The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Top-Quality Planning: Finding Practically Useful Sets of Best Plans

Michael Katz, Shirin Sohrabi, Octavian Udrea
IBM T.J. Watson Research Center
1101 Kitchawan Rd, Yorktown Heights, NY 10598, USA

Abstract

The need for finding a set of plans rather than one has been
motivated by a variety of planning applications. The prob-
lem is studied in the context of both diverse and top-k plan-
ning: while diverse planning focuses on the difference be-
tween pairs of plans, the focus of top-k planning is on the
quality of each individual plan. Recent work in diverse plan-
ning introduced additionally restrictions on solution quality.
Naturally, there are application domains where diversity plays
the major role and domains where quality is the predominant
feature. In both cases, however, the amount of produced plans
is often an artificial constraint, and therefore the actual num-
ber has little meaning.

Inspired by the recent work in diverse planning, we pro-
pose a new family of computational problems called top-
quality planning, where solution validity is defined through
plan quality bound rather than an arbitrary number of plans.
Switching to bounding plan quality allows us to implicitly
represent sets of plans. In particular, it makes it possible to
represent sets of plans that correspond to valid plan reorder-
ings with a single plan. We formally define the unordered
top-quality planning computational problem and present the
first planner for that problem. We empirically demonstrate the
superior performance of our approach compared to a top-k
planner-based baseline, ranging from 41% increase in cover-
age for finding all optimal plans to 69% increase in coverage
for finding all plans of quality up to 120% of optimal plan
cost. Finally, complementing the new approach by a complete
procedure for generating all valid reorderings of a given plan,
we derive a top-quality planner. We show the planner to be
competitive with a top-k planner based baseline.

1 Introduction

While the main focus in classical planning was on producing
a single plan, a variety of applications has shown the need
for finding a set of plans rather than one. These applications
include malware detection (Boddy et al. 2005), plan recog-
nition as planning and its applications (Riabov et al. 2015;
Sohrabi, Riabov, and Udrea 2016; Sohrabi et al. 2018;
Shvo, Sohrabi, and Mcllraith 2018), human team planning
(Kim et al. 2018), explainable AI (Chakraborti et al. 2018),
re-planning and plan monitoring (Fox et al. 2006).

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

9900

The problem of finding a set of plans is studied in the con-
text of both diverse planning (e.g., Nguyen et al. 2012) and
top-k planning (e.g., Katz et al. 2018). Diverse planning fo-
cuses on difference between plans, evaluating a set of plans
by aggregating over the pairwise differences between plans
in the set. Recent work in diverse planning introduced ad-
ditional restrictions on solution quality, requiring each plan
in the set to also be of bounded cost (Vadlamudi and Kamb-
hampati 2016; Katz and Sohrabi 2020). Top-k planning is a
generalization of cost-optimal planning. The focus of top-k
planning is on the cost of each plan, guaranteeing that no
plan of better cost exists outside the solution set.

Naturally, in some application domains diversity plays
the major role, while in other quality is the predominant
feature. The latter include plan recognition (Sohrabi, Ri-
abov, and Udrea 2016), multi-agent plan recognition (Shvo,
Sohrabi, and Mcllraith 2018), human team planning (Kim
et al. 2018), and explainable AI (Chakraborti et al. 2018).
These applications exploit top-k planners to derive a large
number of plans. In these domains, though, the focus on
the number of plans provided is somewhat artificial, and is
intended solely to ensure that a sufficient number of plans
is found. Further, ordering of actions in a plan can be of
less importance in some applications. Plan recognition is
one such example application. In plan recognition as plan-
ning (Sohrabi, Riabov, and Udrea 2016; Shvo, Sohrabi, and
Mcllraith 2018), a planning task consists of actions that ex-
plain/discard observations. There is no meaning to the order
among these actions. Some specific practical applications
for plan recognition are hypothesis generation (Sohrabi et al.
2016) and scenario planning advisor (Sohrabi et al. 2018).
These applications use a top-k planner with a large bound
on the number of required plans %, and the obtained plans
are post-processed to discard reorderings and cluster similar
plans. This would also apply to e.g., problems with actions
that correspond to information gathering, where no particu-
lar ordering is required. One clear disadvantage of a top-k
planner in such cases is that it would generate all possible
valid orderings before proceeding to plans of a higher cost.
Thus, the number of required plans used in practice is often a
crude over-approximation. Further, even quite large numbers
are often not sufficient to ensure that the set of plans includes

Figure 1: Example logistics task.

enough plans of interest, since plans can easily have millions
of valid reorderings. A top-k planner would have to generate
all these plans before it can get to a plan of a higher cost.
Diverse planners (Bryce 2014; Nguyen et al. 2012; Coman
and Mufioz-Avila 2011; Roberts, Howe, and Ray 2014; Vad-
lamudi and Kambhampati 2016) tackle the issue by defin-
ing diversity criteria over a set of plans, but only a handful
of works take the plan quality into consideration (Roberts,
Howe, and Ray 2014; Vadlamudi and Kambhampati 2016;
Katz and Sohrabi 2020). While some computational prob-
lems in diverse planning do require to provide some guaran-
tees on solution quality (e.g., Katz and Sohrabi 2020), exist-
ing diverse planners still do not provide such guarantees.

In this paper, we propose a new family of computational
problems called rop-quality planning. The objective of top-
quality planning is to find and concisely represent a set of
all plans of bounded quality, for a given (absolute) bound,
generalizing the cost-bounded classical planning problem
(Stern, Puzis, and Felner 2011; Thayer and Ruml 2011;
Haslum 2013). That is, we suggest an alternative definition
of solution validity, by bounding the solution quality instead
of bounding the number of plans. This allows us to define an
equivalence relation on plans and implicitly represent equiv-
alence classes of plans without knowing the exact number
of plans in each class. In particular, in this work, we focus
on the equivalence relation that is defined by all valid re-
orderings of each plan, represented by one canonical plan.
Furthermore, we propose a first planner for unordered top-
quality planning that iteratively finds a single plan of top
quality and forbids at once all plans found so far, including
all their valid reorderings. For that, we adapt a recently pro-
posed diverse planning reformulation that forbids a single
multiset of actions (Katz and Sohrabi 2020) to forbid ex-
actly a collection of multisets. Our adaptation of the existing
reformulation allows us to forbid multiple sets of plans at
each iteration while preserving soundness and completeness
of our approach. We empirically compare our approach to
unordered top-quality planning to the only available base-
line — a top-k planner with a large k bound. Our approach
exhibits a superior performance, ranging from 41% increase
in coverage for finding all optimal plans to 69% increase in
coverage for finding all plans of cost up to 120% of optimal
plan cost. Finally, note that, given a complete procedure for
producing all valid reorderings of a plan, our approach can
be used to construct either a top-quality planner, producing
all plans of quality under the given bound, or a top-k planner,
depending on the stopping criteria. The empirical compari-
son shows that such a planner favorably competes with the
baseline, based on an existing iterative top-k planner.

9901

2 Preliminaries

We consider classical planning tasks in the well-known
SAST formalism (Bickstrom and Nebel 1995), extended
with action costs. Such planning tasks I = (V, O, s, s,)
consist of V, a finite set of finite-domain state variables,
O, a finite set of actions, sg, an initial state, and s,, the
goal. Each variable v € V is associated with a finite do-
main dom(v) of variable values. These variable and value
pairs are called facts. A partial assignment p maps a sub-
set of variables vars(p) C V to values in their domains.
For a variable v € V and partial assignment p, the value of
v in p is denoted by p[v] if v € vars(p) and we say p[v]
is undefined if v ¢ vars(p). A partial assignment s with
vars(s) =V, is called a state. State s is consistent with par-
tial assignment p if they agree on all variables in vars(p),
shortly denoted by p C s. The product S = [], .\, dom(v)
is called the state space of planning task II. s is a state and
s, 1s a partial assignment. A state s is called a goal state
if s, C s and the set of all goal states is denoted by S, .
Each action o in O is a pair (pre(o), eff (o)) where pre(o)
is a partial assignment called precondition and eff (o) is a
partial assignment called effect. Further, o has an associated
natural number cost (o), called cost. An action o is applica-
ble in state s if pre(o) C s. Applying action o in state s
results in a state denoted by s[o] where s[o][v] = eff (0)[v]
forall v € vars(eff) and = s[o][v] = s[v] for all other vari-
ables. An action sequence ™ = (o1, - ,0,) is applicable in
state s if there are states sg, - - - , s, such that o; is applica-
ble in ;1 and s;_1]o;] = s; for 0 < i < n. We denote
$n, by s[r]. For convenience we often write o1, - - - , 0y, in-
stead of (01, -+, 0,). An action sequence with so[[7]] € Ss,
is called a plan. The cost of a plan 7, denoted by cost(m)
is the summed cost of the actions in the plan. For a plan-
ning task IT = (V, O, s, s,), the set of all plans is denoted
by Pr. A plan 7 is optimal if its cost is minimal among all
plans in Pry. For a plan 7, we denote by MS(7) the multi-
set' of actions in 7. Note that two different plans 7 and 7’
can have MS(7) = MS(7’). We call such plans reordering
of each other. Reorderings of actions of a plan that are plans
are called valid reorderings.

In this paper, we use a logistics task, depicted in Figure 1,
as our running example. This task has two cities, with two
locations each (L; and Apt;), three trucks, T1 (left), and To,
T3 (right), that can drive within their cities, one airplane, A,
that can fly between the airport locations (Apt; and Apta),
and four packages, P to P4, that need to be transported from
their initial locations to some specified goal locations. The
initial and goal locations of all objects are shown in Figure 1
and marked with dashed arrows. Assuming all actions are
unit cost, a cost-optimal plan for this task consists of 20 ac-
tions. Example plans 7, 7, and 7. are depicted in Figure 2.

Given a plan 7, it is sometimes possible to obtain a dif-
ferent plan of equivalent cost without solving the planning
task again. Two of such ways: action reordering and deriv-
ing symmetric plans, are exploited by state-of-the-art top-k
planners (Katz et al. 2018). While action reordering is per-
formed using search and may be time consuming, symmetric

'A set with possible multiple occurrences of the same element.

(load P4 TQ L2)
(load P3 TQ L2)
(drive T2 Lo Apto)
(unload P4 T2 Apto)
(unload P3 T2 Apto)
(load P2 T1 L1)
(load P1 T1 L1)
(load P3 A Apta)
(load P4 A Apts)
(fly A Apta Apty)
(unload P3 A Apt,)
(unload P4 A Apty)
(drive T1 L1 Apty)
(load P4 Ty Ap[l)
(load P5 Ty Ap[l)
(unload P2 T1 Apty)
(unload P1 T1 Apty)
(drive T1 Apty L)
(unload P4 T1 L)
(unload P3 Ty L1)

(load P3 TQ L2)
(load P4 TQ L2)
(drive T2 Lo Apto)
(unload P4 T2 Apto)
(unload P3 T2 Apto)
(load P2 T1 L1)
(load P1 T1 L1)
(load P3 A Apta)
(load P4 A Apta)
(fly A Apta Apty)
(unload P3 A Apt,)
(unload P4 A Apty)
(drive T1 L1 Apty)
(load P4 Ty Ap[l)
(load P5 Ty Ap[l)
(unload P2 T1 Apty)
(unload P1 T1 Apty)
(drive T1 Aptl Ll)
(unload P4 T1 L)
(unload P3 Ty L1)

(load P4 T3 L2)
(load P3 T3 L2)
(drive T3 Lo Apta)
(unload P4 T3 Apto)
(unload P3 T3 Apts)
(load P2 T1 L1)
(load P1 T1 L1)
(load P3 A Apta)
(load P4 A Apta)
(fly A Apte Apti)
(unload P3 A Apt,)
(unload P4 A Apty)
(drive T1 L1 Apty)
(load P4 Ty Ap[l)
(load P3 Ty Ap[l)
(unload P2 T1 Apty)
(unload P1 T1 Apty)
(drive T1 Aptl Ll)
(unload P4 T1 L)
(unload P3 Ty L1)
Ta

b Tc

Figure 2: Cost-optimal plans for the example task.

plans can be obtained rather quickly using structural sym-
metries (Shleyfman et al. 2015). Structural symmetries are
permutations of variable values and actions that induce auto-
morphisms of the state transition graph. Here, we present the
definition of structural symmetries for SAST as was given by
Sievers et al. (2017).

Definition 1 (structural symmetry) For a SAST planning
task I1 = (V, O, s, s,), let F be the set of II’s facts, i. e.
pairs (v,d) withv € V, d € dom(v). A structural symmetry
Sfor 1l is a permutationo : VUFUQO — VU FUQO, where:

1. (V) =Vand o(F) = F such that o({v,d)) = (v, d")
implies v' = o(v);

o(O) = O such that for o € O, a(pre(0)) = pre(o (o)),
o(eff(0)) = eff (c(0)), cost(c(0)) = cost(o);

3. 0(8y) = Sus

where o({z1,...,x,}) == {o(x1),...,0(zn)}, and s :
o(s) is the partial state obtained from the partial state s s.t.
Sorall vewvars(s), o({v, s[v]))=(v',d") implies s'[v']=d'.

2.

A structural symmetry o stabilizes the state s if o(s) = s.
Given a plan 7 01...0, and a structural symmetry o
that stabilizes the initial state, applying the permutation o
to each action in the plan results in a necessarily valid plan
o(m) = o(o01) ...0(0,) of the same cost. Note that o(7) is
not a reordering of 7, since ¢ may map actions from 7 to
actions outside of 7.

In our example, the structural symmetries can detect sym-
metries between two of the trucks Ty and T3, between the
two packages that are initially in L, and between the two
packages that are initially in L. Thus, structural symmetries
can be used to obtain additional plans from a given plan, ap-
plying action permutations to that plan. In our example, the
plan 7. in Figure 2 can be obtained from 7, using the sym-
metry between the trucks To and Ts. Note that these two
plans use different actions and thus are not reorderings of
each other. The plan 7, on the other hand, is a reordering of

9902

T4, changing the order between the first two actions. These
two plans are not symmetric, since mapping the action (load
P4 To Lo) to (load P3 Ty Ls) would also require mapping
(unload P4 T Ly) to (unload P3 Ts Lo). Naturally, there also
exist pairs of plans that are both symmetric and reordering
of each other. There are 6602112 cost-optimal plans in our
example, half of them are reorderings of the plan 7, and the
other half are reordering of 7.

Lastly, the fop-k planning problem (Sohrabi et al. 2016;
Katz et al. 2018) is defined as follows.

Definition 2 (top-% planning problem) Given a planning
task I = (V, 0, s, s,.) and a natural number k, find a set
of plans P C "Pry such that:

(i) for all plans © € P, if there exists a plan 7' for 11 with
cost(r'") < cost(w), then ' € P, and
(ii) |P| < k, with |P| < k implying P = Pry.
An instance of the top-k planning problem (IL, k), is called
solvable if | P| = k and unsolvable if | P| < k.

The objective of top-k planning is finding & plans of lowest
costs for a planning task II and thus optimal planning is the
special case of top-1 planning.

3 Top-quality Planning
We start by formally defining the top-quality planning prob-
lem as the problem of finding all plans of bounded quality.

Definition 3 (top-quality planning problem)
Given a planning task 11 = (V, 0, s, s,) and a natural
number q, find the set of plans P={m € Py | cost(m) < q}.

The top-quality planning problem is well-defined and al-
ways has a solution. Note that one can exploit existing tools
for top-k planning to derive solutions to the top-quality plan-
ning problem, by setting & to a large value and adding an-
other stopping criteria, once a plan 7 of cost(m) > ¢ was
obtained. In such cases, P would explicitly contain all plans
with cost(m) < ¢. This was done by Vadlamudi and Kamb-
hampati (2016) as the first step in their algorithm, although
they do not formally define the top-quality problem. These
explicit sets of plans can get prohibitively large. Further,
some of the plans in that set, although different as sequences
of actions, could be considered equivalent from the underly-
ing application perspective. If, in addition, it would be pos-
sible to escape the need for generating all these equivalent
plans, the performance of the planners could improve sig-
nificantly. We thus formally define a computational problem
that considers possible equivalence between plans.

Let N be some equivalence relation on the set of plans
Prr. For a plan € Py, by N[r| we denote the equivalence
class of 7, which is a set of all plans that are equivalent to
7 under N. Slightly abusing the notation, for a set of plans
P, by N[P] we denote the union of the equivalence classes
U,ecp N[7]. Using that equivalence relation, we can define
the quotient top-quality problem as follows.

Definition 4 (quotient top-quality planning problem)
Given a planning task II = (V, 0, s, s,), an equivalence
relation N over its set of plans P, and a natural number q,
find a set of plans P C Pry such that N[P] is the solution to
the top-quality planning problem.

For equivalence relations that preserve plan cost the quo-
tient top-quality planning problem always has a solution.
Note that solutions to top-quality planning are solutions to
the quotient top-quality planning under the identity equiva-
lence relation. Further, while there is one possible solution
to the top-quality planning problem, there can be many so-
lutions to a quotient top-quality problem, defined by rep-
resentatives of each equivalence class. Further, nothing in
our definition prevents a solution from including more than
one plan per equivalence class, the only restriction is that all
equivalence classes have to be represented.

In this paper, we focus on one specific equivalence rela-
tion: two plans are equivalent if their action multi-sets are.
Formally, we consider the equivalence relation

Upn = {(m,7') | 7, 7" € Pu,MS(m) = MS(7')}.

Thus, the main computational problem we consider in this
paper is as follows.

Definition 5 (unordered top-quality planning problem)
Given a planning task II = (V,0, s, s,) and a natural
number q, find a set of plans P C Py such that P is a
solution to the quotient top-quality planning problem under
the equivalence relation Ury.

Note that while the solution to the top-quality planning
problem can be obtained from a solution to the unordered
top-quality planning problem, using a simple algorithm that
generates all possible valid reordering for each plan in the
solution, this is not the focus of current work. Focusing
on the unordered top-quality planning problem allows us to
generate reorderings of the same plan only if and when these
reorderings are actually needed.

4 Computation of Top-quality Plans

In order to obtain a solver for the computational problem
specified above, we take an approach similar to Katz et al.
(2018), and iteratively generate plans using an existing cost-
optimal planner, and construct planning tasks with a reduced
set of plans, by forbidding exactly the plans found so far. In
contrast to Katz et al. (2018), we forbid not only a specific
plan, but also all its possible reorderings. In order to achieve
that, we thus instead of forbidding plans as sequences of ac-
tions, forbid plans as multi-sets. To be able to do that, we
need to come up with a reformulation of a planning task that
forbids all plans with the exact number of appearances for
each action. Similar reformulation was recently suggested
by Katz and Sohrabi (2020) for diverse planning. The re-
formulation, which we refer to as FPMA for Forbidding a
Plan as a Multi-set of Actions, can forbid a single multi-set,
and thus for a set of plans, the union of their multi-sets was
forbidden in each consecutive iteration. That way, possibly
additional plans were forbidden. For diverse planning, that
did not pose a problem. In our case, however, we need to
ensure that we forbid exactly the set of plans that were pre-
viously found. For that, in what follows, we adapt the FPMA
reformulation accordingly.

Alternatively, the FPMA reformulation can be used di-
rectly, creating a sequence of planning tasks, similarly to
the way it was done in top-k planning (Katz et al. 2018).

9903

This. however, poses two problems: the reformulated plan-
ning task size grows fast with each iteration, and, as in the
iterative top-k planner, the mapping between the reformu-
lated and original actions must be constantly maintained.

In this work, at each iteration we reformulate the original
planning task to forbid all plans found so far. In this case,
we do not need to maintain the mapping between the refor-
mulated and original actions and keep the reformulated task
size smaller. In the rest of this section we extend the defini-
tion of Katz and Sohrabi (2020) to a set of plans (as multi-
sets), present an algorithm that exploits the adapted defini-
tion to derive top-quality solutions, and prove its soundness
and completeness. We start by presenting a simplified vari-
ant of the original definition.

4.1 Forbidding a Plan as a Multi-set of Actions

Slightly simplifying the original FPMA reformulation, we
present here the task reformulation that ignores orders be-
tween actions in a plan and thus forbids all possible reorder-
ings of a given plan, as well as all sub-plans.

Definition 6 Ler (V, O, so, s+) be a planning task and © be
aplan. The task 1. = (V', O’, s, s,) is defined as follows.

o V' =VU{T}U{T, | 0 € w}, with T being a binary
variable, and dom(v,) = {0,...,m,}, where m, is the
number of occurrences of o in T,

e O'={o°|locO\7}U U?;"o{of | o € 7}, where
pre(0®) = pre(o), eff (0°) = eff (o) U {(T,0)},
pre(o]) = pre(0) U {(@0,)},
for 0 <i < my, eff (of) = eff (0) U{(Ty,i+1)},
eff (of,,) = eff (o) U{(v,0)}, and
cost'(0%) :cost'(ozf) =cost(0), 0 < i < m,,

o s[v] = solv] forallv €V, s{[v] = 1, and s{[v,] = 0 for

all o € 7, and

o s\ [v]|=s.|v] forallveV s.t. s,[v] defined, and s’ [v] =0.

The semantics of the reformulation is as follows. The vari-
able v starts from the value 1 and switches to O when an ac-
tion is applied that is not from plan 7 treated as a multi-set.
Once a value 0 is reached indicating a deviation from plan 7,
it cannot be switched back to 1. The finite-domain variables
v, encode the number of applications of the action o. The

actions 0{ are copies of the action o in 7, counting the num-
ber of applications of o, as long as the number is not higher
than the number of times it appears in 7. Once the number

of applications exceeds m,, v is set to 0.

4.2 Forbidding Multiple Plans Exactly

In order to forbid multiple plans, the greedy approach of
Katz and Sohrabi (2020) forbids the super-set of these plans
by taking a super-set of the multi-sets representing the plans.
In our case, when optimality is required, we cannot follow
the same approach. Instead, we present a reformulation that
forbids exactly these plans and their sub-plans, and the pos-
sible reorderings. Our reformulation extends the one in Def-
inition 6, by introducing a binary variable for each plan, en-
coding whether the plan was deviated from. We refer to the

new reformulation as FMPMA (Forbidding Multiple Plans
as a Multi-set of Actions).

Definition 7 Ler (V, O, so, i) be a planning task, P be a
set of plans, and Op = {o | 0o € m,m € P}. The task
I, = V', 0, s, s.) is defined as follows.

o V' =VU{v, | 7€ PIU{D, | 0€ Op}, withv, being
binary variables, and dom(v,) = {0,...,m,}, where
me = Mmaxyecp{m?} and mT is the number of occur-
rences of o in T,

e O ={0°|0o€cO\Op}U{ol |0 Op,0<i<m,}
where

pre(0®) =pre(0), eff (0°) = eff (0)U{(Vx, 0) [7 € P},
pre(o]) = pre(0) U{(To, 1)},

eff (o) = eff (0) U{(Do,i+1)} U {(Bx, 0) | i = m[}
for (0 <1 < m,,

eﬁ(o{;o) = eff (o) U{{(,,0) | m € P}, and
cost’(0°) :cost’(o{) =cost(0), 0 < i < my,,

o solv] = solv] forallv € V, sy|vx] = 1 forall m € P,
and s([v,] = 0 forall o € Op, and

o s [v]=s[v] forallveV s.t. s,[v] defined, and s! [v,]=0
forall m e P.

4.3 Using the Reformulation

Algorithm 1 exploits the FMPMA reformulation in Defini-
tion 7 to find a solution to the unordered top-quality planning
problem. The algorithm incrementally finds the set P of top
quality plans. Starting with the empty set P = () and assum-
ing I,y = II, we use an optimal planner iteratively to find

an optimal plan 7 to the planning task II,. Once a plan is
found, it is added to the set of found plans P. Then, the new
reformulation II; is constructed from II for the next itera-
tion. The algorithm stops when a plan 7 is generated such
that cost(m) > ¢. Note that the algorithm results in a set P
of sequential plans, with no two plans being reorderings of
each other. Similarly to Katz et al. (2018), at each iteration,
after the plan 7 was found, we use structural symmetries to
generate from 7 additional plans that are symmetric (Shleyf-
man et al. 2015) to 7, and add these that are not reorderings
of 7 to the set P. Finally, since the first step results in an
optimal plan, the quality can be defined relatively to the cost
of the optimal plan rather than an absolute number.

Theorem 1 Algorithm 1 is sound and complete for un-
ordered top-quality planning when using cost-optimal plan-
ners that find shortest (in the number of actions) cost-
optimal plans.

Proof: Let P be the set of plans returned by Algorithm 1 and
let 77 be the plan found when the algorithm breaks. Since
7y is an optimal plan to II; and cost(my) > g, we need to
show that IT; forbids exactly the plans in U [P]. For a plan
m € P, 11} has a variable U that reaches its goal value only
when the number of applications of some action exceeds the
number of appearances of that action in 7. Thus, 7 is not
a plan for IT};. Since FMPMA reformulation treats plans as
multi-sets, this is true also for all 7/ € Up[r].

9904

Algorithm 1 Iterative unordered top-quality planning.

Input: Planning task II, quality bound ¢

P+ 0, II'«II, <« optimal plan to IT’

while cost(m) < g do
P« PU{rm}u{r’ |7’ is symmetric to 7, 7’ ¢ Upy[r]}
1T < IT,, where II; is the FMPMA reformulation
7 < optimal plan to IT’

end while

return P

Let P, ..., P, denote the sets of plans at the beginning
of each algorithm iteration and let 7y, ..., m, = 7 be the
optimal plans found by the algorithm in these iterations, with
7; being an optimal plan to I, . Let 7 be a plan for II such
that cost(m) < q. If 7 € Up[P], there exists & such that 7
is a plan for H;k, but not for H;Hl. Let P/ = Ppyq \ P

be the plans forbidden in H;Hl but not in H;k. Then, there
exists 7 € P’ such that MS(7) € MS(x’). If MS(w) =
MS(7'), then 7 € P and we are done. Assume that MS ()
is a proper subset of MS(7’). Note that 7’ is a reordering
of a plan that is symmetric to 7, which was the optimal
plan found for I}, . Assuming that our optimal planner finds

shorter optimal plans before longer ones, a plan 7 for I,
would be found before 7y, contradicting the assumption that
MS() is a proper subset of MS(7'). O

Zero-cost actions pose a challenge for top-quality plan-
ning, at times causing infinite solution size. In such cases,
our algorithm will continue producing plans indefinitely.

5 Experimental Evaluation

To evaluate the feasibility of our suggested approach, we
have implemented an unordered top-quality planner as part
of the ForbidIterative planners collection (Katz, Sohrabi, and
Udrea 2019), on top of the Fast Downward planning sys-
tem (Helmert 2006). The experiments were performed on
Intel(R) Xeon(R) CPU E7-8837 @2.67GHz machines, with
the time and memory limit of 30min and 2GB, respectively.
The benchmark set consists of all STRIPS benchmarks from
optimal tracks of International Planning Competitions (IPC)
1998-2018, a total of 1797 tasks in 64 domains. Our baseline
for the comparison is a simple approach, using a top-k plan-
ner with a large %k value, 10, stopping if a plan of quality
above the bound was reached. While such large values of k
consume significant disk space and can require additional
read/write time, in our experiments we have seen several
cases when 10° plans were produced. We use NaiveS, the
best performing configuration of the iterative top-k planner
(Katz et al. 2018), that exploits both symmetries and plan
reorderings. We refer to our baseline as K-tq. The purpose
of setting k to a large number is to allow the top-k planner
to exploit the entire 30min time interval. However, once 10°
plans were produced within the time bound, we stop. In our
experiments, 10 plans were produced for 211 tasks, out of
which for 210 tasks all these plans were optimal. Setting a
larger bound was not found practical, especially since read-

¢m=1.00]¢,=1.05[¢,=1.101]¢q,, =1.20
Coverage K-tq tq|K-tq tq|K-tq tq|K-tq tq
airport 7 21 7 18 6 17 6 17
blocks 16 17| 16 17| 10 13 8 9
data-network 18 0 1 0 0 0 0 0 0
depot 2 2 2 2 0o 2 0 1
driverlog 5 9 59 1 7 1 4
floortilel 1 0o 2 0 2 0 0 0 0
gedl14 5 7 5 7 5 7 5 7
gripper 2 4 2 3 2 2 0 1
logistics00 3 16 3 13 1 10 0 5
logistics98 0 4 0o 2 0 1 0 0
miconic 18 27| 18 26| 13 15| 10 12
mprime 19 18] 19 18] 19 18 6 11
mystery 20 20| 20 20| 20 20| 13 15
nomystery11 9 13 7 10 5 8 1 5
openstacks08 0o 2 0o 2 0o 2 0o 2
parcprinter08 6 15 5 12 5 12 5 11
parcprinter] 1 3 11 2 8 2 8 2 7
pegsol08 21 23| 21 23| 21 22 8 17
pegsoll1 8§ 13 8 13 8§ 12 2 5
pipes-notank 7 11 7 11 4 7 1 4
pipes-tank 3 4 3 4 3 4 1 1
psr-small 37 46| 26 40| 22 36| 16 24
rovers 3 6 3 6 2 4 0 3
satellite 3 5 3 5 11 1
storage 14 14| 14 14 7 11 6 7
tetris14 1 2 1 2 1 2 0 1
tidybot11 5 7 2 4 1 3 1 1
tpp 4 6 4 5 3 5 2 5
transport08 6 7 1 1 1 1 0 0
transport14 0 1 0 0 0 0 0 0
trucks 12 12 0 1 0 0
visitallll 8 8 7 7 5 6 5 5
woodwork08 3 8 2 6 1 4 0o 2
woodwork11 0o 3 0 1 0 0 0 0
zenotravel 7 7 7 7 4 5 2 4
Sum other (669)| 36 36| 33 33| 26 26| 22 22
Sum all (1797) | 282 398 | 254 353 | 199 292| 124 209

Table 1: The coverage results comparing to top quality plan-
ning via top-k planning, for various quality bounds.

ing and writing such large amounts of plans is time consum-
ing by itself. For each task, the quality bound is computed
using the cost of the first found optimal plan, multiplied by a
constant’. We experiment with four different quality bound
multipliers: ¢,, = 1.0 (optimal plans only), 1.05, 1.1, and
1.2 of the optimal plan cost. We do not report results for
larger quality bounds, where both approaches had low cov-
erage. Note, ¢ can be any natural number as mentioned in
Definition 5.

Table 1 depicts per-domain coverage, comparing our tech-
nique, tq, to the baseline, K-tq, for four quality bound mul-
tipliers. Each task gets a score of 1 if and only if the planner
proved there is no other plan within quality bound, by ei-
ther finding a plan above the bound or proving there are no
more plans. Note first that out of 64 domains, in 19 domains
all optimal plans could not be found for any tasks, with any
approach. There are 10 more domains where there is no dif-

This is not an overhead, as at least one optimal planner run
needs to be performed anyway.

9905

108

[] .:]

'y]

[2 B

104 l

T

3]

'M. 103’!) ¢ .

Q4 | o a

8] o, o8 N k|

=} [e °®]

i “ ::.'.o °° 1

=102 %0, " E

S 4 TS]

S e o n, @ i

g opr ity |

101:%/ :.n.. E

¢ o3 b

I! []]

[3 B

100 L’ T T RS HNY
100 10t 102 103 104 10°

top quality (tq)

Figure 3: Per-task comparison of the solution encoding size.

ference in coverage between the baseline and our approach,
for all tested quality bounds. These 29 domains are summa-
rized in the Sum other row of Table 1. Out of the remaining
35 domains, the coverage gets worse only for one domain,
MPRIME, by one task, for ¢,, = 1.0,1.05,1.1. This hap-
pens due to a timeout, and slightly increasing the time allo-
cated eliminates the difference. For all these remaining 35
domains the coverage gets better (often significantly better)
for at least one of the tested quality bounds. Extreme exam-
ples are AIRPORT, LOGISTICS00, and PSR-SMALL where
the increase in coverage for some quality bounds is by 10
instances or more. In eight domains, the increase in cover-
age is by between 5 and 9 instances (24 cases overall). On
the remaining 24 domains, the increase in coverage is more
moderate, although still quite large. Overall, there is a clear
benefit of the suggested approach over the baseline.

Another benefit of our approach is a compact representa-
tion of the solution. Figure 3 shows a per-task comparison of
solution size (number of plans) for each of the approaches,
for the quality bound multiplier ¢, = 1.0, for tasks solved
by both approaches. First, out of the total of 280 such tasks,
there are 115 tasks on the diagonal. Out of the remaining 165
tasks (all above the diagonal), 115 tasks have a single opti-
mal plan found by our approach, while the baseline needs to
find multiple optimal plans, which are all reorderings of the
same plan, with the maximal number of 60480 reorderings
found. When the number of valid reordering is larger, the
baseline approach fails before being able to find all optimal
plans.

Additionally, Figure 4 compares the reformulated task
size of our approach to the baseline one. We compare the
first generated task reformulation, for tasks solved by both
approaches, for the quality bound multiplier ¢,,, = 1.0. The
task size is measured here by the number of facts, i. e., vari-

- _— _— _—
10* 1 E
[° ° ° i
i °]
s | 5 |
% r .oo..o::..‘ 9 g
%103f .'O..On .
& | o8 ® %]
s | “]
= L b ° J
E L ° '..]
<
5102} * |
s | c z
° o
° .
101;\ A Ll L B
10! 102 10? 104

top quality (tq)

Figure 4: First reformulated task size (number of facts).

able value pairs. While the larger tasks are not necessarily
harder for a classical planner, this is usually the case. Our
experiments clearly show that our approach creates tasks of
sizes significantly smaller than the baseline approach.

Finally, note that the proposed reformulation can also be
exploited for top-quality planning, as in Definition 3, or a
top-k planning, depending on the stopping criteria. To obtain
either a top-quality or a top-k planner, a complete procedure
for generating all valid reorderings of a plan is required. To
experimentally test whether it can still pay off to use the
simpler reformulation while using a complete procedure for
generating reorderings of found plans, we have implemented
such a procedure based on a depth-first search (DFS-r). Ev-
ery time a plan is generated, DFS-r generates all its valid re-
orderings. The result is a planner that is based on the new
suggested reformulation. It is worth emphasizing that the
generation of all valid reordering must be complete, and thus
DFS-r can take considerable time. While some optimization
of the procedure is possible, it is outside the scope of our cur-
rent work. To check both the top-quality and top-k planners,
we forgo a stopping criteria beyond the aforementioned 10°
plans and compared the number of plans generated within
the time bound to the existing top-k planner. The results are
depicted in Figure 5. Colors and shapes represent various
domains, with less interesting (exhibit similar behavior for
both approaches) domains marked with other. On one hand,
the requirement of having a complete algorithm for generat-
ing all valid reorderings takes its toll in practice. For tasks
on the horizontal axis, the algorithm could not finish gen-
erating all valid reorderings of the first found plan. Even if
there are no other possible reorderings, the algorithm has to
prove that, which might take considerable time. The overall
picture, however, is in favor of the suggested approach, with
most of the task fall under the diagonal.

9906

o driverlog + barman © data-ntwrk ¢ depot * elevators
© miconic © blocks © logistics98 ¢ hiking * pipes
© nomystery ~ movie = logisticsO0 ¢ pegsol * pipes-nt
o scanalyzer + gripper © openstacks ¢ termes * psr-small
o transport + TOVErs o parcprinter © tpp < sokoban
o woodwork # storage o zenotravel + other
100 ‘ =, B
(o]
[o
o 25,
R oé
* A O
¢ *O@ u] gg
10* xRN T
* :Qo ® * o
> éo Oy A 3 o %O D
'ﬁ‘] o ¢ 6@?%(%’@@@
I N Gk
9 o, o*
. 47 A 2 g
* - ; ;%% o
. * % #
0% 7 vy G B8
o s 38
* + A<><>ﬁ<%tt+«:j:» %
Lo B
*}C (SR + +
S FF O+
| 8y
10% = 9 -
10 10 10* 10°

top-k via top quality

Figure 5: Comparison of the amount of produced plans.

6 Conclusions and Future Work

In this work we have shown a way of obtaining all plans
of bounded solution quality, representing plan reorderings
implicitly and thus escaping the need for counting plans.
We have presented a novel reformulation of a planning task
that forbids exactly the set of given plans, their reorderings,
and all subplans thereof. We have formally defined the fam-
ily of computational problems in top-quality planning and
have implemented a first planner for unordered top-quality
planning. The planner, exploiting the new reformulation, has
empirically shown to perform significantly better than the
straightforward approach of exploiting top-k planners with
a large bound k, as it is often done in practice.

For future work, one promising direction is exploring
the use of top-quality instead of top-k planners in planning
applications. Another possible direction is creating a top-
k planner based on the unordered top-quality planner, ex-
ploiting the more compact task representation. Further, (un-
ordered) top-quality planners can be used to obtain solutions
to diverse planning, when solution cost is also considered
(Vadlamudi and Kambhampati 2016).

References
Bickstrom, C., and Nebel, B. 1995. Complexity results for
SAST planning. Computational Intelligence 11(4):625-655.

Boddy, M.; Gohde, J.; Haigh, T.; and Harp, S. 2005. Course
of action generation for cyber security using classical plan-
ning. In Biundo, S.; Myers, K.; and Rajan, K., eds., Proceed-

ings of the Fifteenth International Conference on Automated
Planning and Scheduling (ICAPS 2005), 12-21. AAAI Press.

Bryce, D. 2014. Landmark-based plan distance measures
for diverse planning. In Chien, S.; Fern, A.; Ruml, W.; and
Do, M., eds., Proceedings of the Twenty-Fourth International
Conference on Automated Planning and Scheduling (ICAPS
2014), 56-64. AAAI Press.

Chakraborti, T.; Fadnis, K. P.; Talamadupula, K.; Dholakia,
M.; Srivastava, B.; Kephart, J. O.; and Bellamy, R. K. E. 2018.
Visualizations for an explainable planning agent. In Proceed-

ings of the 27th International Joint Conference on Artificial
Intelligence (IJCAI 2018), 5820-5822. 1JCAL

Coman, A., and Mufioz-Avila, H. 2011. Generating diverse
plans using quantitative and qualitative plan distance metrics.
In Burgard, W., and Roth, D., eds., Proceedings of the Twenty-
Fifth AAAI Conference on Artificial Intelligence (AAAI 2011),
946-951. AAAI Press.

Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan
stability: Replanning versus plan repair. In Long, D.; Smith,
S. F.; Borrajo, D.; and McCluskey, L., eds., Proceedings of the
Sixteenth International Conference on Automated Planning
and Scheduling (ICAPS 2006), 212-221. AAAI Press.

Haslum, P. 2013. Heuristics for bounded-cost search. In
Borrajo, D.; Kambhampati, S.; Oddi, A.; and Fratini, S., eds.,
Proceedings of the Twenty-Third International Conference
on Automated Planning and Scheduling (ICAPS 2013), 312—
316. AAAI Press.

Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191-246.

Katz, M., and Sohrabi, S. 2020. Reshaping diverse planning.
In Proceedings of the Thirty-Fourth AAAI Conference on Ar-
tificial Intelligence (AAAI 2020). AAAI Press.

Katz, M.; Sohrabi, S.; Udrea, O.; and Winterer, D. 2018. A
novel iterative approach to top-k planning. In de Weerdt, M.;
Koenig, S.; Roger, G.; and Spaan, M., eds., Proceedings of the
Twenty-Eighth International Conference on Automated Plan-
ning and Scheduling (ICAPS 2018). AAAI Press.

Katz, M.; Sohrabi, S.; and Udrea, O. 2019. ForbidIterative
planners for top-k, top-quality, and diverse planning prob-
lems. https://doi.org/10.5281/zenodo.3246773.

Kim, J.; Woicik, M. E.; Gombolay, M. C.; Son, S.; and Shah,
J. A. 2018. Learning to infer final plans in human team plan-
ning. In Proceedings of the 27th International Joint Con-
ference on Artificial Intelligence (IJCAI 2018), 4771-4779.
IJCAL

Nguyen, T. A.; Do, M. B.; Gerevini, A.; Serina, I.; Srivastava,
B.; and Kambhampati, S. 2012. Generating diverse plans to
handle unknown and partially known user preferences. Arti-
ficial Intelligence 190:1-31.

Riabov, A. V.; Sohrabi, S.; Sow, D. M.; Turaga, D. S.; Udrea,
O.; and Vu, L. H. 2015. Planning-based reasoning for auto-
mated large-scale data analysis. In Brafman, R.; Domshlak,
C.; Haslum, P.; and Zilberstein, S., eds., Proceedings of the
Twenty-Fifth International Conference on Automated Plan-
ning and Scheduling (ICAPS 2015), 282-290. AAAI Press.

Roberts, M.; Howe, A. E.; and Ray, I. 2014. Evaluating di-
versity in classical planning. In Chien, S.; Fern, A.; Ruml,

9907

W.; and Do, M., eds., Proceedings of the Twenty-Fourth Inter-
national Conference on Automated Planning and Scheduling
(ICAPS 2014), 253-261. AAAI Press.

Shleyfman, A.; Katz, M.; Helmert, M.; Sievers, S.; and
Wehrle, M. 2015. Heuristics and symmetries in classical
planning. In Proceedings of the Twenty-Ninth AAAI Con-
ference on Artificial Intelligence (AAAI 2015), 3371-3377.
AAAI Press.

Shvo, M.; Sohrabi, S.; and Mcllraith, S. A. 2018. An Al
planning-based approach to the multi-agent plan recognition
problem. In Bagheri, E., and Cheung, J. C., eds., Proceedings
of the 31st Canadian Conference on Artificial Intelligence
(CAI 2018), volume 10832, 253-258. Springer-Verlag.

Sievers, S.; Wehrle, M.; Helmert, M.; and Katz, M. 2017.
Strengthening canonical pattern databases with structural
symmetries. In Fukunaga, A., and Kishimoto, A., eds., Pro-

ceedings of the 10th Annual Symposium on Combinatorial
Search (SoCS 2017),91-99. AAAI Press.

Sohrabi, S.; Riabov, A. V.; Udrea, O.; and Hassanzadeh,
O. 2016. Finding diverse high-quality plans for hypothe-
sis generation. In Kaminka, G. A.; Fox, M.; Bouquet, P.;
Hiillermeier, E.; Dignum, V.; Dignum, F.; and van Harmelen,
F, eds., Proceedings of the 22nd European Conference on Ar-
tificial Intelligence (ECAI 2016), 1581-1582. T10OS Press.

Sohrabi, S.; Riabov, A. V.; Katz, M.; and Udrea, O. 2018.
An Al planning solution to scenario generation for enterprise
risk management. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence (AAAI 2018), 160-167.
AAALI Press.

Sohrabi, S.; Riabov, A. V.; and Udrea, O. 2016. Plan recogni-
tion as planning revisited. In Kambhampati, S., ed., Proceed-
ings of the 25th International Joint Conference on Artificial
Intelligence (IJCAI 2016), 3258-3264. AAAI Press.

Stern, R.; Puzis, R.; and Felner, A. 2011. Potential search:
A bounded-cost search algorithm. In Bacchus, F.; Domshlak,
C.; Edelkamp, S.; and Helmert, M., eds., Proceedings of the
Twenty-First International Conference on Automated Plan-
ning and Scheduling (ICAPS 2011), 234-241. AAAI Press.

Thayer, J. T., and Ruml, W. 2011. Bounded suboptimal
search: A direct approach using inadmissible estimates. In
Walsh, T., ed., Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI 2011), 674-679.
AAAI Press.

Vadlamudi, S. G., and Kambhampati, S. 2016. A combina-
torial search perspective on diverse solution generation. In
Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence (AAAI 2016), 776-783. AAAI Press.

