
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Automated Synthesis of Social Laws in STRIPS

Ronen Nir, Alexander Shleyfman, Erez Karpas
Technion — Israel Institute of Technology

Haifa, Israel
{ronenn, karpase}@technion.ac.il, shleyfman.alexander@gmail.com

Abstract

Agents operating in a multi-agent environment must consider
not just their actions, but also those of the other agents in
the system. Artificial social systems are a well-known means
for coordinating a set of agents, without requiring centralized
planning or online negotiation between agents. Artificial so-
cial systems enact a social law which restricts the agents from
performing some actions under some circumstances. A ro-
bust social law prevents the agents from interfering with each
other, but does not prevent them from achieving their goals.
Previous work has addressed how to check if a given social
law, formulated in a variant of MA-STRIPS, is robust, via com-
pilation to planning. However, the social law was manually
specified. In this paper, we address the problem of automati-
cally synthesizing a robust social law for a given multi-agent
environment. We treat the problem of social law synthesis as
a search through the space of possible social laws, relying on
the robustness verification procedure as a goal test. We also
show how to exploit additional information produced by the
robustness verification procedure to guide the search.

Introduction

When operating in a multi-agent environment one must take
into consideration not only their own goals and actions, but
also the possible actions of the other agents in the system,
and their possible effects. Often in multi-agent systems, a
plan that would have allowed an agent to reach its goals had
it operated in isolation, leads to some sort of failure due to
other agents’ actions. For example, an autonomous car that
drives from location A to location B without taking into con-
sideration that there are other cars on the road will likely end
up crashing into another car.

The literature offers varying approaches for coordination
of multiple agents. One can, for example, design rules of en-
counter that will determine the behavior and the negotiation
protocol for these agents, if their activities are bound to inter-
fere. Unfortunately, these rules might be inefficient and lead
to repeated negotiations between the agents for conflict reso-
lution. One other drawback of this approach is purely appli-
cational – it requires the physical embodiment of the agents
to have means of communication and time to do it, which is

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

not always feasible. To avoid this, we can, for instance, in-
stitute central control over the agents. This approach, being
useful in numerous domains, might, however, suffer from
limitations, such as bottlenecks at the central site or system-
wide vulnerability to failure.

One way to avoid centralized planning or online negoti-
ation between agents, allowing for each agent to plan inde-
pendently, is an artificial social system that enacts a social
law which restricts the agents from performing some ac-
tions in certain circumstances. Social laws aim to prevent
agents from disrupting each other, while still allowing them
to achieve their personal goals. Intuitively, a social law is
an offline restriction on the actions legally available to the
agents, which should remove the online conflicts and the
need to negotiate. In the car example we mentioned earlier,
the social law enacted for the benefit of society is the traf-
fic code, which allows agents efficient travel while avoiding
substantial damages.

The artificial social systems approach became a canoni-
cal approach to achieve coordination between agents (Wool-
ridge 2001; Shoham and Leyton-Brown 2009; Horling and
Lesser 2004; d’Inverno and Luck 2004; Klusch 1999).
In particular, one of the early works proposed a STRIPS-
like representation of multi-agent environments to establish
the connection between social systems and modern plan-
ning techniques (Tennenholtz and Moses 1989). Recently,
Karpas, Shleyfman, and Tennenholtz (2017) followed in this
direction, proposing a formalism to represent and reason
over social laws using classical planning. This work pro-
posed an algorithm for the verification of the robustness of a
given social law. This has also been extended to robustness
verification in the temporal planning setting (Nir and Karpas
2019). However, these assume a social law is given.

In this paper, we describe an approach for automatic syn-
thesis of robust social laws. We treat the problem of so-
cial law synthesis as a search problem, with the above-
mentioned robustness verification procedure as a goal test.
We formulate a search space whose transitions consists of
making small changes in the social law, and show that a
naive search approach does not scale well. We also provide
some techniques for guiding the search, which are based on
exploiting information from the robustness verification pro-
cedure.

Although previous work (Morales et al. 2018) has ad-

9941

dressed social law synthesis in the context of normative sys-
tems (using a different representation of the multi-agent set-
ting). However, they used evolutionary algorithms, which
cannot guarantee completeness, while our algorithm is com-
plete – it is guaranteed to find a robust social law if one ex-
ists. Finally, we empirically show that our approach is able
to synthesize robust social laws (or proves they do not ex-
ists) on multiple problems from multi-agent planning bench-
marks.

Preliminaries

Since the multi-agent planning setting considered in this
work does not assume coordination between agents, we use
the modification of MA-STRIPS (Brafman and Domshlak
2008) presented by Karpas et al. (2017) that includes a goal
for each agent, rather than an overall goal for the whole
problem.

Formally, a problem in the multi-agent planning
setting in question is defined by a tuple Π =
〈F, {Ai}ni=1, I, {Gi}ni=1〉, where: n ∈ N represents the
number of agents, F is a final set of facts, I ⊆ F is the
initial state, the Gi ⊆ F defines the goal of agent i, and Ai

is the set of actions of the correspondent agent.
Each subset s ⊆ F is called a state, and S = 2F is the

state space of Π. Each action a ∈ Ai is described by pre-
conditions pre(a) ⊆ F , add effects add(a) ⊆ F , and delete
effects del(a) ⊆ F . The action a is applicable in the state s
if pre(a) ⊆ s, and the result of this application will be de-
noted by s�a� := (s \ del(a)) ∪ add(a). In what follows we
assume unit-cost actions.

The projection of Π for agent i is the (single agent)
STRIPS (Fikes and Nilsson 1971) planning problem Πi =
〈F,Ai, I, Gi〉. We say that a sequence of actions πi =
〈a1, . . . , ak〉 is a plan for the task Πi if, for each 1 ≤ j ≤ k,
aj ∈ Ai is applicable in state I�a1� . . . �aj−1�, and Gi ⊆
I�a1� . . . �ak�. In what follows, when it is appropriate, we
may refer to plans as sets. An action set L ∈ Ai is called dis-
joint action landmark (or landmark for short) if for each plan
πi for Πi it holds L∩ πi 	= ∅. Following, Fišer et al. (2019),
we denote Πi \ L := 〈F,Ai \ L, I,Gi〉.

In the execution model we consider here, each agent plans
offline, and a scheduler executes the action one at a time by
choosing which agents acts next. Thus, at any given time
there are multiple agents ready to perform their next action
(the number could be less than n if some agents are already
at the end of their plan execution). We do not assume any
particular order on the execution of actions by agents, i.e.
this can be seen as if the agents act according to some exter-
nal (unknown) scheduler. The agent chosen by the scheduler
executes its pending action, causing the state of the world to
change accordingly, then setting the next action in its plan
as pending. Then the scheduler assigns the next agent re-
peating the process until all plans are finished. Note that we
do not make any assumptions on the scheduler, in fact, con-
sidering it to be adversarial. This execution model may, and
often will, result in conflicts1 in execution of agents plans.

1We define a conflict to be a failure in an execution of the
scheduling of the joint plans of all agents.

Consider, for example, two agents with two pending actions
a1 and a2, correspondingly, s.t. pre(a1) ∩ del(a2) 	= ∅. The
scheduler setting – (execute a2, execute a1) results in a con-
flict.

In previous work Karpas et al., defined a social law l as a
modification of the multi-agent setting Π, resulting in a set-
ting Πl. A social law is described by the modifications it ap-
plies to Π: It can add, delete or modify facts, actions, the ini-
tial state, or the goal. As Karpas et al. showed in their work,
some restrictions require complex conditions, for which the
original set of facts F is insufficient. Others are based on
a wait-for mechanism. These restrictions require an agent
to wait for a fact f to hold before it can perform an action
a. Thus, in the case of MA-STRIPS, social law l can be de-
scribed by the following:
(a) the modifications it applies to the agents’ actions;
(b) the modifications it applies to the facts, the initial state

or the goals;
(c) its annotations of certain f ∈ pre(a) as a wait-for pre-

condition.
One of the plausible assumptions one may require is that
these modifications do not make the problem meaningless
(e.g., by changing the goal to an empty set).

In this work, we concentrate only on social laws that alter
the actions of the agent without changing the initial set of
facts. More specifically, similarly to the work on goal recog-
nition design (Keren et al. (2014)) which disallowed spe-
cific actions, we will concentrate only on social laws that
restrict actions that may lead to a conflict in the execution of
a scheduling, while still trying to preserve the reachability
of all agent goals.

Robustness Verification

In their work Karpas et al. formalize a rational robustness
as the assumption that all agents are rational and want to
achieve their goal, while asking the question whether there
is any possible way for them to interfere with each other, as-
suming in a sense the adage formulated by Murphy’s law –
“Anything that can go wrong will go wrong”. This assump-
tion results in the following definition:
Definition 1. A social law l for multi-agent setting Π =
〈F, {Ai}ni=1, I, {Gi}ni=1〉 is robust to rational iff for all
agents i = 1 . . . n, for all individual solutions πi for Πi,
for all possible action sequences π resulting from any ar-
bitrary interleaving of {πi}ni=1 which respects wait-for pre-
conditions, π achieves G1 ∪ . . . ∪Gn.

Specifically, in this work we define a social law l as the
set of restricted actions Al ⊆ A. Such a law is robust if it
allows any scheduling of the agents’ plans: preventing any
possible conflicts and ensuring that each agent will reach its
goal at the end of the execution. Formally, we would like that
any schedule of the individual agents’ plans for the modified
planning problem Πl = 〈F, {Ai \ Al}ni=1, I, {Gi}ni=1〉 will
yield no conflict.

The verification algorithm IS ROBUST2 proposed by
2In the original work the algorithm was named VERIFY-

RATIONAL.

9942

Karpas et al. for a MA-STRIPS problem for Πl can be seen
as two independent procedures that both constitute classical
planning problems:

1. IS SOLVABLE FORALL(Πl) – checks whether the indi-
vidual goal is reachable for each agent i, i. e., is the prob-
lem 〈F,Ai, I, Gi〉 solvable for each i.

2. FIND CONFLICT(Πl) – ensures that there are no conflicts
in any possible schedule. Intuitively, it creates a planning
problem Π′ such that the solution of which is an execu-
tion of a joint plan that leads to a conflict. Thus, the social
law is robust iff the planning problem Π′ is unsolvable.
Otherwise, its solution, the plan πf produced by the will
be deemed as a counter-example. Due to space limitations
for the full compilation we refer the reader to Karpas et
al.

Note that the solution to Π′ provides a counter-example for
the robustness of the social law.

In this setting, a robust social law l, for Π, can be seen as a
special case of an action landmark Al for the compilation Π′
mentioned above, since the removal of Al from Π′ renders
it unsolvable. Note, however, that not every action landmark
will do for this purpose since we still require the planning
tasks Πi \ Al to be solvable, i. e. each agent should be still
able to reach its goal. It is also important to note that we use
a slight abuse of notation here, since the actions of Πl may
have additional auxiliary atoms both in preconditions and
effects, thus when writing Ai \Al we mean it label-wise.

Searching for a Social Law

In this section, we introduce a method that deals with the
problem of finding a robust social law for a given multi-
agent system, i.e. find a set of restrictions on the agents’
behavior that will guarantee their successful coexistence.

One can think of numerous approaches to find a robust
social law for a given domain. One approach is to call a
domain-expert to manually formulate a set of restrictions on
the agents. The union of these restrictions can be considered
as a social law. This approach has its drawbacks, its products
are domain-dependent, a domain-expert may not be always
available and he may not be able to locate all of the possible
conflicts.

In this section, we introduce a method that, for a given
MA-STRIPS problem Π, returns a robust social law, if there
is one. As mentioned before, the social law we consider is
based on a restriction of a finite set of grounded actions. The
result of enacting a social law l on a MA-STRIPS problem
Π is denoted by Πl – a similar MA-STRIPS problem, only
without the grounded actions included in the social law. Our
approach is based on a forward search through the space of
all social laws until a robust social law is found. Firstly, we
formulate the problem of finding a robust social law for a
given MA-STRIPS problem as a search problem with the fol-
lowing components:

• The initial state s0: we consider the original MA-STRIPS
problem as the initial state, assuming it contains an empty
social law, that is there are no restrictions on the agents’
behavior, which means that the for the initial social law l0

holds Al0 = ∅. Note that the states of our search problem
differ only in the set of restricted actions, therefore, when
it is appropriate, we will refer to states as sets of restricted
actions.

• The successor generating function succ(s): this proce-
dure provides us with all the direct successors of the state
s. We define the successors to be an addition of a single-
action restriction to the social law of s. This restriction
makes one grounded action unavailable in the resulted
state, i. e., given a state s that corresponds to a social law l,
the set of the restricted actions of the successors of s will
be Al∪{a} for each a ∈ A\Al. Note that the edges of the
search graph corresponds label-wise to the actions of the
original problem, moreover, since each state correspond
to a set of forbidden actions each action can be restricted
at most once, and the restriction process is commutative.

• The goal test function is goal(s): this function is used in
order to identify whether a certain state is a goal state or
not. Here we rely on IS ROBUST, the social law robustness
verification method proposed by Karpas et al., and use it
as a goal test function.

Theoretically, a search through the space of social laws
should tackle this problem. However, the size of this space
is 2|A| where A is the set of all agents’ actions so the naive
search approach does not scale well. Next, we establish tech-
niques to guide the search by pruning, heuristics and pre-
ferred operators identification.

Pruning Social Laws

With a huge search space, the first thing we tackle is reduc-
ing the size of the search tree branching factor. This can be
done efficiently with pruning. However, pruning could also
remove possible solutions. We can accept pruning only if it
is safe (Ghallab, Nau, and Traverso 2004), e. g., it does not
remove all of the solutions.

Definition 2. Let succ′ be a pruning functions s.t.
succ′(s) ⊆ succ(s) for each search state s. We say that
succ′ is safe if for every state s at least one reachable solu-
tion preserved in the pruned state space induced by succ′.
We say that succ′ is completely safe if all solutions that are
reachable in the original state space induced by succ are
preserved in the state space induced by succ′.

For pruning, we use the results of our goal test function
IS ROBUST(Π) that is based on the work of Karpas et al..

Prune social laws by counter example When testing the
robustness of a social law in Π the first part of our goal test
function, that is FIND CONFLICT(Π) may return a counter
example πf , which is a joint-plan that leads to a conflict.
One can show that every robust social law for Π has to con-
tain at least one action from πf .

Lemma 1. Let Π be a non-robust MA-STRIPS problem, πf

a joint plan that fails for Π, and l a social law, such that
Πl := Π\Al is robust. Then, there exist some action a ∈ πf

such that a ⊆ Al.

9943

Proof. Let Π be a MA-STRIPS non-robust problem. Since Π
is not robust, there is a joint plan FIND CONFLICT(Π) = πf

that leads to a failure. Now, assume in contradiction that
there is a robust social law l for Π s.t. Al ∩ πf = ∅. This,
means that πf is executable in Πl, which leads to contradic-
tion, since l is robust by assumption.

Concerning the search for a robust social law, this Lemma
provides us with an important intuition, that corresponds, in
a sense, to the strong stubborn sets introduced by Wehrle
and Helmert (2014). Note, that since each search space state
has a set of restricted actions, each path that leads to this
state in the search tree is fully commutative, i. e., there is no
importance to the order in which the actions are restricted.
This together with a previous lemma can be summed up as
follows:

Corollary 1. Let s be a search space state that corresponds
to a non-robust social law l, and let πf be the joint plan
that leads to failure. Then, the successor generating function
succCE(s) := succ(s) ∩ πf is safe.

Proof. Let s be a search state that corresponds to the social
law l with a failure plan πf . Let us also assume that there
is a goal state s∗ that corresponds to a robust social law l∗
and is reachable from s. By Lemma 1, there exist an action
a ∈ πf s.t. Al ∪ {a} ⊆ Al∗ , thus there is s′ ∈ succCE(s)
that lies on the path from s to s∗. This argument can be ap-
plied inductively, since, by construction of the search state
space, all transitions are commutative, and each action can
be restricted at most once.

With the above conclusion we can establish a powerful
tool for social laws pruning towards a more effective search
of robust social laws. For example, in a MA-STRIPS that has
800 grounded actions the branching factor starts with 800.
Assume that our social law robustness verification function
returns a plan πf and |πf | = 30. The result of pruning out
the actions that were not included in πf is a significant re-
duction of the search tree branching factor.

Intuitively, each robust social law has to include at least
one action from a given counter example. If not, a con-
flict that lies in the counter example remains possible, mak-
ing the social law not robust. Thus, pruning by counter ex-
ample is safe. A similar concept of effective pruning of
search space is called strong stubborn sets (Valmari 1989;
Wehrle and Helmert 2014), which was also used to prune the
search in Goal Recognition Design (Keren, Gal, and Karpas
2018) in a similar fashion to here.

Pruning infeasible social laws First, we note that
IS SOLVABLE FORALL is a Boolean function that checks
whether all of the agents can achieve their goal indepen-
dently. An overly restrictive social law can prevent some of
the agents in Π from reaching their goal. We address these
kind of social laws as infeasible social laws. Note that if l̄ is
an infeasible social law, it is not robust by definition, and the
function IS SOLVABLE FORALL(Πl) returns False.

Lemma 2. Let Π a MA-STRIPS problem, and let l, l̄ be two
social laws such that Al̄ ⊆ Al. Then, l̄ is infeasible implies
that l is infeasible.

Proof. Let l̄ be an infeasible social law. Then, there exists
and agent i s.t. Πl̄

i := Πi \ Al̄ is unsolvable. Let l be a
social law s.t. Al̄ ⊆ Al. This directly implies that Πi \Al is
unsolvable. Which means that l is an infeasible social law.

The practical aspect of this observation with respect to
search can be formulated as follows

Corollary 2. Every successor generating function succINF

that marks the state s, that corresponds to Al̄, as a dead end,
i. e., succINF(s) = ∅, does not prune any possible solution.
Where l̄ denotes an infeasible social law.

Proof. Assume in contradiction that there are states s, s̄, that
correspond to the social laws l, l̄, where s is a successor of
s̄, and let l̄ be an infeasible social law. Then, by construction
of the search we have that Al̄ ⊆ Al, which implies, by pre-
vious lemma, that l is infeasible. Hence, contradiction. The
general case follows by induction on descendants of s̄.

To identify an infeasible social law we maintain a set of
infeasible social laws. Then, throughout the search, every
social law l that proves to be infeasible, is added to this set.
Also, before we explore each social law l, we test whether
it is feasible or not using the data we hold in the infeasible
social laws set. Note that this test is much more computa-
tionally efficient then using the IS SOLVABLE FORALL(Πl)
function that has to solve n STRIPS planning problems where
n is the number of agents.

Safety of combined pruning Finally, all is left to show
for the completeness of our algorithm that it is guaranteed
that the of the techniques mentioned in this section does not
make the problem unsolvable.

Theorem 1. The successor generating function succCE(s)∩
succINF(s) is safe.

Proof. Note that, by Corollary 1, succCE(s) is strongly
safe, and, by Corollary 2, succINF(s) is safe. Thus, since
succCE(s) does not prune any solution, the intersection of
these two is also safe.

Additionally, we use duplicate social laws detection. We
have implemented it using standard CLOSED list that con-
tains all the social laws the algorithm encountered so far.

Heuristics in Social Laws Search

Using the pruning techniques above, we could use any unin-
formed search algorithms such as breadth-first or depth-first
search. However, informed search algorithms which use a
heuristic function to estimate the distance to the goal, are
typically much more efficient. Thus, we also developed two
heuristics which rely on the robustness verification:

9944

Search Effort Based Heuristics The mechanism behind
the function FIND CONFLICT(Π) is based on formulat-
ing Π′, a new STRIPS problem where any solution to Π′
contains a joint plan that leads to a failure. Practically, to
solve this new STRIPS problem we use an external plan-
ner.
The intuition behind our first heuristic is that, as we ap-
proach a robust social law, the planner has to invest more
search effort in order to find a counter-example. Thus, we
use the planner’s search effort as a heuristic. Specifically,
we define hse as the number of states the external planner
generates before it reaches a solution. In case Π contains
a robust social law, meaning that the planning problem
is unsolvable, the external planner will have to prove un-
solvability, and thus hse will probably be very high.
Note that using the function FIND CONFLICT(Π) just to
calculate hse(Π) can be computationally hard. Thus, we
use a lazy search approach, and use the counter-example
computed for each node to compute a heuristic value for
its successors.
However, it is also possible that using hse might lead
to unwanted results. This is because this heuristic might
cause the search to prefer social laws that make the so-
lution more complicated, without really preventing cross
agent interference. As our empirical evaluation will show,
using this heuristic is not always helpful.

Counter Example Statistics Based Heuristics The sec-
ond heuristic we introduce is based on the understanding
that a social law might need to fix multiple potential
conflicts. It is quite possible that one search branch has
found how to solve one conflict, while another search
branch has found how to solve a different conflict. A
robust social law requires solving both conflicts. Thus,
we propose to store some statistics about which operators
were involved in conflicts in different regions of the
search space, and prioritize restricting these operators
over others.
Specifically, we maintain a table where we count how
many times each grounded action appeared in the counter-
example that was found by robustness verification. Fur-
thermore, following the same intuition for preferring to
restrict actions which occur before the failure, we increase
the count for an action that appeared before the failure by
2, and for an action that appeared after the failure by 1.
Our heuristic then evaluate a candidate social law l by

hstat(s) =
∑

a∈Al

count(a)

where Al is the set of grounded actions l restricts and,
count(a) is the number of times a has appeared in previ-
ous πf .
The advantage hstat has over hse is that hstat should im-
prove with time as the search continues. Moreover, ex-
perience gained in one branch of the search helps the
search in other branches, similarly to clause learning in
SAT (Beame, Kautz, and Sabharwal 2003). Of course,
more advanced techniques for learning search guidance

are available, e.g. (Xu, Fern, and Yoon 2010). We leave
adapting these techniques to our setting to future work.

Preferred Operators

Identifying operators which are more likely to lead to a so-
lution, i.e., preferred operators, has been shown to signif-
icantly improve search performance (Richter and Helmert
2009). We now show how a similar technique can be used
when searching for a robust social law. We have formulated
two criteria for identifying a preferred operator, based on the
social law it leads to and the counter-example that was used
to prove the social law in the current node is not robust:

early Intuitively, we would like to prevent a failure before
it occurs. Thus, we will prefer to restrict actions that oc-
curred in the counter-example before the failure.

public Following Brafman and Domshlak (2008) an action
is called internal iff all f ∈ pre(a) ∪ eff(a) are defined
as internal facts of agent i. A fact f is an internal fact
of agent i iff no actions of another agent affect it or is
affected by it. Intuitively, coordination between the agents
should focus on the public (non-internal) actions, and thus
we prefer to restrict only public actions which appeared in
the counter-example.

Note that neither of these are a safe pruning method, as it
could be possible to arrive at a robust social law by restrict-
ing internal actions that occur after the failure, since that
could force one of the agents to choose an entirely differ-
ent plan. However, as a heuristic method to prefer operators,
these criteria can help, as our empirical evaluation shows.

In order to exploit these preferred operator criteria, we use
a multi-queue mechanism. Since we have 2 criteria we use
a 4 queue mechanism, where one queue contains operators
that are preferred according to both criteria, another contains
only operators that are preferred according to early, a third
contains only operators that are preferred according to pub-
lic, and a fourth queue which contains all operators.

Empirical Evaluation

We now present an empirical evaluation of the techniques
described above. To summarize, we have presented:

• Two safe pruning techniques: the first prunes every social
law modification that restricts actions that are not part of
the counter example πf . The second prunes unfeasible so-
cial laws.

• Two possible heuristics: The first hse is based on the
amount of search effort invested to find a counter exam-
ple. The second hstat is based on past counter examples
statistics and pushes to restrict actions that appeared more
times in these examples.

• Two criteria that may indicate that a given social law is
preferable. The first: early, points out social laws that
only contain actions that were executed before the failure
has occurred. The second: public, points out social laws
that only contain actions that are public. As mentioned
above, these are used with a 4 queue open list, except with
depth-first search, as described below. We remark that the

9945

empirical results using only one of these criteria are not
substantially different, and thus were omitted for the sake
of brevity.

We have integrated these into 3 different search algo-
rithms:

GBFS Greedy Best First Search: an Informative state space
search that uses the heuristics we have presented, with or
without preferred operators

BFS Breadth-First Search, with or without preferred opera-
tors.

DFS Depth First Search, with and without preferred oper-
ators. Here, since we can not use a multi-queue mecha-
nism, preferred operators are used to ranking the succes-
sors of every search node — giving a score of 2 to nodes
which satisfy both criteria, 1 to nodes which satisfy only
1, and 0 to the others.

Thus, we have 8 different configurations to compare: BFS,
DFS, GBFS with hse, and GBFS with hstat — all of these
either with preferred operators (denoted PO) or without (de-
noted NP). The safe pruning techniques described above
were used in all of these. Preliminary results show that with-
out these pruning techniques, very few problems are solved.

Following the work on social law robustness verification
(Karpas, Shleyfman, and Tennenholtz 2017), we evaluate
these configurations on benchmarks from the first Compe-
tition of Distributed and Multiagent Planners (Komenda,
Stolba, and Kovacs 2016), attempting to automatically syn-
thesize a robust social law for each planning problem. Note
that these benchmarks are for cooperative planning, thus we
had to make sure that there are solutions that do not rely on
agents’ cooperation. Benchmarks that do not meet this con-
dition (such as DEPOT, SOKOBAN) were dropped. Also, we
modified the ZENOTRAVEL domain and removed the need
for passengers-planes cooperation by letting planes control
the passengers (with the BOARD and DEBARK actions). A
similar technique was used for the TAXI domain’s problems.
We assigned each goal fact to one of the agents randomly,
checking that, indeed the assigned agent can achieve this
goal. Additionally, we included a machine fixing domain
that was introduced in Karpas et al. (2017). All in all, we
have 91 planning problems to test from 5 different domains.

The question of which planner to use in our goal test
function IS ROBUST(Π) is interesting. As previous work on
verification showed, proving robustness is better done with
a planner geared towards proving unsolvability while find-
ing a counter example is better done with a planner geared
towards finding a solution quickly. Thus, in each search
node’s goal test we first run Fast Downward Stone Soup
2014 (Röger, Pommerening, and Seipp 2014) with a time-
out of 1800 seconds, to quickly find a counter example. If
the planner times out, we then switch to running SymPA
(Torralba 2016), a planner from the 2016 unsolvability In-
ternational Planning Competition (IPC), which is often able
to prove unsolvability. We set SymPA with a similar timeout
of 1800 seconds. The search stopped exploring nodes after
1800 seconds. All planners had a memory limit of 8GB on
an Intel Xeon E5-2695 CPU running at 2.10GHz (limited to

one core only). We ran 16 instances at a time with the help of
GNU Parallel (Ferrer-Mestres, Francès, and Geffner 2017).

We consider a search to be successful if it either found a
robust social or proved a one does not exist. The number of
successful searches in each domain, by each configuration,
is reported in Table 2. The most successful configuration was
GBFS with hstat and without using PO with 18 solved prob-
lems. The GBFS with hstat and with using PO successfully
solved 17 problems.

All in all, the configurations we presented solved 22 so-
cial law search problems. Search times and the length of the
returned social law are reported in Table 1. 6 problems were
solved by all of the configurations. They were employed to
calculate the averages reported in the last row of Table 13.

As our results show the BFS based search configurations
are relatively slow but they bring the shortest social law
length (as expected). DFS based search configurations solve
more instances and are faster than BFS based configurations
in most cases. However, they tend to find longer social law
lengths than the other configurations, as expected.

The performance of GBFS with hse based is similar to
BFS concerning the number of solved problems (see Table
2). However, in most cases, the GBFS with hse is quicker
(see Table 1) and it seems that it works better with preferred
operators (PO). Overall, it seems that hse does not bring
a significantly improved performance. A possible explana-
tion, as mentioned above, is that hse was designed to choose
nodes that caused greater computational effort during the ro-
bustness verification run. This can be done by deleting help-
ful but not necessary actions, which will cause the robust-
ness verification to work harder to find individual plans for
the agents, but will not necessarily fix any conflicts.

Finally, GBFS with hstat outperforms all other ap-
proaches overall. Here, the preferred operators hurt the num-
ber of problems solved in total but do help in the DRIVER-
LOG domain. One possible reason why preferred operators
hurt performance in the rovers domain is that ROVERS does
not have any internal actions, making the preferred operators
less powerful.

We now describe in more detail what happened during
the search on the 22 commonly solved problems. A total of
51,965 nodes were generated during our empirical evalua-
tion for these 22 problems. Of these, not all agents were able
to achieve their goal individually in 10,623 nodes, and thus
these nodes were dead-ends for the search. An additional
7,783 nodes were identified as infeasible (because their so-
cial laws were supersets of the social laws for the dead-end
nodes) and thus they were also declared as dead-ends.

The robustness verification procedure was thus called on
the remaining 33,559 nodes. As previously mentioned, we
first used Fast Downward Stone Soup 2014, which was able
to find counter examples for (that is, solve) 33,476 of these.
For another 57 nodes, Fast Downward was able to prove
no solution exists, and thus the social law is robust. Thus,
SymPA was called on 26 nodes. Of these, it was able to ver-
ify robustness for 25 of these. Only in 1 node, neither of the

3The complete results are available in:
https://zenodo.org/record/3547384

9946

Domain &
Problem

Search Time Social Law Length
BFS DFS GBFS (hse) GBFS (hstat) BFS DFS GBFS (hse) GBFS (hstat)

PO NP PO NP PO NP PO NP PO NP PO NP PO NP PO NP

ROVERS-0 TO TO TO 2765 TO TO TO 3022.3 - - - 38 - - - 58
ROVERS-1 TO TO 2016.9 2036.1 TO TO 2187.9 2023.7 - - 42 47 - - 31 31
ROVERS-2 2480.5 2380.7 1854.1 2526.7 TO TO 1827.5 1815.3 2 2 12 13 - - 4 3
ROVERS-3 TO TO 2347.4 3360.2 TO TO TO 2933.5 - - 58 48 - - - 81
ROVERS-5 TO TO 1973 1973.5 TO TO TO TO - - 18 18 - - - -
FIX-0 84 282.2 72.6 61.3 22.2 28.6 84.1 45.7 3 3 4 19 4 6 4 25
FIX-1 85 278.5 73.1 61 22.1 28.3 85 45.4 3 3 4 19 4 6 4 25
DLOG-0 189.5 189.3 12.2 11.5 17.2 16.7 11 10.8 3 3 11 11 5 5 7 7
DLOG-2 TO TO TO TO TO TO 119.6 118.8 - - - - - - 12 12
DLOG-3 TO TO TO TO 446.2 TO 1266.6 1633.1 - - - - 12 - 14 14
DLOG-5 TO TO 1613.1 TO TO TO TO TO - - 29 - - - - -
DLOG-6 TO TO 3307.6 3312.9 TO TO 861.6 TO - - 41 43 - - 38 -
DLOG-9 TO TO TO TO TO TO 2105 2123.7 - - - - - - 48 53
ZNTL-0 561 557 784.6 986.2 405.8 402.5 405.5 401.3 4 4 48 49 7 7 16 14
ZNTL-1 1029.6 1028.9 549.9 556.7 433.9 433.6 372.3 372.1 4 4 45 46 11 11 20 20
ZNTL-2 TO TO TO TO TO TO 1755.6 1754.5 - - - - - - 20 20
ZNTL-3 TO TO 2292.3 2200.9 TO TO 1878.1 1876.7 - - 142 139 - - 29 29
TAXI-0 5.5 5.6 5.6 5.5 5.7 5.6 5.7 5.6 NSL NSL NSL NSL NSL NSL NSL NSL
TAXI-1 8.3 7.9 9.6 7.8 10.8 9.4 9.6 9.9 NSL NSL NSL NSL NSL NSL NSL NSL
TAXI-2 12.9 13.1 10.2 11.1 12.2 12 10.7 13.4 NSL NSL NSL NSL NSL NSL NSL NSL
TAXI-5 TO 1791.3 TO TO TO TO TO TO - NSL - - - - - -
TAXI-6 25.3 25.4 16.1 10.1 15.9 19.5 14.1 12.6 2 2 6 3 5 5 6 6
AVERAGE 329.1 393.6 251.4 281.1 152.9 154.9 162.0 148.0 3.2 3.2 19.7 24.5 6.0 6.7 9.5 16.2

Table 1: Search Time on IPC Benchmarks (Right) & Length of the Resulted Social Laws (Left). The average is based on 6
instances that were solved by all search configurations. (DLOG = driverlog, ZNTL = zenotravel, PO = using preferred operators,
NP = not using preferred operators, TO = timeout, NSL = robust social law does not exist)

SEARCH TECHNIQUE ROVERS FIX DLOG ZNTL TAXI TOTAL
BFS-PO 1 2 1 2 4 10
BFS-NP 1 2 1 2 5 11
DFS-PO 4 2 3 3 4 16
DFS-NP 5 2 2 3 4 16
GBFS-hse-PO 0 2 2 2 4 10
GBFS-hse-NP 0 2 1 2 4 9
GBFS-hstat-PO 2 2 5 4 4 17
GBFS-hstat-NP 4 2 4 4 4 18

Table 2: Number of Successful Searches on IPC Bench-
marks (DLOG = driverlog, ZNTL = zenotravel, PO = using
preferred operators, NP = not using preferred operators)

planners returned any solution, in which case we declared
that we were unable to find a robust social law.

Conclusion

In this paper, we have described a technique for the auto-
matic synthesis of social laws for a given MA-STRIPS plan-
ning problem. We model this problem as a search problem
in the space of possible social laws. We use the robustness
verification method that was described in Karpas et al. as
a goal test. Additionally, we describe some techniques to
guide the search: two pruning techniques that together con-
stitute a safe pruning technique, two heuristics that are based
on the result of the above-mentioned robustness verification
method, and two criteria that may indicate that a given so-
cial law is preferable. Our empirical evaluation shows that
these techniques can find robust social laws in multiple IPC
Benchmarks.

In future work, we intend to explore new ways to en-
hance social law search techniques by finding new heuris-

tics, prune techniques and more general preferable opera-
tors. Also, we intend to assume more powerful social laws
that can, for example, denote some action preconditions as
wait-for preconditions. Our technique can probably tackle
robust social law synthesis more realistic settings, assuming
there are appropriate methods for social law robustness ver-
ification method, e.g. using the method that was introduced
by Nir and Karpas (2019) for robust social law synthesis for
temporal multi-agent planning problems.

Acknowledgments

The work of Alexander Shleyfman was supported by the
Adams Fellowship Program of the Israel Academy of Sci-
ences and Humanities.

References

Beame, P.; Kautz, H. A.; and Sabharwal, A. 2003. Under-
standing the power of clause learning. In IJCAI-03, Pro-
ceedings of the Eighteenth International Joint Conference
on Artificial Intelligence, Acapulco, Mexico, August 9-15,
2003, 1194–1201.
Brafman, R. I., and Domshlak, C. 2008. From one to
many: Planning for loosely coupled multi-agent systems. In
Proceedings of the Eighteenth International Conference on
Automated Planning and Scheduling, ICAPS 2008, Sydney,
Australia, September 14-18, 2008, 28–35.
d’Inverno, M., and Luck, M. 2004. Understanding agent
systems. Springer.
Ferrer-Mestres, J.; Francès, G.; and Geffner, H. 2017. Com-

9947

bined task and motion planning as classical AI planning.
CoRR abs/1706.06927.
Fikes, R., and Nilsson, N. J. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artif. Intell. 2(3/4):189–208.

Fiser, D.; Torralba, Á.; and Shleyfman, A. 2019. Opera-
tor mutexes and symmetries for simplifying planning tasks.
In The Thirty-Third AAAI Conference on Artificial Intelli-
gence, AAAI 2019, The Thirty-First Innovative Applications
of Artificial Intelligence Conference, IAAI 2019, The Ninth
AAAI Symposium on Educational Advances in Artificial In-
telligence, EAAI 2019, Honolulu, Hawaii, USA, January 27
- February 1, 2019., 7586–7593.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
planning - theory and practice. Elsevier.
Horling, B., and Lesser, V. R. 2004. A survey of multi-
agent organizational paradigms. Knowledge Eng. Review
19(4):281–316.
Karpas, E.; Shleyfman, A.; and Tennenholtz, M. 2017. Au-
tomated verification of social law robustness in STRIPS.
In Proceedings of the Twenty-Seventh International Confer-
ence on Automated Planning and Scheduling, ICAPS 2017,
Pittsburgh, Pennsylvania, USA, June 18-23, 2017., 163–171.
Keren, S.; Gal, A.; and Karpas, E. 2014. Goal recognition
design. In Proceedings of the Twenty-Fourth International
Conference on Automated Planning and Scheduling, ICAPS
2014, Portsmouth, New Hampshire, USA, June 21-26, 2014.
Keren, S.; Gal, A.; and Karpas, E. 2018. Strong stubborn
sets for efficient goal recognition design. In Proceedings of
the Twenty-Eighth International Conference on Automated
Planning and Scheduling, ICAPS 2018, Delft, The Nether-
lands, June 24-29, 2018., 141–149.
Klusch, M. 1999. Intelligent Information Agents: Agent-
Based Information Discovery and Management on the In-
ternet. Berlin, Heidelberg: Springer-Verlag, 1st edition.
Komenda, A.; Stolba, M.; and Kovacs, D. L. 2016. The in-
ternational competition of distributed and multiagent plan-
ners (codmap). AI Magazine 37(3):109–115.
Morales, J.; Wooldridge, M. J.; Rodrı́guez-Aguilar, J. A.;
and López-Sánchez, M. 2018. Off-line synthesis of evo-
lutionarily stable normative systems. Autonomous Agents
and Multi-Agent Systems 32(5):635–671.
Nir, R., and Karpas, E. 2019. Automated verification of
social laws for continuous time multi-robot systems. In
The Thirty-Third AAAI Conference on Artificial Intelligence,
AAAI 2019, The Thirty-First Innovative Applications of Ar-
tificial Intelligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019., 7683–7690.
Richter, S., and Helmert, M. 2009. Preferred operators and
deferred evaluation in satisficing planning. In Proceedings
of the 19th International Conference on Automated Planning
and Scheduling, ICAPS 2009, Thessaloniki, Greece, Septem-
ber 19-23, 2009.

Röger, G.; Pommerening, F.; and Seipp, J. 2014. Fast down-
ward stone soup 2014. The 2014 International Planning
Competition.
Shoham, Y., and Leyton-Brown, K. 2009. Multiagent Sys-
tems - Algorithmic, Game-Theoretic, and Logical Founda-
tions. Cambridge University Press.
Tennenholtz, M., and Moses, Y. 1989. On cooperation in
a multi-entity model. In Proceedings of the 11th Interna-
tional Joint Conference on Artificial Intelligence. Detroit,
MI, USA, August 1989, 918–923.
Torralba, Á. 2016. SymPA: Symbolic Perimeter Abstrac-
tions for Proving Unsolvability. In UIPC 2016 planner ab-
stracts, 8–11.
Valmari, A. 1989. Stubborn sets for reduced state space gen-
eration. In Advances in Petri Nets 1990 [10th International
Conference on Applications and Theory of Petri Nets, Bonn,
Germany, June 1989, Proceedings], 491–515.
Wehrle, M., and Helmert, M. 2014. Efficient stubborn sets:
Generalized algorithms and selection strategies. In Proceed-
ings of the Twenty-Fourth International Conference on Auto-
mated Planning and Scheduling, ICAPS 2014, Portsmouth,
New Hampshire, USA, June 21-26, 2014.
Woolridge, M. 2001. Introduction to Multiagent Systems.
New York, NY, USA: John Wiley & Sons, Inc.
Xu, Y.; Fern, A.; and Yoon, S. W. 2010. Iterative learning of
weighted rule sets for greedy search. In Proceedings of the
20th International Conference on Automated Planning and
Scheduling, ICAPS 2010, Toronto, Ontario, Canada, May
12-16, 2010, 201–208.

9948

