as a basis for effectively modeling continuous-time stochastic
processes. The model is based on Mixture Density Networks
(MDN) and Bézier curves with Gaussian random variables as
control points. Key advantages of the model include the abil-
ity of generating smooth multi-mode predictions in a single
inference step which reduces the need for Monte Carlo simu-
lation. This property is in line with recent attempts to address
the problem of quantifying uncertainty as a regression prob-
lem. Essential properties of the proposed approach are illus-
trated by several toy examples and the task of multi-step se-
quence prediction. As an initial proof of concept, the model
performance is compared to an LSTM-MDN model and re-
current Gaussian processes on two real world use-cases, tra-
jectory prediction and motion capture sequence prediction.

1 Introduction

Probabilistic models of sequential data have a broad range
of applications related to representation learning, sequence
generation and prediction. Formulated as a sequence learn-
ing problem, these tasks can be tackled by learning a model
of a presumed underlying stochastic process {Xt}t∈T ,
where Xt is a random variable and T is an index set. The
model is then learned from given realizations (sample se-
quences).

This paper focuses on the subtask of multi-step sequence
prediction, where the evolution of a probability density func-
tion for n discrete time steps should be inferred, given m
subsequent observations of a sample sequence. Multi-step
predictions of this form are relevant in applications that re-
quire ahead-of-time planning, like robot navigation or au-
tonomous driving (Lefèvre, Vasquez, and Laugier 2014).
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Common approaches for tackling sequence prediction in-
clude autoregressive models, like the Gaussian Process re-
gression model (Roberts et al. 2013; Montgomery, Jen-
nings, and Kulahci 2015), and (stochastic) neural networks
(Rudenko et al. 2019). While being able to generate (multi-
modal) sequence predictions, a drawback shared by many
of these models is a computationally intensive inference
scheme. Further, the process of prediction is unconstrained
in most neural network architectures, leading to the genera-
tion of artifacts.

In order to overcome these limitations, this paper pro-
poses a model of a continuous-time stochastic process,
which extends on Mixture Density Networks (Bishop 2006)
and can be learned from time-discrete realizations. For an
initial proof of concept, the index set is given by t ∈ [0, 1],
thus focusing on fixed length sequences. Set into the con-
text of n-step prediction, the generation of multi-modal
predictions should be possible without the need of exten-
sive Monte Carlo simulation, thus performing n-step infer-
ence with minimum overhead in a single step. To achieve
this, sequence prediction, including uncertainty estimation,
is treated as a regression problem (Kuleshov, Fenner, and Er-
mon 2018). The modes of the modeled stochastic process are
described in terms of probabilistic, parametric curves termed
N -Curves. N -Curves are based on Bézier curves with Gaus-
sian distributions as control parameters. Every point on the
N -Curve is a Gaussian random variable, thus resembling the
model of a continuous-time stochastic process, which con-
strains inference in order to generate sufficiently smooth pre-
dictions. For generating multi-modal predictions (multiple
sequences), a stochastic process consisting of Gaussian mix-
ture random variables can be defined by combining multiple
N -Curves into a mixture of N -Curves. Further, by basing
the approach on Bézier curves, data of arbitrary dimension-
ality can be modeled by choosing the control point dimen-
sionality accordingly.

The paper is structured as follows: First, an overview over
related work is given in section 2. Next, the N -Curve mix-
ture model is derived in section 3. Then, a neural network-
based approach for learning the parameters of an N -Curve
mixture from sequence data is presented in section 4. Ex-
periments are conducted on real world data in order to give
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an initial proof of concept in the context of (multi-modal)
n-step sequence prediction (section 5). Section 6 concludes
the paper and gives future directions of research.

2 Related Work

For structuring the related work, approaches for 1-step pre-
diction will be presented briefly in 2.1. Next, approaches
extended for n-step prediction are presented in section 2.2.
Overall, this section addresses approaches that model prob-
ability distributions, or stochastic processes, explicitly. Ap-
proaches learning distributions in their latent space, like
Generative Adversarial Networks (Goodfellow et al. 2014)
or Variational Autoencoders (Kingma and Welling 2014),
are not considered here.

In accordance with these criteria, sections 2.1 and 2.2 fo-
cus on recent extensions of Gaussian Processes and neural
networks that generate probabilistic output.

2.1 One-step prediction

In 1-step prediction, the task is to infer the next element in
a sequence, given the last m preceding observations of the
same sequence. Often, it is used as a building block of n-
step prediction by performing 1-step predictions iteratively.
Besides that, 1-step prediction is a fundamental component
in Bayesian filtering, i.e. its prediction step (Särkkä 2013).

Gaussian Process (GP) regression (Rasmussen 2003) is a
model commonly used in 1-step prediction. Given a collec-
tion of sample points of a non-linear function f(·) : Rm →
R, a mean function m(·) and a covariance function k(·, ·)
(kernel) the GP yields a multivariate Gaussian prior prob-
ability distribution over function space. The Gaussian dis-
tribution can be used to determine a conditional predictive
distribution over the next element in a sequence given pre-
ceding observations (Ellis, Sommerlade, and Reid 2009).

Deep Gaussian Processes (Damianou and Lawrence
2013) extend on the GP framework in order to constitute
non-Gaussian, and therefore more complex models. A deep
GP is a hierarchy of multiple GPs using non-linear mappings
between each layer of the hierarchy. However, the result-
ing probability densities are intractable and thus require an
approximate solution, which can be achieved e.g. by varia-
tional approximation (Campbell and Yau 2015).

Bayesian Neural Networks (Bishop 1995, BNN) treat
all weights and biases as random variables. Bayesian in-
ference is applied during training in order to determine
the posterior distribution of the network parameters (a.k.a.
Bayesian Backpropagation). Due to intractable probability
distributions, either Monte Carlo methods (Neal 1992) or ap-
proximate inference has to be applied. Common techniques
used for approximate inference include variational inference
(Blundell et al. 2015), inference based on expectation prop-
agation (Hernández-Lobato and Adams 2015) and Monte
Carlo dropout (Gal and Ghahramani 2016).

Mixture Density Networks (Bishop 2006, MDN) pro-
vide another neural network for probabilistic inference.
MDNs are deterministic neural networks, mapping the out-
put of the last layer onto the parameters of a Gaussian (mix-
ture) distribution, thus treating uncertainty estimation as a

regression problem. Compared to BNNs, being a determin-
istic model, these networks are much simpler in terms of in-
ference and computational cost, while still generating prob-
abilistic output. On the downside, MDNs do not allow to
make assumptions about model uncertainty in a direct way.

2.2 Multi-step prediction

The models presented in this section build upon the (deep)
GP, BNN and MDN models presented in the previous sec-
tion. The task is to infer the next n subsequent elements of a
sequence of interest given m preceding observations.

Recurrent Gaussian Processes. Looking at GPs, the
standard GP model can be used for n-step prediction by em-
bedding its 1-step prediction model into a sequential Monte
Carlo simulation (Ellis, Sommerlade, and Reid 2009). In
case of the deep GP, a recurrent extension has been proposed
by Mattos et al. (2015), incorporating a recurrent variational
approximation scheme using a state space model-based ap-
proach. Being based on the deep GP model, the recurrent
deep GP model requires an approximate inference approach
for generating predictions. Besides having a computation in-
tensive inference scheme, GP-based approaches grant good
control over generated predictions, by explicitly modeling
the kernel functions, thus controlling the prior over functions
representable by the model. This gives an advantage over
most competing neural network-based approaches that gen-
erate sequences in a mostly unconstrained fashion. In com-
parison, the model proposed in this paper also optimizes in
function space in order to constrain generated predictions,
but grants less control than GP-based approaches as no ex-
plicit prior is given.

Bayesian Recurrent Neural Networks (BRNN) have
been proposed by Fortunato, Blundell, and Vinyals (2017),
where the variational Bayesian Backpropagation scheme
is adapted for ”Backpropagation Through Time”. BNNs,
and BRNNs respectively, offer robustness to over-fitting, al-
low probabilistic predictions and provide information about
model uncertainty. As a drawback, such models are diffi-
cult to train, due to the requirement of approximate inference
making the training computationally more intensive and po-
tentially less stable. Further, the need for approximate infer-
ence also yields a significant computational overhead when
generating predictions.

Recurrent Mixture Density Networks (RMDN) are
most commonly based on the model proposed in (Graves
2013), where an MDN is stacked on top of an LSTM. The
recurrent structure is then used for encoding the observed
sequence as well as for generating predictions. It should
be noted, that sometimes a temporal convolutional network
(Bai, Kolter, and Koltun 2018) is used instead of an LSTM
for encoding observations due to its less complex structure.
Compared to BRNNs, RMDNs have a simpler structure and
thus are easier to train, which is the reason why these mod-
els are widely used for sequence prediction (Rudenko et al.
2019). It has to be noted though, that commonly this model
(e.g. Alahi et al. 2016; Bartoli et al. 2018) is only used for
unimodal predictions. This is most likely due to unimodal n-
step prediction being cheap computation-wise, while multi-
modal n-step prediction requires expensive Monte Carlo
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simulation (Hug et al. 2018). Recent approaches actually
targeting multi-modal prediction are given by e.g. (Bhat-
tacharyya, Schiele, and Fritz 2018) and (Hug et al. 2018).

3 Modeling stochastic processes using Bézier

curves
This section proposes a Bézier curve defined by Gaussian
control points capable of describing a stochastic process
GT = {Xt}t∈T with Gaussian random variables Xt ∼
N (μt,Σt) and index set T = [0, 1]. Later on, this concept is
extended for modeling random variables following a Gaus-
sian mixture distribution. Throughout this section, simple
experiments are conducted to investigate different properties
of the proposed model. For these experiments, the model is
trained using the approach presented in section 4.

A Bézier curve of degree N

B(t,P) =

N∑
i=0

bi,N (t)Pi (1)

is a polynomial curve constructed by a linear combination
of N +1 d-dimensional control points P = {P0, P1, ...PN}
using the Bernstein polynomials

bi,N (t) =

(
N

i

)
(1− t)N−iti (2)

for weighting. A curve point is determined by the curve pa-
rameter t ∈ [0, 1].

When modeling a stochastic process GT using a para-
metric curve, each curve point needs to represent a Gaus-
sian distribution. Therefore, a ”Gaussian” Bézier curve ψ
(abbrev.: N -Curve) is proposed. The N -Curve is an ex-
tension of equation (1), where the control points PN =
{P0, P1, ...PN} are defined to follow a Gaussian distribution
with Pi ∼ N (μi,Σi) ∀Pi ∈ PN . The set of mean vectors is
denoted as μP = {μ0, μ1, ..., μN} and the set of covariance
matrices ΣP = {Σ0,Σ1, ...,ΣN} respectively. Thus, the N -
Curve is defined by a tuple ψ = (μP ,ΣP). Given PN , the
stochasticity is inherited from the control points to the curve
points BN (t, ψ) ∀t ∈ [0, 1] by the linear combination of
the Gaussian control points, which again follows a Gaussian
distribution. Each curve point then defines the parameters of
a (multivariate) Gaussian probability distribution

BN (t, ψ) = (μψ(t),Σψ(t)) (3)
with

μψ(t) =

N∑
i=0

bi,N (t)μi, and

Σψ(t) =

N∑
i=0

(bi,N (t))
2
Σi.

(4)

FollowingAx+By ∼ N (Aμx+Bμy, AΣxA
T+BΣyB

T )1

for x ∼ N (μx,Σx) and y ∼ N (μy,Σy), it can directly be
seen that BN (t, ψ) induces the Gaussian probability density

pψt (x) = p(x|μψ(t),Σψ(t)) = N (x|μψ(t),Σψ(t)) (5)
1Following the definition as provided in The Matrix Cookbook

(Petersen and Pedersen 2008).

at index t.
With respect to the stochastic process GT = {Xt}t∈T ,

Gaussian distributions at n discrete points in time
{X1, ..., Xn} can now be described with BN (t, ψ) using n
equally distributed values for t, yielding a discrete subset

T∗ = { v

n− 1
|v ∈ {0, ..., n− 1}} = {t1, ..., tn} (6)

of the index set T . Thus, each process index (curve param-
eter) ti ∈ T∗ corresponds to its respective sequence index
at time i ∈ {1, ..., n}. Following this, the Gaussian random
variable Xti at time i is given by

Xti ∼ N (BN (ti, ψ)) = N (μψ(ti),Σ
ψ(ti)) (7)

with P0 and Pn as exact start and end conditions.
Figure 1 depicts a 2-dimensional example for an N -

Curve, where an N -Curve with 5 control points and respec-
tive covariance ellipses are shown (left). Gaussian random
variables Xt along the N -Curve given different values for t
are illustrated on the right image. Note that the parametric
curve interpolates the mean vectors of all Gaussian distribu-
tions through time.

Figure 1: Left: Exemplary 2-dimensional N -Curve (mean
curve as given by Gaussian control points). Right: Gaussian
distributions along the N -Curve for different t.

Toy example 1: Approximating unimodal processes.
This example illustrates the capabilities of the N -Curve
model in representing unimodal stochastic processes. As
a simple experiment, an unimodal stochastic process with
mean values moving along a curve is examined. Samples
have been taken around respective mean values at 11 points
in time under varying standard deviations to show the im-
pact of the number of control points used. Figure 2 shows
the mean curve, standard deviations and samples, as well as
sample sequences used to estimate the parameters of an N -
Curve. Resulting N -Curves with 5 and 15 control points are
depicted in figure 3. It can be seen that the N -Curve model
gives a smooth mean curve and compensates noise using the
variance of the control points. Further, increasing the num-
ber of control points allows to represent the variances more
accurately.

3.1 Extending N -Curves for Gaussian mixture
probability distributions

While Gaussian probability distributions are a sufficient rep-
resentation for unimodal sequence data, many real world
problems require multi-modal representations. For this case,
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Figure 2: Left: Ground truth mean values, standard devia-
tions and sample points taken from a stochastic process at
different points in time. Right: Sample realizations.

Figure 3: Approximations of given stochastic process using
N -Curves with 5 (left) and 15 (right) control points.

a common approach is to use a Gaussian mixture probability
distribution Υ({πk}k∈{1,...,K}, {(μk,Σk)}k∈{1,...,K}) de-
fined by K weighted Gaussian components, with

p(x) =

K∑
k=1

πkN (x|μk,Σk),with
∑
k

πk = 1 (8)

as probability density function. In the same way, the con-
cept of N -Curves can be extended to a mixture Ψ of K
weighted N -Curves {ψ1, ..., ψK} with normalized weights
π = {π1, ..., πK}. The random variables Xt at index t ∈ T
then follow the Gaussian mixture distribution

Xt ∼ Υ(π, {BN (t, ψk)}k∈{1,...,K}). (9)

Accordingly, the probability density at t ∈ T induced by Ψ
is given by

pΨt (x) =

K∑
k=1

πkN (x|μψk(t),Σψk(t)), (10)

with μψk(t) and Σψk(t) induced by the Gaussian distri-
bution at t ∈ T according to the k’th N -Curve, i.e.
(μψk(t),Σψk(t)) = BN (t, ψk).

Toy example 2: Approximating multi-modal processes.
Similar to the unimodal approximation example, each ran-
dom variable of the stochastic process now follows a bi-
modal Gaussian mixture distribution and realizations of the
process follow one of two possible paths, as shown in the
left image of figure 4. This constraint on the realizations in-
troduces a specific structure (two distinct curves) into the
training dataset that can be captured by the N -Curve mix-
ture model. The variance is constant for all time steps. Fig-
ure 4 shows the ground truth mean and standard deviations

Figure 4: Stochastic process modeling two curves (left) and
an approximation given by an N -Curve mixture model using
k = 2 components (right).

along both curves (left) and the approximation given by an
N -Curve mixture model using k = 2 components (right).
It can be seen that due to the structure in the training data,
the N -Curve mixture model is capable of approximating the
ground truth distributions.

4 N -Curve Mixture Density Networks

For learning the parameters of an N -Curve mixture from
discrete sequence data, using a Mixture Density Network
(MDN) is proposed. An MDN (Bishop 2006), is, most com-
monly, a single layer neural network Φ(V) = (π, μ,Σ|V),
that takes an input vector V and maps it onto the param-
eters of a mixture of Gaussians, i.e. weights π, mean vec-
tors μ, standard deviations σ and correlations ρ. By gen-
erating the parameters from V , the mixture can be con-
ditioned on arbitrary inputs. According to equation (10),
an MDN Φ outputs the parameters of an N -Curve mix-
ture, i.e. the weights and Gaussian distribution parameters
for each control point Φ(V) = {(πk, ψk)}k∈{1,...,K} =
{(πk, (μP,k,ΣP,k))}k∈{1,...,K}. Advantages of using an
MDN for learning the N -Curve mixture parameters, rather
than other algorithms, like EM, are two-fold. First, the MDN
provides an easy approach to learn and process conditional
N -Curve mixtures, allowing the model to be used in a condi-
tional inference framework. Second, the MDN can be incor-
porated easily into (almost) any neural network architecture
without the need to control the gradient flow.

Let Ŝ = {S1, ..., SM} be a set of M realizations of a
stochastic process with Sj = {xSj

1 , ..., x
Sj
n } where each xSj

i
for i ∈ {1, ..., n} is a sample value for the respective random
variable Xti at time i for ti ∈ T∗ (see 3). In order to sim-
plify training, independence of Gaussian distributions along
an N -Curve is assumed. This yields, that the joint probabil-
ity of the samples xSj

i in a sequence Sj along an N -Curve
ψ factorizes, such that

pψ(Sj) = pψ(x
Sj

1 , ..., xSj
n ) =

n∏
i=1

pψti(x
Sj

i ). (11)

Note that pψ(Sj) is an unnormalized Gaussian density.
For a single sequence Sj and an N -Curveψ, the loss func-
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tion is then defined by the negative log-likelihood

L = −log pψ(xSj

1 , ..., xSj
n )

= −
n∑
i=1

log pψti(x
Sj

i )
(12)

of the sequence. Therefore, the loss for Ŝ is defined as

L =
M∑
j=1

(
−

n∑
i=1

log p(x
Sj

i |μψ(ti),Σψ(ti))
)
. (13)

Equation (13) can easily be extended for N -Curve mix-
tures. Given an N -Curve mixture Ψ = Φ(V), the likelihood
of a single training sequence Sj is now calculated as the
weighted linear combination of the likelihood of Sj for each
ψk (see equation (11)):

pΨ(Sj) =
K∑
k=1

πkp
ψk(Sj). (14)

Thus, the loss for Ŝ can then be defined as

L =
1

M

M∑
j=1

−log

K∑
k=1

πkp
ψk (Sj)

=
1

M

M∑
j=1

−log

K∑
k=1

exp

(
logπk +

n∑
i=1

log
(
pψti (x

Sj

i )
))

.

(15)

Finally, the N -Curve Mixture Density Network can be
trained using a standard gradient descent policy. Here, the
gradients are similar to those derived in (Graves 2013), thus
this derivation is left out to keep the paper concise.

4.1 Toy example 3: Presence of superfluous
mixture components

Next, the behavior of the model in its native formulation is
examined in presence of superfluous mixture components.
For this, the example data with 2 curves from toy example 2
(section 3.1) is used to train an N -Curve mixture with k =
6, i.e. 4 superfluous, components. Preferably, in the resulting
model, π = 0 holds for all 4 unnecessary components, while
the remaining components model the two curves in the data
with equal weight (π = 0.5). Figure 5 depicts all N -Curves
of the mixture with corresponding weights after training. It
can be seen, that π = 0 only holds for 2 components and
4 components are used to model the data. The components
shown in red and yellow describe one curve and the cyan
and magenta colored components the other. Still, the sum of
weights for each curve in the data is approximately equal to
0.5 and the variances of these components are consistent.
As a consequence, this behavior could be tackled by e.g.
incorporating weight regularization during training.

5 Real world evaluation
In order to provide an initial proof of concept, the perfor-
mance of the proposed N -Curve MDN is compared to dif-
ferent state-of-the-art sequence prediction models. Further, a
qualitative evaluation is presented, inspecting results of the
quantitative evaluation and different aspects of the model as
partly shown in previous sections.

π = 0 π = 0 π = 0.128

π = 0.354 π = 0.143 π = 0.375

Figure 5: Learned N -Curves for all mixture compo-
nents. Some superfluous components have been suppressed
(blue/green), while multiple similar N -Curves emerge for
the two ground truth curves (red/yellow and cyan/magenta).

5.1 Quantitative evaluation

First, the performance of the proposed model is compared
to state-of-the-art models in two n-step sequence predic-
tion tasks: trajectory prediction and motion capture sequence
prediction. In both tasks, evaluated models need to represent
a stochastic process describing m + n time steps, such that
given m observations of a process realization, the remaining
n steps can be inferred. Following this, the N -Curve MDN
needs to map the observation sequence onto an N -Curve
mixture, which models the sequence to be predicted. As the
N -Curve MDN expects a single input vector V , the obser-
vation sequence is encoded using an LSTM network. Note
that although m is fixed and a feed-forward network could
be used for encoding, the use of an LSTM network yielded
better results in both tasks.

Trajectory prediction. An exemplary application domain
making use of trajectory prediction is automated video
surveillance. Here, predictions are mainly performed on
tracklets recorded from a static camera, i.e. sequences con-
sisting of subsequent 2D image coordinates. To highlight the
need for multi-modal sequence models, a subset of the Stan-
ford Drone Dataset (Robicquet et al. 2016, SDD) is used, as
it contains geometrically constrained scenes including e.g.
junctions. In order to increase the number of available trajec-
tories, annotations from multiple recordings are combined
into a single coordinate system for the SDD scenes hyang
and deathcircle, respectively. Further, positional informa-
tion is normalized by scaling (x, y)-coordinates to conform
x, y ∈ [−1, 1]. The sampling rate is set to 6 Hz. Observa-
tion and prediction lengths are fixed to m = 20 (3.2s) and
n = 40 (6.6s).

Here, the N -Curve MDN is compared to two recent ap-
proaches focusing on multi-modal trajectory prediction: The
Particle LSTM by (Hug et al. 2018) and the ”Best of Many
Samples” LSTM (abbrev.: LSTM-BMS) by (Bhattacharyya,
Schiele, and Fritz 2018). The former embeds an LSTM com-
bined with an MDN into a particle filter cycle in order to
produce multi-modal n-step predictions, while the latter uti-
lizes an LSTM to produce multiple sample predictions and is
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Particle LSTM LSTM-BMS N -Curve MDN
hyang 0.129 (18.552) 0.147 (-2.574) 0.088 (-4.760)
d-circle 0.366 (15.028) 0.483 (0.389) 0.314 (-3.617)

Table 1: FDE (NLL) values for evaluated models on hyang
and deathcircle (d-circle) scenes taken from the Stanford
Drone Dataset.

learned using a ”Best of Many Samples” objective function,
yielding diverse samples.

For evaluation, a subset of 200 randomly selected track-
lets (of length 60) has been used. The results are reported
in terms of the Final Displacement Error (FDE), being the
RMSE between the endpoints of the most likely prediction
and the respective ground truth trajectory. Additionally, the
Negative Log-Likelihood (NLL, see equation 15) is reported
as a metric for probabilistic output. An N -Curve MDN with
k = 3 components and 6 control points per component is
used. For the FDE, the endpoint of the N -Curve with the
highest weight argmaxk πk is used. In case of the LSTM-
BMS2, 100 sample predictions are generated, which are then
clustered using k-means with k = 3. Clusters are weighted
according to the number of trajectories in each cluster. The
endpoint of the mean of the highest weight cluster is used for
the FDE. For the NLL, the points of each cluster mean pro-
vide the mean values for each time step and the covariance
is calculated using the trajectories in each respective cluster.
The same procedure is applied for the Particle LSTM using
100 particles.

Results are reported in table 1. It can be seen that the N -
Curve MDN performs best in terms of FDE and NLL among
the provided models. Larger NLL values for the Particle
LSTM are most likely due to the particle filter collapsing
onto few particles in regions with small variation, leading to
small variances and thus higher NLL values.

Motion capture sequence prediction. For providing a
higher dimensional example, sequences consisting of 59-
dimensional skeleton description vectors from the CMU mo-
tion capture database3 are used. Here, training is performed
on sequences 1 to 4 from subject 35, and testing is performed
on sequences 5 to 8 from the same subject. In order to make
results comparable to (Mattos et al. 2015) with the code pro-
vided by the authors4, only walking motion is considered.
The test set is modified to only contain the first 70 points
of each sequence, in order to conform with the fixed se-
quence length currently necessary for the N -Curve MDN.
Further, the data is standardized with zero mean and unitary
standard deviation. In contrast to the previous experiment, a
control input is given in terms of the y coordinate of the left
toes for each time step (during observation and prediction).
The observation and prediction lengths are set to m = 20
and n = 50 time steps. The N -Curve MDN is compared
to a simple multilayer perceptron (MLP) and the recurrent

2https://github.com/apratimbhattacharyya18/CGM
BestOfMany

3http://mocap.cs.cmu.edu/
4https://github.com/zhenwendai/RGP

MLP RGP N -Curve MDN
CMU 0.911 0.822 0.794

Table 2: RMSE values for different models on sequences
taken from the CMU motion capture database.

Gaussian process model (RGP) introduced by Mattos et al.
(2015).

For the evaluation, the RMSE over all predicted values in
the sequence is reported. Here, the number of components of
the N -Curve MDN is set to k = 1 using 10 control points.
For the MLP, a single hidden layer with 1000 units and tanh
activation is used. This MLP directly maps the concatenated
observation combined with the control sequence onto the
prediction. In case of the RGP model, a 2 hidden layer model
with 200 inducing points is used according to the evaluation
performed in (Mattos et al. 2015). The results are reported
in table 2. Again, the N -Curve MDN performs best among
the provided models.

5.2 Qualitative evaluation

Before discussing the smoothing property of the model and
the models behavior in presence of superfluous components,
qualitative results for both, trajectory prediction and mo-
tion capture sequence prediction, are demonstrated. Start-
ing with trajectory prediction, some examples generated by
the N -Curve MDN are depicted in figure 6. The model pro-
duces diverse predictions, following different possible paths
through the scene with probabilities matching the training
data. In case of hyang, different tracklets just before an in-
tersection show possible predictions in directions given by
the pathways. For deathcircle, a tracklet entering the round-
about is given, thus predictions leaving at all possible exits
are generated. Images (IV) through (VI) of figure 6 depict
the individual components of the N -Curve MDN for the first
prediction example. It should be noted, that the trained N -
Curve MDN represents the entire m+n step sequence, thus
the variance for the observation is also shown. As a change
in direction (blue and green paths) is less likely, the vari-
ance increases towards the end of the prediction, overlap-
ping with the straight path, increasing its probability. This
approximately also matches the data: When calculating path
probabilities using similar trajectories from the dataset, 15%
follow the blue path, 60% the red path and 25% the green
path.

For motion capture sequence prediction, the last 3 steps
of the observation (cyan) and the mean values for the first
7 steps of the prediction (red) are illustrated in figure 7. As
this task is concerned with walking motion, most movement
appears at the legs and feet of the skeleton. It can be seen
that at the end of the observation sequence, the right foot
starts rising and throughout the prediction finishes one step
forward, thus correctly approximating the walking motion.

Smoothing. The smoothing property of the N -Curve
model is apparent when looking at the representation of sin-
gle channels in the case of motion capture sequence predic-
tion. Figure 8 shows the 70 step sequences for the left hand
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Figure 6: I - III: Predictions generated by a 3-component N -Curve MDN for hyang (I and II) and deathcircle (III). Obser-
vations are shown in (saturated) cyan, ground truth in transparent cyan and predictions in red, green and blue. Predicted path
probabilities are indicated in the image legend. IV - VI: Individual components of the first example with variances.

Figure 7: Final 3 steps of observed motion (cyan) and first 7
steps of predicted motion (red).

and right tibia. It is clearly visible, that the model learns
a smooth mean to represent the entire sequence and tries to
cope with noise by varying the variance of the control points.

Figure 8: N -Curve approximation of different channels (left
hand and right tibia) in motion capture sequence prediction.

Superfluous components. The toy example in 4.1 indi-
cates that, in its native formulation, the model is incapable of
completely suppressing superfluous components and over-
laps several, nearly equal components, in order to approxi-
mate single modes. This behavior can be confirmed looking
at the example depicted in figure 9. While the red component
is driven towards zero, the blue and green components are
quite similar, only differing in the modeled movement speed
slightly as indicated by the length of the predicted trajectory.
As before, the variances of both components are similar, thus
weight regularization could be incorporated during training
in order to tackle this behavior.

Figure 9: Left: N -Curve mixture model trajectory predic-
tion example with superfluous components. Right: Similar
components with variance.

6 Conclusions and Future Works

In this paper, a proof of concept for the N -Curve mixture
model, an approach for learning the model of a continuous-
time stochastic process defined by Gaussian mixture dis-
tributions, has been presented. The approach is based on
Bézier curves with Gaussian control points, thus a respective
stochastic process is represented by a mixture of paramet-
ric, probabilistic curves, termed N -Curves. By using para-
metric curves and optimizing in function space rather than
the d-dimensional space of sequence values, the proposed
model is able to generate smooth continuous predictions in a
single inference step. Initial experiments show that the pre-
sented model is viable for n-step sequence prediction and
achieves state-of-the-art performance on different real world
tasks. Future work mainly focuses on developing the N -
Curve mixture model into a recurrent system, in order to
process sequences of variable length (i.e. allow index sets
like t ∈ R

+
0 ). Further, it should be investigated on the effect

of non-linear variance interpolation between control points,
due to non-linear weighting.
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