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Abstract

Solving a Multi-Agent Pathfinding (MAPF) problem involves
finding non-conflicting paths that lead a number of agents to
their goal location. In the sum-of-costs variant of MAPF, one
is also required to minimize the total number of moves per-
formed by agents before stopping at the goal. Not surpris-
ingly, since MAPF is combinatorial, a number of compila-
tions to Satisfiability solving (SAT) and Answer Set Program-
ming (ASP) exist. In this paper, we propose the first family
of compilations to ASP that solve sum-of-costs MAPF over
4-connected grids. Unlike existing compilations to ASP that
we are aware of, our encoding is the first that, after ground-
ing, produces a number of clauses that is linear on the num-
ber of agents. In addition, the representation of the optimiza-
tion objective is also carefully written, such that its size af-
ter grounding does not depend on the size of the grid. In
our experimental evaluation, we show that our approach out-
performs search- and SAT-based sum-of-costs MAPF solvers
when grids are congested with agents.

Introduction

Given a graph G and k agents, each of which is associated
with an initial and a goal vertex of G, Multi-Agent Pathfind-
ing (MAPF) is the problem of finding k conflict-free paths
connecting the initial vertex with the goal of each agent.

A number of applications of MAPF exist, ranging from
industrial applications, in which the increase in automa-
tion may promote the need for dozens—perhaps hundreds—
of robots navigating in indoor environments (e.g., ware-
houses), to aviation, underground mining, and multi-agent
videogames (Wang and Botea 2008).

Solving MAPF optimally is NP-complete (Yu and
LaValle 2013; Ma and Koenig 2017). When viewed as a
standard AI search problem, it is straightforward to notice
that the branching factor of MAPF is exponential on the
number of agents, since at each moment in time each agent
can perform a number of actions, relatively fixed. It is not
surprising, then, that building algorithms that scale reason-
ably well with the number of agents has been challenging.

In its simplest version, that is, MAPF over 4-connected
grids, a number of approaches have been proposed, but
two classes of solvers are most relevant for the research
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we report here. First, search-based solvers (e.g., Stand-
ley 2010), which use heuristic search as the main com-
ponent. A state-of-the-art search-based solver is Conflict-
Based Search (CBS) (Sharon et al. 2012; Felner et al. 2018;
Li et al. 2019), which uses A* at its core. A second class
is compilation-based solvers; for example, compilers from
MAPF to Satisfiability Testing (SAT) (e.g., Surynek et
al. 2016; Barták et al. 2017; Barták and Svancara 2019),
and Answer-Set Programming (ASP) (Erdem et al. 2013;
Gebser et al. 2018).

When seeking for an optimal solution for MAPF, different
objective functions can be considered. Under sum-of-costs,
the most popular variant of MAPF, the objective is to mini-
mize the moves agents perform before stopping at the goal.

In this paper, we continue to explore the potential of ASP
solvers for MAPF, and propose the first compilation that
solves MAPF optimally under the sum-of-costs assumption.
A second contribution consists of proposing the first compi-
lation from MAPF to ASP that grows linearly with the num-
ber of agents, unlike existing compilations to ASP that are
quadratic on the number of agents. In addition, we propose
an optimization which uses information drawn from a search
algorithm that is run as a preprocessing step to make the en-
coding more compact.

We evaluate our approach on synthetic square grids and
warehouse grids with an increasing number of agents. We
compare against MDD-SAT (Surynek et al. 2016), SMT-
CBS (Surynek 2019) two state-of-the-art compilation-based
solvers, and iCBS-h (Felner et al. 2018), a representative
of the state-of-the-art in search-based MAPF. We observe
that our approach outperforms both MDD-SAT and iCBS-
h when congestion is high. Specifically, our approach has a
greater coverage as the number of agents increase.

We conclude that ASP is a viable approach to solving
MAPF problems. Another interesting conclusion is that ASP
also provides a very compact and elegant representation of
sum-of-costs MAPF. Indeed, most of the code needed to
solve a MAPF instance is included in this paper.

Background

In this section we describe MAPF and ASP. Our definition
of MAPF follows closely that of Stern et al. (2019).
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Multi-Agent Pathfinding

A MAPF instance is defined by a tuple (G,A, init, goal),
where G = (V,E) is a graph, A is the set of agents, and
init : A → V and goal : A → V are functions used to
denote the initial and goal vertex for each of the agents.

At each time instant each agent at vertex v can either
move to any of its successors in G or not move at all. When
the graph G is a 4-connected grid, as we assume in the
rest of the paper, at each time instant each agent can per-
form an action in the set {up, down, left , right ,wait}. The
wait action leaves the agent in the same position whereas
the others move them in one of the four cardinal positions.
A path over G is a sequence of vertices in V , v1v2 . . . vn,
where either vi = vi+1 (i.e., a wait action is performed) or
(vi, vi+1) ∈ E (i.e., a non wait action is performed) for ev-
ery i ∈ {1, . . . , n−1}. Given a path π we denote by π[i] the
i-th element in π, where i ∈ {1, . . . , |π|}.

A solution to MAPF is a function sol : A → V ∗, which
associates a path to each of the agents, such that the first and
last vertices of sol(a) are, respectively, init(a) and goal(a).
Without loss of generality, henceforth we assume that all
paths in sol have the same size, since wait actions may be
used at the end of any action sequence to remain on the same
vertex. Below we denote by T the set {1, . . . ,M}, where M
is the size of any of the paths in sols. We also refer to M−1
as the makespan of the solution.

In addition, sol must be conflict-free, which means that if
π and ρ are the paths in sol followed by two different agents,
none of the following conflicts should arise.

• Vertex Conflict. Two agents cannot be at the same ver-
tex at the same time instant. Formally, there is a vertex
conflict iff π[i] = ρ[i], for some i ∈ T .

• Swap Conflict. Two agents cannot swap their positions.
Intuitively, this conflict is justified by that fact that we as-
sume that size of the agents prevent the connection be-
tween two vertices in opposite directions. Formally, there
is a swap conflict iff (π[i], ρ[i]) = (ρ[i+ 1], π[i+ 1]), for
some i ∈ {1, . . . ,M − 1}.

Following most of the literature in MAPF (e.g., Sharon et
al. 2012), we consider only these two types of conflicts, and
no other conflicts. For example, we do not consider so-called
following conflicts (Stern et al. 2019), which do not allow an
agent to occupy at time t + 1 the position of another agent
had at time t.

A standard assumption in MAPF is that all actions cost
one unit except for waits performed at the goal when no
other action is planned in the future. Note that this means
wait actions do have a cost of 1 unless the agent performs
such a wait at the goal, and does not move away from the
goal in the future. Thus, the cost of path π for agent a is
written as |ρ|, when ρ is the shortest sequence such that
π = ρ(goal(a))k, for some k. The cost of a solution sol
is defined as

∑
a∈A c(sol(a)).

A solution sol is optimal under sum-of-costs, or sim-
ply cost-optimal, if no other solution sol′ exists such that
c(sol′) < c(sol). A solution sol is makespan-optimal if no
other solution exists whose makespan is smaller than the

Figure 1: Problem instance where the increase of makespan
yields better sum-of-costs solutions. The problem has 3
agents: a0, who needs to go from (0, 1) to (3, 1). And
agents a1 and a2 who are already at the goal at the positions
(1, 1) and (2, 1) respectively. The cost-optimal solution with
makespan 3 is 8, since it involves a1 and a2 moving away
from their goal to make space for a0. In contrast the optimal
cost solution with makespan 5 is 5 as it only needs to move
a0.

makespan of sol. A makespan-optimal solution is not neces-
sarily a cost-optimal solution. This is illustrated in Figure 1.

Answer-Set Programming

ASP (Lifschitz 2008) is a logic-based framework for solv-
ing optimization problems. For space limitations, here we
describe a subset of an ASP standard that is relevant to this
paper. An ASP basic program is a set of rules of the form:

p← q1, q2, . . . , qn (1)

where n ≥ 0, and p, q1, . . . , qn are so-called atoms.
The intuitive interpretation of this rule is as follows ‘p is
true/provable if so are q1, q2, . . . , qn’. When n = 0 rule (1)
is considered to have an empty body. Such rules are called
facts and are usually written as ‘p’ instead of ‘p←’.

A model of an ASP basic program is a set of atoms
M that intuitively contains all and only the atoms that
are provable. Formally, M is a model of basic program Π
iff M is the subset-minimal set such that for every rule
p ← q1, q2, . . . , qn ∈ Π such that {q1, . . . , qn} ⊆ M , then
p ∈M .

An important syntactic element relevant to our paper is the
so-called negation as failure. Rules containing such negated
atoms look like:

p← q1, q2, . . . , qn, not r1, not r2, . . . , not rk. (2)

Intuitively, rule (2) should be interpreted as ‘p is provable
if q1, . . . qn are provable a none of r1, . . . , rk are provable’.
The semantics of programs that include negation as failure is
simple but a little more involved, requiring the introduction
of so-called stable models, whose formal definition we omit
from this paper. We direct the interested reader to the paper
by Ferraris and Lifschitz (2005).

Another relevant type of rule for our paper is:

|{p1, p2, . . . , pn}| = k ← q1, q2, . . . , qn.

Intuitively here we say that if q1, q2, . . . , qn are all provable,
then k of the elements in {p1, p2, . . . , pn} must appear in
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the model. This definition allows programs to have multiple
models1. For example, the program {s, |p, q, r| = 1 ← s}
has three models: {p, s}, {q, s}, and {r, s}.

Another type of rule that is relevant to our translation is:

← p1, p2, . . . , pn (3)

which is a constraint that prohibits the occurrence of
{p1, p2, . . . , pn} in the model. Technically these rules are
a particular case of (1), but we treat them separately here to
make the presentation simpler.

Finally, ASP programs may contain variables to represent
rule schemas. As such, a rule like:

p(X)← q(X) (4)

where uppercase letters represent variables. Intuitively a
variable occurring in a program Π can take any value among
the set of terms of Π. As such, rule (4) represents that when
c is a term and q(c) is provable, so is p(c). Intuitively a term
represents an object that can be named in the program. The
set of terms for a program is syntactically determined from
the program using the constants mentioned in it. The set of
terms has a theoretical counterpart, the so-called Herbrand
base, whose definition we omit here, since it is not key for
understanding the rest of the paper.

In the process of finding a model for a program, an ini-
tial step that is carried out is grounding. Grounding instan-
tiates rules with variables, effectively removing all variables
from the program. Since there are plenty of optimizations
that solvers employ during grounding, it is not easy to de-
scribe the grounding process with complete precision here,
and therefore we will just describe it intuitively. For exam-
ple, the grounded version of program:

{q(a), q(b), p(X)← q(X)} (5)

may be

{q(a), q(b), p(a)← q(a), p(b)← q(b)} or
{q(a), q(b), p(a), p(b)},

depending on the optimizations applied at grounding time.
What is however unavoidable is that grounding generates
two instances for the rule p(X) ← q(X) because the num-
ber of objects that satisfy predicate q is two. Thus, if we had
declared n objects satisfying q we would expect the ground-
ing process to generate n instances for p(X) ← q(X). As
we will see in the rest of the paper, the size of the grounded
version of the program is key for performance.

A Basic Translation of MAPF to ASP

We are now ready to describe our compilation of sum-of-
costs MAPF to ASP. As we have mentioned above, this is the
first compilation to ASP that handles sum-of-costs. Besides
that aspect of novelty, the basic compilation that we present
here is similar in many aspects to Erdem et al.’s compilation

1Technically, negation as failure alone also allows the user to
create programs with multiple models, but in our translation we
define multiple models exploiting this type of rule.

(2013) to ASP, and, in some aspects similar to the MAPF-to-
SAT compilation of Surynek (2014). Below we are specific
about these similarities.

As most compilations of planning problems into
SAT/ASP, the makespan of the compilation is a parameter,
which below we call T.

Atoms We use the following atoms:
• agent(a): to express that A is an agent,
• goal(a, x, y): specifies that the goal cell for agent a is

(x, y),
• obstacle(x, y): specifies that cell (x, y) is an obstacle,
• at(a, x, y, t): specifies that agent a is at (x, y) at time t,
• exec(a,m, t): specifies that agent a executes action m at

time t,
• at goal(a, t): specifies that agent a is at the goal at time
t,

• time(t): t is a time instant,
• action(m): m is an action.
Finally, we use atoms rangeX(x) and rangeY (y) to spec-
ify that (X,Y ) is within the limits of the grid.

Instance Specification To specify a particular MAPF in-
stance, we define facts for atoms of the form agent(a),
for each a ∈ A, obstacle(x, y) for each (x, y) that is
marked as an obstacle in the grid, rangeX(x) for each
x ∈ {1, . . . , w}, where w is the width of the grid, and
rangeY (y) for each y ∈ {1, . . . , h}, where h is the height
of the grid. Additionally, we define the initial cells for each
agent, adding one fact of the form at(a, xa, ya, 0) for each
agent a ∈ A, where (xa, ya) = init(a). Furthermore, we
add an atom of the form time(t) for every t ∈ {1, . . . , T}.
The number of rules needed to encode a MAPF instance is
therefore in Θ(|A|+ T+ |V |).
Effects To encode the effects of the five actions, we use a
single rule written as follows:

at(A,X, Y, T )←exec(A,M, T − 1),

at(A,X ′, Y ′, T − 1),

delta(M,X ′, Y ′, X, Y ).

(6)

which specifies that if agent A is at position (X ′, Y ′) at time
instant T − 1, then it will be in position (X,Y ) in time in-
stant T iff (X,Y ) and (X ′, Y ′) satisfy predicate delta. Aux-
iliary predicate delta is used to establish a relation between
(X,Y ) and (X ′, Y ′) given a certain action M in the follow-
ing way:

delta(right , X, Y,X + 1, Y )← rangeX(X), rangeY (Y ),

delta(left , X, Y,X − 1, Y )← rangeX(X), rangeY (Y ),

delta(up, X, Y,X, Y + 1)← rangeX(X), rangeY (Y ),

delta(down, X, Y,X, Y − 1)← rangeX(X), rangeY (Y ),

delta(wait , X, Y,X, Y )← rangeX(X), rangeY (Y ).
(7)

A grounding time predicate delta results in 5 rules per each
position of the grid. This defines that the total number of
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grounded instances for rule (6) is proportional to the size
of the grid, the number of agents and the number of time
instants. The total number of instances for rules of the form
(6) and (7) is in Θ(|A| · |V | · T).

Parallel action execution We need to encode that each
agent performs exactly one action at each time instant. To
do this we write the following rule:

|{exec(A,M, T − 1) : action(M)}| = 1←time(T ),

agent(A).
(8)

Upon grounding, the number of instances of this rule is in
Θ(|A| · T).

Legal positions We need to express that the agents move
through the vertices in the graph; that is, they cannot exit the
grid or visit an obstacle cell. We do so using the following
three rules:

← at(A,X, Y, T ), not rangeX(X),

← at(A,X, Y, T ), not rangeY (Y ),

← at(A,X, Y, T ), obstacle(X,Y ).

(9)

The total number of grounded rules for the rules of form (9)
is in Θ(|A|·|V | ·T), since it depends on the number of atoms
of the form at, obstacle, rangeX , and rangeY .

Vertex Conflicts To express that no agents can be at the
same vertex we use the following constraint, which is similar
to those used in the encodings to ASP by Erdem et al.; Geb-
ser et al. (2013; 2018) and Surynek et al. (2016):

← at(A,X, Y, T ), at(A′, X, Y, T ) (10)

The number of instances for rule (10) after grounding is
Θ(|A|2 · |V | · T). Note that this is the first rule so far whose
instantiation is quadratic on the number of agents. This mo-
tivates the improvement we present in the following section.

Swap Conflicts No pair of agents can swap their positions.
We express this avoiding horizontal and vertical swaps using
the following constraints.

←at(A,X + 1, Y, T − 1), at(A′, X, Y, T − 1),

at(A,X, Y, T ), at(A′, X + 1, Y, T ).% horizontal swap

←at(A,X, Y + 1, T − 1), at(A′, X, Y, T − 1),

at(A,X, Y, T ), at(A′, X, Y + 1, T ).% vertical swap

(11)

The number of ground rules for (11) is in Θ(|A|2 · |V | · T).

Goal Achievement We specify via a constraint that no
agent is away from its goal at time T:

at goal(A, T )← at(A,X, Y, T ), goal(A,X, Y ),

← agent(A), not at goal(A, T).
(12)

The number of instances for rules (12) is Θ(A · |V | · T).

Size of Basic Encoding After grounding, it follows that
the size of the total encoding is in Θ(|A|2 · |V | · T). That is,
it is quadratic in the number of agents, linear in the size of
the grid, and linear in the makespan parameter T.

Sum-of-Costs in ASP

The encoding we presented in the previous section still does
not produce cost-optimal solutions. Indeed, once fed into an
ASP solver, it will return a model only if a solution with
makespan T exists. In this section we present how we can
obtain solutions for sum-of-costs MAPF.

There is a natural way to encode sum-of-costs minimiza-
tion: to minimize the number of actions performed by each
agent before stopping at the goal. We noticed, however, that
this yields an encoding whose size grows linearly with the
size of the grid, |V |. This motivated us to look for a more
compact encoding which would not depend on |V |. Even
though, as we see in our empirical evaluation below, the
grid-independent encoding performs better in practice, we
describe both approaches here since the grid-dependent en-
coding is more natural and is a contribution on its own since
sum-of-costs had not been encoded in ASP before.

Grid-Dependent Encoding

This encoding is similar to the approach used in MDD-
SAT (Surynek et al. 2016): the idea to minimize the actions
performed by the agent at each cell before stopping at the
goal. At a first glance one might think that we just need to
count every action performed away from the goal and min-
imize this number. This approach, however does not work
because a wait at the goal at time t should be counted if
the agent will move away from the goal at some instant t′
greater than t.

To identify time instants at which we know the agent will
not move away from the goal, we introduce the predicate
at goal back(a, t), which specifies that agent a has reached
the goal at time t and will not move away in the future:

at goal back(A, T) ← agent(A),

at goal back(A, T − 1) ← at goal back(A, T ),

exec(A,wait, T − 1).

Now we define predicate cost, such that there is an atom
of the form cost(a, t, 1) in the model whenever agent a per-
formes an action at time t before stopping at the goal. First
we express that moving an agent from a cell that is not the
goal is penalized by one unit:

cost(A, T, 1)← at(A,X, Y, T ), not goal(A,X, Y ).

Second, moving an agent away from the goal is also penal-
ized by one:

cost(A, T, 1)←at(A,X, Y, t), goal(A,X, Y ),

exec(A,M, t),M �= wait .

Third, if an agent performs a wait at the goal, but moves at
a later time instant, then this is also penalized:

cost(A, T, 1)←at(A,X, Y, t), goal(A,X, Y ),

exec(A,wait, T ), not at goal back(A, T ).

Finally, via an optimization statement, we minimize the
number of atoms of the form cost(A, T, 1) in the model:

#minimize{C, T,A : cost(A, T,C)}.
After grounding, the number of rules is in Θ(|A| · |V | ·T).
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Grid-Independent Encoding

For this encoding, we define the atom optimal(a, ca), for
each agent a ∈ A, where ca corresponds to the cost of the
optimal path from init(a) to goal(a) ignoring both vertex
and swap conflicts. In other words, ca is the result of solv-
ing a relaxation of the problem that ignores other agents.
We compute such a value using Dijkstra’s algorithm, before
generating the encoding.

In contrast to the first encoding, we maximize the slack
between the makespan T and the time instant at which an
agent has stopped at the goal, by simply adding:

penalty(A, T, 1)←optimal(A,C), T > C,

at goal back(A, T − 1).

Note that since no reference to the grid cells is made, the
grounding generates a number of rules in Θ(|A| ·T). Finally,
we use the following maximization statement.

#maximize{P, T,A : penalty(A, T, P )}.

Finding Cost-Optimal Solutions

The encoding proposed so far can find the minimum sum-of-
cost solution for a given makespan. We still need to define
how to find a true cost-optimal solution.

Following the approach used for SAT encodings for plan-
ning (Kautz and Selman 1992), in our approach we attempt
to solve instances for increasing makespan T, until a solu-
tion, say solmin, is found. Two observations with this pro-
cess are important. First, we do not need to start increas-
ing T from 1. As mentioned above, at preprocessing time,
for each agent we compute cost the cost c∗a which ignores
other agents. The makespan of any solution must be at least
maxa∈A c∗a so this can be the inferior limit of our iteration.

Second, let solmin be the solution that is found first. Un-
fortunately, solmin is a makespan-optimal solution but not
necessarily a cost-optimal solution. Now, we can compute
a bound for the largest makespan Tmax at which the cost-
optimal solution is found, using the following theoretical re-
sult first proposed by Surynek et al. (2016):

Theorem 1 (Surynek et al. 2016) Let solmin be the
makespan-optimal solution for MAPF problem P , let sol−
denote a solution to P that ignores all conflicts, and let T−
denote its makespan. Then the makespan of the cost-optimal
solution is at most at Tmax = T−+c(solmin)−c(sol−)−1.

Thus, after we find the first solution solmin, we run the
solver again for makespan Tmax given by Theorem 1. The
approach described in this section was recently evaluated
by Barták and Svancara (2019) for their Picat-based MAPF
solver.

A Linear Encoding

The encoding we have proposed is quadratic in the number
of agents. In this section we show how to make it linear by
introducing new atoms to the encoding. Specifically, we in-
troduce the following atoms:

• rt(x, y, t) (resp. lt(x, y, t)) which specifies that the edge
between (x, y) and (x, y+1) was traversed by some agent
at time t from left to right (resp. from right to left).

• ut(x, y, t) (resp. dt(x, y, t)) which specifies that the edge
between (x, y) and (x, y+1) was traversed upwards (resp.
downwards) by some agent at time t.
• st(x, y, t), indicates that some agent stayed at (x, y), that

is, it performed a wait action at time t.
The dynamics of these atoms are defined using one rule

with variables. The rule for rt is:

rt(X,Y, T )← exec(A, right, T ), at(A,X, Y, T ), (13)

while the rule for st is:

st(X,Y, T )← at(A,X, Y, T ), exec(A,wait, T ).

We omit the rules for dt, lt, and ut since they are analogous
to (13).

Using these predicates we now express the fact that a sin-
gle cell cannot be entered at the same time instant by two
different agents. This requires six rules each of which corre-
sponds to a pairs of actions in {right , left , up, down}. For
example, the following rule expresses that (X,Y ) cannot be
entered by an agent performing a down action at the same
time that is entered by another agent performing up:

← lt(X,Y, T ), dt(X,Y, T )

It is easy to verify that these rules do not mention pairs
of different agents, unlike (10) and (11), and as such after
grounding we end with Θ(|A| · |V | · T) rules, and therefore
the resulting encoding is linear in |A|.

Using Search to Reduce the Atoms

We can exploit our run of Dijkstra’s algorithm during pre-
processing time to generate an even smaller encoding by re-
placing rule (6) by the following rule.

at(A,X, Y, T )←at(A,X ′, Y ′, T − 1), exec(A,M, T ),

delta(M,X ′, Y ′, X, Y ),

cost to go(A,X, Y,C), T + C <= T,

(14)

where cost to go(A,X, Y,C) specifies that C is the min-
imum number of actions needed to go from (X,Y ) to the
goal of agent A. This way we can ignore the generation of
rules to positions that will not reach the goal, generating a
much more compact encoding. This idea is related to the
use of MDDs graphs in MDD-SAT (Surynek et al. 2016),
but does not require the generation of the MDD, so it is con-
ceptually simpler.

Empirical Evaluation

The objective of our empirical evaluation was to compare
the performance of the different variants of our transla-
tion against representatives of search-based and SAT-based
solvers. We compared to the publicly available SAT-based
solver MDD-SAT (Surynek 2014) (enc=mdd), the SMT
compilation-based solver SMT-CBS (Surynek 2019), and
the search-based solvers EPEA* (Goldenberg et al. 2014),
and ICBS-h (Felner et al. 2018). Our evaluation is focused
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Figure 2: Success rate and number of instances solved versus time on 20× 20 grids.

Figure 3: Success rate and number of instances solved versus time on 20 × 20 grids. ASP-T1 is the best configuration (ASP-
GI-LC-CG) ran with 1 thread, and ASP-T4 is ASP-GI-LC-CG ran with 4 threads.

Figure 4: Success rate and number of instances solved versus time on the Warehouse problem.
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on relatively small grids since grounding time grows too
much for larger grids (e.g., 512×512), making the approach
impractical.

We compared different encodings based on each of our
improvements: ASP-basic is the basic encoding that uses
quadratic conflict resolution and grid-dependent penalties.
GI refers to the use of grid-independent penalties. LC refers
to the use of linear conflict encoding. Finally, CG refers to
the use of Dijkstra’s algorithm as seen on rule (14).

The code used for our implementation was written in
Python 3.7 using Clingo 5.3 (Gebser et al. 2014) for the
ASP solver. Clingo was run with 4 threads in parallel-mode,
and using USC as the optimization strategy, unless otherwise
stated. All algorithms we compared with were obtained from
their authors.

All experiments were run on a 3.40GHz Intel Core i5-
3570K with 8GB of memory running Linux. We set a run-
time limit of 5 minutes for all problems.

N ×N Grids with Random Obstacles

First, we experimented on 8×8 and 20×20 randomly gener-
ated problems with 10% obstacles. For 8× 8 (resp. 20× 20)
we generate 150 (resp. 160) problems with the number
of agents in {4, . . . , 18} (resp. {20, 22, . . . , 50}). Success
rates, and number of problems solved versus time for the
20 × 20 are shown in Figure 2. The results for 8 × 8 are
omitted since they look very similar to 20× 20.

In the 8 × 8 grids, as the number of agents increase, all
our encodings outperform the other algorithms in terms of
success rate. We also observe that our modifications to the
basic encoding pay off substantially. We observe a substan-
tial difference between our grid-dependent encoding and our
grid-independent encoding.

For 20 × 20 grids, we observe that our linear encoding
solves almost all problems and substantially outperforms our
quadratic (basic) encoding. We do not observe in this case
an important impact of the grid-dependent encoding over
grid-independent encoding. In contrast, it is interesting to
see the benefits of using the CG rule as a way to generate a
smaller encoding, as shown in Figure 2 CG greatly improves
the solving time. In fact we found that the average solving
time is 1.74 smaller using ASP-GI-LC-CG in comparison to
ASP-GI-LC. Also we found a decrease of factor 1.98 on the
average runtime of the grounding process when using CG.

To understand the influence of the number of obstacles on
the grid, we experimented on 20 × 20 randomly generated
problems with 20 agents. We evaluated the best-performing
configuration of the previous experiments using 1 and 4
threads. We generate 100 problems by varying the percent-
ages of obstacles in {0, 5%, 10%, . . . , 45%}. Figure 3 shows
the results. Again our ASP formulations outperform other al-
gorithms. In addition, no significant differences are observed
between the 1- and 4-thread variants.

Obstacle-Free N ×N Grids

Next, we experimented on N × N obstacle-free grids with
N ∈ {8, 16, 32}. Here we wanted to understand how suc-
cess rate is affected by the number of agents. For each grid

Breaking-point by grid size
Algorithm 8× 8 16× 16 32× 32
ASP-basic 26 48 20
ASP-GI-LC-CG 32 70 78
ICBS-h 16 52 108

Table 1: Breaking point on empty N ×N grids

Figure 5: Warehouse problem example.

we generated 10 random instances for each number of agents
in {2, 4, . . . N2 − 2}.

We define the breaking point of an algorithm, as the num-
ber of agents at which the success rate in the success rate plot
drops below 0.5, never to go back up again. The breaking
point for each algorithms and grid size is shown at Table 1.

In the results we observe how critical is grid size to the
performance of our algorithm. Because our encoding is so
heavily dependent on |V | and T, an instance that will seem
easier in terms of possible conflicts—such as a (32 × 32)
grid with 70 agents—will be just as hard for our algorithm
to solve as a (16 × 16) grid with roughly the same number
of agents. In comparison, ICBS-h does not get affected as
much with the increase of the grid size.

Warehouse Experiments

We experimented with a warehouse grid used in the MAPF
literature (e.g., Felner et al. 2018), shown in Figure 5. We
selected random initial and goal locations over the left and
right borders of the grid. We generated 10 instances for each
number of agents in {4, . . . , 16}. In this evaluation we only
used the encoding with the best results shown on the N ×N
grids experiments (ASP-GI-LC-CG). Also, because clingo
offers two optimization strategies: Branch-and-bound (BB)
(Gebser et al. 2011) based optimization and unsatisfiable-
core (USC) based optimization (Andres et al. 2012), we
wanted to test our encoding on both of them to analyze the
effects. Success rates, and number of problems solved versus
time are shown in Figure 4.

Results show the benefits of our approach on this type
of grids, where we outperform substantially the planners
we compare with. Given the limited amount of free space
on these grids, |V | is smaller and thus our encoding is
rather compact. These results also illustrate that our ap-
proach can cope nicely and more effectively than other ap-
proaches when the number of potential conflicts grow.

Regarding USC versus BB. USC starts with a minimum
cost solution that does not necessarily satisfy the constraints
given in the ASP program. If the program is unsolvable,
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USC attempts to find a higher cost solutions incrementally,
until one is found. BB, on the other hand, find some solu-
tion and uses the cost of this solution to prune the search.
We observe that USC is the best approach for cost-optimal
MAPF.

We also experimented with warehouses with sizes 18×21,
27× 21, 36× 21, 9× 39, 9× 57, and 36× 57. In the largest
warehouse (36 × 57) our approach is slightly outperformed
by ICBS-h, whereas on the rest of the warehouses, our ap-
proach exhibits a tendency similar to that of Figure 4.

Conclusions and Future Work

In this paper we proposed the first compilation of MAPF
under the sum-of-costs assumption to ASP. We proposed a
number of variants of the approach. In its first, basic form,
the encoding is quadratic on the number of agents, just like
existing approaches to ASP (e.g. Erdem et al. 2013; Gebser
et al. 2014), and like the encoding of MDD-SAT (Surynek
et al. 2016), a state of the art SAT-based solver. We also pro-
pose an encoding that is linear on the number of agents, and
show how we can benefit by running Dijkstra’s algorithm
during preprocessing time to generate a more compact en-
coding.

In our empirical evaluation on square grids, we ob-
served that the linear encoding substantially outperforms the
quadratic encoding. In general our approach outperforms
the search-based and SAT-based state-of-the-art solvers we
compared with as the number of agents increases on small
grids. This suggests that ASP is a competitive approach for
solving highly congested MAPF instances.

An important drawback of our approach, which only be-
comes apparent as larger grids are used, is grounding time. A
potential (yet not elegant) line of improvement is to perform
grounding manually.

An important observation is that ASP being competitive
or superior to SAT for MAPF offers a clearly more elegant
alternative than SAT. Indeed, the complete formulation of
MAPF has been almost completely included in this paper
and does not require clause-generation algorithm like SAT
approaches.
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