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Abstract

The controllability of a temporal network is defined as an
agent’s ability to navigate around the uncertainty in its sched-
ule and is well-studied for certain networks of temporal con-
straints. However, many interesting real-world problems can
be better represented as Probabilistic Simple Temporal Net-
works (PSTNs) in which the uncertain durations are repre-
sented using potentially-unbounded probability density func-
tions. This can make it inherently impossible to control for all
eventualities. In this paper, we propose two new dynamic con-
trollability algorithms that attempt to maximize the likelihood
of successfully executing a schedule within a PSTN. The first
approach, which we call MIN-LOSS DC, finds a dynamic
scheduling strategy that minimizes loss of control by using a
conflict-directed search to decide where to sacrifice the con-
trol in a way that optimizes overall success. The second ap-
proach, which we call MAX-GAIN DC, works in the other
direction: it finds a dynamically controllable schedule and
then attempts to progressively strengthen it by capturing ad-
ditional uncertainty. Our approaches are the first known that
work by finding maximally dynamically controllable sched-
ules. We empirically compare our approaches against two ex-
isting PSTN offline dispatch approaches and one online ap-
proach and show that our MIN-LOSS DC algorithm outper-
forms the others in terms of maximizing execution success
while maintaining competitive runtimes.

Introduction
Ideally, an agent would be able to schedule its events and
activities in a way that will succeed in every possible situ-
ation. However, in many circumstances, there are processes
with uncertain timings that make scheduling difficult. The
ability of an agent to navigate around this uncertainty is
known as controllability. While the challenge of controlling
for scheduling uncertainty is a well-studied problem, many
scheduling problems have more uncertainty than can be con-
trolled, for instance, tasks whose durations are determined
by an unbounded probability density function. In such sce-
narios, our goal becomes maximizing the chance of success.

For example, consider the situation where Mr. X wants to
make dinner for his family. Mr. X needs to cook two dishes

∗Authors listed alphabetically but contributed equally.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

t1

t2

t5

t4

t3

N(20, 4) N(27.5, 9)

[0, 5] [0, 5]

[50,55]

Figure 1: Graphical representation of the Probabilistic Sim-
ple Temporal Network corresponding to our running exam-
ple. Mr. X has between 50 and 55 minutes to prepare dinner,
which requires sequentially baking two different dishes, one
which is expected to take about 20 minutes to bake and the
second which is expected to take about 27.5 minutes.

in his oven, but it is too small to handle both at once. The
first takes a duration modelled by a normal distribution of
mean μ = 20 and standard deviation σ = 2 (i.e., N(20, 4),
where variance σ2 = 4), and needs to be taken out within 5
minutes of finishing to avoid becoming over-baked. The sec-
ond, which goes in right after, takes a time drawn from the
distribution N(27.5, 9), and again must be removed from the
oven in 5 minutes or under. His family will be home in 50
minutes and past experience tells him he has 5 minutes from
the time they arrive to the time dinner is served before his
hungry toddler has a meltdown. Thus, he must complete din-
ner prep in between 50 and 55 minutes so it is ready on time
without either dish going cold. Problems with probabilisti-
cally determined durations like Mr X’s can be represented
using Probabilistic Simple Temporal Networks (PSTNs).

Before execution starts, Mr. X knows he will not be suc-
cessful in every possible situation; failure under certain bak-
ing times is inevitable under these constraints. A main ad-
vantage of PSTNs is the fact that uncertain durations are
characterized by distributions, which provide a rich source
of information that the dispatcher can leverage to push the
schedule towards success. However, the uncertainty of dura-
tions in PSTNs may be unbounded, and so the resulting net-
work may be impossible to fully control. This highlights the
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key challenge we address in this paper: for many interesting
real-world problems we may still need or wish to attempt
executing a plan, even if full controllability is impossible.

Despite the fact that it may be impossible to guarantee a
hot meal on the table with no toddler tears, Mr. X boldly
proceeds in making dinner. While he can hope for favorable
bake times that do not preclude the possibility of success,
he also would like to schedule tasks in a way that tries to
maximize chance of overall success. To do this, Mr. X will
have to be both reactive and predictive in his scheduling, try-
ing to steer the end of his cooking work towards the desired
range of completion times while keeping in mind the possi-
bility for future uncertainty. Unfortunately, he cannot default
to simple strategies such as executing everything as early (or
late) as possible, since these run the risk of either dinner not
being ready or getting cold.

In this paper, we propose two new dispatch strategies
for PSTNs that attempt to maximize the likelihood of suc-
cessfully completing a schedule. Previous attempts to solve
this problem have focused on finding a strongly control-
lable schedule prior to execution that approximately max-
imizes the likelihood of success. Our approaches, on the
other hand, are the first known that find a dynamically con-
trollable schedule that maximizes the likelihood of success
while recognizing the opportunity to take advantage of new
information received about events that have been completed.

Our two approaches are complementary. The first ap-
proach, which we call MIN-LOSS DC finds a dynamic
scheduling strategy that minimizes loss of control by us-
ing a conflict-directed search to decide where to sacrifice
control in a way that optimizes overall success. The sec-
ond approach, which we call MAX-GAIN DC, works in the
other direction—it finds a dynamically controllable sched-
ule and then attempts to progressively strengthen it by cap-
turing additional uncertainty. We empirically compare our
approaches against a current state-of-the-art strongly con-
trollable approach (Lund et al. 2017) and also an existing
dynamic control strategy built for a different type of problem
that yields an approximate strategy when applied to PSTNs
(Nilsson, Kvarnström, and Doherty 2014). We also show
that our algorithm performs favorably compared to an ap-
proach that recomputes optimal schedules in an online fash-
ion during execution (Abrahams et al. 2019).

Background

In this section, we discuss the building blocks necessary for
representing problems such as Mr. X’s dinner preparation.
We also highlight existing approaches to dispatching sched-
ules in the face of uncertainty.

Simple Temporal Networks

A Simple Temporal Network (STN) is a representation of
a scheduling problem, with set of temporal events T =
{t1, t2, . . . , tn} and set of constraints C, where constraints
are of the form tj − ti ≤ cij (Deichter, Meiri, and Pearl
1991). A schedule is an assignment of times to each event,
and is a solution if it satisfies all constraints. An STN is
called consistent if it has at least one solution.

STNs can be represented by directed graphs, similarly to
how the Mr. X problem (which is a PSTN, explained later)
is depicted in Figure 1, where vertices constitute events and
edges constitute constraints. The constraints representing
the upper and lower bounds of a duration are often combined
into a single directed edge. For example, the arrow from t1 to
t5 with bounds [50, 55] combines the constraints that dinner
prep time must take at least 50 minutes (i.e., t1− t5 ≤ −50)
and at most 55 minutes (i.e., t5 − t1 ≤ 55).

Simple Temporal Network with Uncertainty

A Simple Temporal Network with Uncertainty (STNU) is an
STN that explicitly considers uncertain durations. The set of
constraints is divided into two disjoint sets, the set of con-
tingent constraints Cc and the set of requirement constraints
Cr. Contingent constraints are of the form tj− ti ∈ [lij , uij ]
and represent that the time that elapses between tj and ti is
chosen by a process that is outside of the control of the ex-
ecuting agent and unknown before execution. Requirement
constraints are all the remaining constraints, and are in the
same form as those in an STN. In Figure 1, contingent con-
straints are represented with squiggly lines and capture un-
certain bake times whereas the requirement constraints are
represented as solid edges and capture constraints such as
the fact that dinner must be completed in 50 to 55 minutes.

If an event tj has only incoming requirement constraints,
it is an executable event, meaning that its time of execu-
tion may be chosen by the agent. Events that are not exe-
cutable are known as contingent events. We therefore divide
our set of temporal events into two disjoint sets: the set of
executable events Tc and the set of contingent events Tu. In
our running example, Mr. X gets to choose events such as
the start of bake times thus making t1 and t3 executable, but
end times t2 and t4 are determined by uncertain bake times
and thus are contingent.

Controllability STNUs are strongly controllable if there
is a specific solution that works for every possible contin-
gent outcome (Vidal and Fargier 1999). In other words, be-
fore execution begins, a time can be assigned to every ex-
ecutable timepoint so that, no matter the timing of contin-
gent timepoints, all constraints are guaranteed to be satisfied.
An STNU is dynamically controllable (DC) if we can de-
termine a scheduling strategy that guarantees success based
on only information about the timing of contingent time-
points that have already occurred (Vidal and Fargier 1999;
Hunsberger 2009). Dynamic controllability is much less re-
strictive than strong controllability, since information about
previous, contingent events can be leveraged in decisions
about the timing of executable events. Both strong and dy-
namic controllability were originally defined in the context
of STNUs as binary properties of temporal networks, though
recent work has proposed a degree of controllability metric
for determining how close to controllable a network is (Ak-
mal et al. 2019).

Once controllability has been established, the temporal
network is ready to be dispatched. Dispatch refers to the on-
line process of an agent deciding when to execute its events.
Most controllability methods offer mechanisms for compil-
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ing a temporal network to dispatchable form. For instance,
many dynamic controllability algorithms work by inferring
additional constraint edges that reveal implied constraints
between edges that were previously not explicitly linked us-
ing wait constraints, which describe how events should be
executed with respect to their predecessors (Morris 2006;
Nilsson, Kvarnström, and Doherty 2014). Wait constraints
allow for the execution of events to be dynamically condi-
tioned on the outcome of preceding events.

Conflicts are defined as a set of constraints for which no
dynamic execution strategy can guarantee success. Said an-
other way, an STNU with no conflicts is guaranteed to be
dynamically controllable (Morris 2006). In STNUs, con-
flicts have traditionally been determined by finding semi-
reducible negative cycles in an augmented representation of
the temporal constrain network (Morris 2006). We can use
Mr. X’s PSTN to illustrate the concept of a conflict. While it
is true that some realization of the two uncontrollable events
can be satisfied with a dispatch strategy, there are still many
possibilities for failure. If the two dishes both take two stan-
dard deviations longer than expected (24 and 33.5 respec-
tively), then no matter how Mr. X schedules his cooking, he
could not satisfy the overarching constraint of finishing ev-
erything under 55 minutes. The dishes both finishing at two
standard deviations below their expected values would like-
wise cause Mr. X to always violate the constraint of taking
at least 50 minutes.

Probabilistic Simple Temporal Network

A Probabilistic Simple Temporal Network (PSTN) extends
the formalism of an STNU to include additional information
about the realization of contingent edges. For each contin-
gent edge, the elapsed time between tj and ti is determined
by a random variable Xij whose value is determined by a
probability density function Pij (Tsamardinos 2002). These
probability density functions can be unbounded, for instance
when contingent edges are determined by normal distribu-
tions such as in Figure 1, and therefore the contingent edges
they govern are no longer guaranteed to occur within some
finite interval [lij , uij ].

Controllability Extending the concepts of STNU control-
lability to PSTNs is natural and straightforward when all
probability density functions are bounded. However, for
many realistic problems, such as our running Mr. X exam-
ple, the duration may be more accurately determined by an
unbounded distribution. In such cases, completely control-
ling for all uncertainty becomes inherently impossible and
conflicts can become both prevalent and inevitable. Typi-
cal approaches for dealing with this have relied on approx-
imating the PSTN with an STNU by establishing bounds
for each contingent edge and then establishing a strongly
controllable schedule on the resulting STNU (Fang, Yu, and
Williams 2014; Santana et al. 2016; Lund et al. 2017). These
bounds are commonly determined according to a risk budget
α, which establishes how much probability mass per contin-
gent edge is allowed to be sacrificed (often symmetrically
from each tail) in order to create a bounded contingent edge.

In the case of Mr. X, the first dish takes a time to cook

that is best modelled by a probability distribution, N(20,4),
and the second dish by N(27.5,9). However, if we set a risk
budget of α = 0.05, we can convert the original PSTN into
an STNU where the first takes between 16.1 and 23.9 min-
utes and the second takes between 21.6 and 33.4 minutes.
If the resulting network were strongly controllable (which it
is not), we would expect this schedule to succeed 90.25%
(0.95× 0.95) of the time.

Related Work

Next, we highlight the two approaches that are most closely
related to our approach of using dynamically controllable
STNUs to maximize the likelihood of execution success for
PSTNs. These will form the primary points of comparison
for our empirical analysis.

SREA SREA, the Static Robust Execution Algorithm
(Lund et al. 2017), works in two stages to reduce a PSTN
to a strongly controllable STNU. The first step of SREA is
a binary search for the minimal value of a risk parameter α
that yields a strongly controllable STNU. α determines how
contingent PSTN edges are converted to contingent STNU
edges, where for each contingent PSTN edge, α

2 of the prob-
ability mass is trimmed from each end of the distributions
to establish STNU-style bounds on the contingent edge that
capture (1 − α) of the probability mass. The controllability
is determined by the second stage of the process, which is
an LP that maximizes how much the bounds of contingent
edges can expanded while maintaining a controllable STNU.
As a whole, SREA shrinks the allowable ranges for contin-
gent edges across the entire network, and then re-expands
bounds back out on individual contingent edges to maximize
the overall probability captured to the best of its ability. The
result is a schedule where all controllable timepoints are as-
signed a specific time. For instance, if we apply SREA to
our running example, it finds that the optimal risk level is
α = 0.406. The SREA LP then expands these intervals as
much as possible to result in a strongly controllable STNU
where the first dish takes between 16.7 and 21.7 minutes
and the second takes between 22.6 and 32.4 minutes. This
strongly controllable strategy succeeds 75% of the time.

We chose SREA as a primary point of comparison since
it explicitly attempts to optimize for probability of success.
The other related approaches (Fang, Yu, and Williams 2014;
Santana et al. 2016) use a similar risk-based STNU ap-
proximation approach, but then look to optimize for a dif-
ferent criterion, making SREA the best point of com-
parison. SREA has since been expanded to an algorithm
called Dynamic Robust Execution Algorithm with Mitiga-
tion (DREAM), which reruns the SREA optimization on-
line during execution in hopes of better responding to how
uncertainty has been resolved.

DREAM recognizes that re-running SREA any time new
information arrives can be expensive. By parameterizing
how often schedules are recomputed and re-communicated
to mitigate the high computational overhead, DREAM pro-
vides a graceful trade-off between SREA, an algorithm
that never recomputes when there is new information, and
DREA, the one that always recomputes in the original work
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by Lund et al. (2017). In the case of the Mr. X problem,
DREA achieves 89% robustness, a significant improvement
on the performance of SREA that DREA achieves by reop-
timizing the schedule once the first bake time is realized. As
shown by Abrahams et al. (2019), while DREA achieves sig-
nificantly higher success rates than SREA, it does so with
significant computational overhead. In contrast, this paper
focuses on dynamically-controllable approaches that can be
computed offline prior to execution.

Dynamic Control Dispatch (DC-Dispatch) The basic
dynamic dispatch algorithm that we use is the early exe-
cution dispatch with inferred edges designed by Nilsson,
Kvarnström, and Doherty (2014) to dispatch the uncontrol-
lable PSTNs. This dispatcher works on controllable STNUs,
and as shown by Akmal et al. (2019), can, but is not guar-
anteed to, work on uncontrollable ones. The strategy works
by generating additional (wait) constraints and using them
to help decide when a contingent timepoint is enabled and
can therefore be executed. However, if these generated con-
straints cannot all be satisfied, as in the case of some uncon-
trollable STNUs, the execution will fail, even if perhaps all
of the real constraints could be satisfied in that particular re-
alization. When we apply DC-DISPATCH to our running Mr.
X example by first extracting an STNU with risk α = 0.05
([16.1,23.9] and [21.6,33.4] respectively), it succeeds 48%
of the time.

Expected-value PSTN (EPSTN) The Expected-value
PSTN (EPSTN) representation (Frank 2019) extends PSTNs
with a value function that weights which bounds to sac-
rifice when establishing strong controllability on over-
constrained EPSTNs. Frank provides some sophisticated
linear-approximations for PDFs that allows solving the
problem of finding strongly controllable schedules using
a Mixed Integer Linear Program. The complexity of this
approximation grows exponentially in the number of con-
straints. In contrast, our approaches operate on PSTNs,
which assume required edges to be hard constraints, and ef-
ficiently find dynamically controllable schedules, as we ex-
plain next.

Dynamic Controllability for PSTNs

In this section, we highlight our two new dispatch algorithms
for PSTNs. Both are approximate methods that work by at-
tempting to find an STNU that captures the probability den-
sity across contingent edges while maintaining DC.

Min-Loss DC

The MIN-LOSS DC algorithm, summarized as Algorithm 1,
works in a two-step process. First, it extracts a bounded con-
tingent edge from each probabilistic contingent edge in the
original PSTN using a procedure we call EXTRACT-STNU-
EDGES(EP , α). EXTRACT-STNU-EDGES takes in a set of
probabilistic edges and a risk budget α, which represents the
maximum risk of violating any constraint that we are willing
to accept, and returns a set of bounded STNU edges, where
each (potentially unbounded) probabilistic contingent edge
has been converted to a bounded STNU edge by truncating

Algorithm 1: Min-Loss DC
Input : A PSTN S = 〈V,E〉 and a risk tolerance α
Output: An approximately optimal DC STNU
EU ← EXTRACT-STNU-EDGES

(
EP , α

)
;

if not DC-CHECK
(〈
V,EU

〉)
then

EU ← OPTIMAL-DC-RELAX
(〈
V,EU

〉)
;

return
〈
V,EU

〉
;

α
2 of the probability density from the each tail of the dis-
tribution. The result is a set of STNU edges, where for each
edge, the probability that the realized value will fall between
the bounds is guaranteed to be at least (1−α). Note that be-
cause we truncate equal mass from each tail, this procedure
naturally somewhat accounts for distributions with various
skews, kurtoses, or modalities.

Second, if the resulting STNU is DC, we execute with the
DC-DISPATCH strategy mentioned earlier. If it not DC, then
we apply the Optimal DC Relaxation algorithm of Akmal
et al. (2019), which returns the STNU that corresponds to
minimally “relaxing” the problem, in this case by squeezing
the intervals associated with the contingent edges involved
in the conflict. The terminology “relax” is used to reflect
that we reduce the amount of uncertainty we need to control
(by contracting, rather than expanding, contingent interval
bounds), which makes the controllability problem easier to
solve. MIN-LOSS resolves conflicts one at a time, so it only
sacrifices probability mass on the side of the uncertain distri-
bution that is needed. The Optimal DC Relaxation algorithm
is optimal in the case of a single relaxation for uniform dis-
tributions, but optimality is no longer guaranteed when we
have different probability distributions or when multiple re-
laxations must be performed. Once a dynamically control-
lable STNU is produced, the Dispatch-DC method can be
used to dispatch the network.

In the case of Mr. X, using a risk budget of 0.05, the
MIN-LOSS algorithm first restricts each contingent edge to
cover 95% of the probability distribution, restricting the first
dish to take approximately between 16.1 and 23.9 minutes,
and the second between 21.6 and 33.4. Then the optimal re-
laxation algorithm takes over and restricts this STNU to a
dynamically controllable one, where the first dish can now
only take from 21.6 to 22.6 minutes, and the second only
between 25.9 and 32.3 minutes, as shown in Fig 2. The re-
sulting dynamically controllable dispatch strategy succeeds
74% of the time in expectation. Note, this is much better
than the 48% success rate of DC-DISPATCH, but slightly
less than the 75% success rate of the strong-controllability-
based SREA. This is an artifact of the simplicity of the
network—SREA only attempts to pick the time for t3 that
leads to the highest success rate in expectation, which is rel-
atively straightforward. However, as we show in our Em-
pirical Evaluation, in more complex networks DC-based ap-
proaches tend to outperform SC-based approaches because
there are more opportunities to dynamically recover and ex-
ploit slack.

The MIN-LOSS DC described here affords a natural pa-
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Figure 2: Illustration of MIN-LOSS DC on our running
example. First, probabilistically determined bounds are re-
placed by with intervals capturing (1− α) of the probability
mass. Second, any edges involved in conflict are minimally
relaxed until the resulting STNU is DC.

rameterization based on the initial risk level α. We suspect
that setting α too high will result in riskier edges and un-
necessarily sacrifices too much likelihood, hurting overall
performance. However, setting α too low might also hurt
performance, since it will require more relaxations of the
STNU edges. While the Optimal DC Relaxation algorithm
attempts to relax the network optimally, it does so on STNU
edges that are agnostic to the underlying probability density
functions. We explore how α impacts our performance in
our empirical analysis.

Max-Gain DC

Our MIN-LOSS DC algorithm starts by extracting an STNU
that captures a sufficiently large amount of probability, and
then attempts to minimize the additional loss of probability
to convert the STNU to one that is DC. Our MAX-GAIN DC
algorithm, on the other hand, works by building an STNU
that tries to maximize the probability density captured along
each contingent edge of the original PSTN.

MAX-GAIN DC, summarized as Algorithm 2, builds an
STNU in the following way. It starts by finding what we call
the riskiest conflict using a binary search over α, which is
defined the same way as before. During the binary search
over α, we use the same EXTRACT-STNU-EDGE proce-
dure as discussed in MIN-LOSS and perform a DC-check
on the resulting STNU. When the DC-check returns true,
we continue searching for less risky bounds. Otherwise, we
extract and record a conflict, and then proceed with a riskier
α, which sacrifices more probability mass, making the un-
certainty easier to control. By the time we reach the end of
our binary search (when (α+ − α−) ≤ r for some minimal
search resolution r), we will have found a transition between
controllable and uncontrollable setting of α: the α− that cor-
responds to the riskiest α that still causes a conflict as well
as the set of edges EC involved in that conflict, and α+, the
least risky α that remains DC and therefore does not cause
conflicts.

We now know that the lowest we can set α without caus-
ing a conflict is α+. We also know that lowering α beyond
this point will result in a conflict involving edges EC . Thus,

Algorithm 2: MAX-GAIN DC Search

Input : A PSTN SP =
〈
V,EP

〉
, an STNU

SU =
〈
V,EU

〉
, a resolution r for the binary

search, range [α−, α+], and a set of edges EC

Output: An approximately optimal DC STNU
if EP = {} then

return SU ;

if (α+ − α−) ≤ r then

EP ← EP − EC ;
EU ← EU ∪ EXTRACT-STNU-EDGES

(
EC , α+

)
;

return MAX-GAIN DC
(
SP , SU , r, [0, α+], {})

α′ ← (α−+α+)
2 ;

Eα′ ← EXTRACT-STNU-EDGES
(
EP , α′) ;

if DC-CHECK
(〈

V,EU ∪ Eα′
〉)

then

return MAX-GAIN DC
(
SP , SU , r, [α−, α′], EC

)

else

EC ← EXTRACTCONFLICT
(〈

V,EU ∪ Eα′
〉)

;

return MAX-GAIN DC
(
SP , SU , r, [α′, α+], EC

)

in the STNU we ultimately return, edges EC should be set
to α+, which is the most risk we can handle for these edges.
Thus, we remove the PSTN edges corresponding to EC

from the input PSTN, then for each edge in EC , extract a
new STNU edge at the α+ risk level, and finally add these
new edges to the output STNU that we are building to ap-
proximate the original PSTN input. The remaining edges of
the PSTN were not part of any conflicts and so could poten-
tially be set to less risky values (i.e. capture a greater por-
tion of the likelihood). Thus, we recursively proceed to find
the next riskiest conflict by restarting our binary search over
the remaining PSTN edges. This process continues until all
PSTN edges have been converted to STNU edges at their
least risky, dynamically controllable level. The end result
is a dynamically controllable STNU that approximates the
original PSTN by capturing as much probability mass per
contingent edge as possible. Like MIN-LOSS, the resulting
DC STNU can be put in dispatcable form and subsequently
dispatched using the Dispatch-DC algorithm.

We illustrate MAX-GAIN DC on our running example in
Figure 3. Since both contingent edges are involved in the
same conflict, the binary search runs once, finding the least
risk budget that afford dynamic controllability. Note that un-
like MIN-LOSS DC, the risk budget is consistent across all
contingent edges within a conflict. This means the bounds on
each contingent edge within a conflict are set so that they are
each equally likely to fail, and for each individual constraint,
the risk of failure is symmetric, meaning equal likelihood is
sacrificed on either side of the distribution. The dynamically
controllable network output by MAX-GAIN on the Mr. X
example is successfully dispatchable 69% of the time in ex-
pectation.
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Figure 3: Illustration of MAX-GAIN DC on our running ex-
ample. Since both contingent edges are involved in the same
conflict, the binary search of α will take place once, expand-
ing both sides of the distribution to capture approximately
86% of the probability mass for each contingent edge.

Empirical Evaluation

We evaluate our methods on two PSTN benchmarks. The
first is the DREAM benchmark of 540 PSTNs (Abrahams
et al. 2019), where each instance has 21 events and mul-
tiple agents. Of this dataset, 85 had no success under any
dispatch strategy, and were therefore omitted from the rest
of our data analysis. The second is the adapted version
of the CAR-SHARING dataset originally from Santana et
al. (2016), which was edited by Akmal et al. (2019) to
be to be consistent but not fully controllable. The origi-
nal CAR-SHARING dataset contained a mix of PSTN- and
STNU-style contingent edges. Akmal et al. (2019) trans-
lated this into a benchmark containing pure STNUs by con-
verting PSTN-style contingent edges to STNU-style contin-
gent edges whose bounds encompassed two standard de-
viations on either side of the mean. We create an equiva-
lent benchmark of pure PSTNs by running this conversion
process in reverse. We tested on 169 different PSTNs, 14
of which no dispatch strategy was ever able to success-
fully dispatch, and thus were omitted from our analysis.
For each of the methods that we tested—MIN-LOSS, MAX-
GAIN, SREA, DREA, and DC-DISPATCH—we simulated
dispatch at 200 times per problem instance, sampling ran-
domly according to the probability distribution of each con-
tingent edge. All code and problem instances are available
at http://github.com/HEATlab/DCforPSTN.

Finding an Optimal Min-Loss DC Risk Level

In order to maximize the performance of MIN-LOSS, we
first need to determine what risk level (setting of α across
all edges) resulted in superior performance. We tested on
both the DREAM and CAR-SHARING data sets and found
that the general trends were consistent between the two data
sets. The results are summarized in Figure 4.

Interestingly, we found that MIN-LOSS performed best
when set to the lowest risk level we tested, α = 0.001, which
corresponded to extracting an STNU where the bounds over
uncertain edges each capture 99.9% of the likelihood. This
ran a bit counter to our intuition—we expected setting α
too low might hurt performance because it puts more re-
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Figure 4: MIN-LOSS DC execution success rate across dif-
ferent risk levels (α). Generally, MIN-LOSS DC performed
at its best when risk was minimized.

sponsibility on the probability-blind OPTIMAL-DC-RELAX
algorithm. However, in practice, this did not seem to hurt
performance. We suspect this is due to a few reasons. First,
since OPTIMAL-DC-RELAX tries to minimize how much it
moves bounds, the probability being lost is most commonly
in a tail of the distribution, and thus may only have a neg-
ligible effect. Second, when conflicts exist, there might not
be much freedom in dividing up how uncertain bounds are
relaxed. Third, the uncertain edges of both data sets contain
a mix of normal and uniform distributions. The majority of
the distributions were normal distributions, and their vari-
ances are also quite similar. Since these distributions were
symmetric and had fairly consistent variances, there might
be less to gain from being selective about what parts of the
distributions were omitted in the relaxation step. We do not
believe that the optimal risk level is as low as possible for
every dataset; the optimal value most likely depends heavily
on the distributions. In future work, we hope to explore how
MIN-LOSS DC performs on problems that contain a larger
diversity of distributions (e.g., varying skew, kurtosis, etc.).

Empirical Comparison

We evaluated MIN-LOSS and MAX-GAIN in comparison
to SREA, the Static Robust Execution Algorithm (Lund
et al. 2017), which employs a static execution method on
uncontrollable STN problems, as well as DC-DISPATCH,
the dynamic controllability algorithm taken from Nilsson,
Kvarnström, and Doherty (2014) and also used by Akmal
et al. (2019). All approaches compute a dispatch network
in an offline fashion, prior to execution. SREA establishes
a strongly controllable schedule, and thus its dispatch strat-
egy is not at all contingent on how uncertain edges are re-
solved. The other three methods use dynamic controllability,
and thus dispatch decisions can depend on the uncertain out-
comes of preceding events. Finally, we also compare against

9856



Method Wins Success Runtime
Rate (milliseconds)

Min-Loss DC 207.6 0.46 43.0
Max-Gain DC 108.1 0.37 100.8
DC-Dispatch 76.1 0.32 10.8

SREA 16.2 0.22 307.2
DREA 47.1 0.32 1966.9

Table 1: Performance of dispatch strategies for DREAM
benchmark.

Method Wins Success Runtime
Rate (milliseconds)

Min-Loss DC 54.3 0.57 161.2
Max-Gain DC 17.4 0.50 1164.2
DC-Dispatch 38.4 0.50 41.5

SREA 20.5 0.52 7430.1
DREA 24.4 0.55 10911.4

Table 2: Performance of dispatch strategies for CAR-
SHARING benchmark.

one online approach, DREA, the Dynamic Robust Execu-
tion Algorithm (Lund et al. 2017) that reruns SREA every
time new information is received.

The results of our empirical comparison across the five al-
gorithms are available in Tables 1 and 2. Success Rate was
determined by the number of times the dispatch resulted in
a valid schedule for a particular PSTN, also known as ro-
bustness. “Wins” occur when one algorithm has higher ro-
bustness on a particular PSTN instance; an n-way tie counts
as 1

n of a win for each of the tying algorithms. Finally, we
tracked the average time it took to compute the dispatch-
able form of the schedule. All differences in success rate
were statistically significant with p < 0.05 for the DREAM
benchmark except for the difference between DREA and
DC-DISPATCH. On the CAR-SHARING benchmark, the
only statistically significant differences were that both MIN-
LOSS DC and DREA had statistically significant higher
success rates than either DC-DISPATCH or MAX-GAIN DC.

We start by comparing approaches in terms of execution
success rate. In both datasets, MIN-LOSS DC demonstrates
the highest overall success rate and the highest win rate,
meaning its gains in successful execution were robust across
a wide diversity of problem instances.

Interestingly, the margin of improvement for MIN-LOSS
was greater on the DREAM benchmark (Table 1) than the
CAR-SHARING benchmark (Table 2). We believe that the
difference is due to the nature of the two problem sets. The
DREAM benchmarks contained a larger proportion of what
we call synchronization constraints between agents’ sched-
ules whereas in the CAR-SHARING benchmarks tended
to have more resource handoff constraints between agents’
schedules. The main difference is that synchronization con-
straints have tight upper and lower bounds (e.g., the con-
straint that Mr. X must prepare dinner within 50-55 min-
utes), which means uncertainty can cause ‘double-sided’
problems—tasks can finish too early or too late. Resource

hand-off constraints (e.g., agent X needs to finish using re-
source Y before passing it off to agent Z), on the other hand,
tend to only lead to ‘one-sided’ problems—tasks that run
over deadline. The wait-constraints of DC-based approaches
tend to be more useful situations where there is a risk of be-
ginning tasks too early such as in the DREAM benchmark,
which perhaps why we see better overall performance for
DC-based methods in Table 1 than Table 2.

At first, we were a bit surprised that MAX-GAIN DC did
not perform more consistently with (or even outperform)
MIN-LOSS DC. However, upon closer inspection, we real-
ize that MIN-LOSS DC has a notable advantage over MAX-
GAIN, which is that it considers the directionality of con-
flicts. That is, while MAX-GAIN’s binary search over α at-
tempts to find the least risky way to approximate the prob-
abilistic duration, it does so by trimming equal amounts of
probability mass from each tail of the distribution. However,
in many cases, the potential conflict may have only been due
to just one side of the distribution, say, the upper bound, so
also trimming off probability mass from the lower bound is a
waste. MIN-LOSS, on the other hand, resolves each conflict
independently, and thus does not need to sacrifice additional
probability mass from both sides of the distribution.

SREA, which is based on a strong-controllability ap-
proximation, has the worst success rate in the DREAM
benchmark, and is not significantly better than any of the
other methods on CAR-SHARING. This demonstrates the
value of using a dynamically controllable approach that can
react to how uncertain events are resolved during execu-
tion. These results corroborate the original empirical eval-
uation of SREA, which showed that a simple early-first
strategy, which is essentially an unsophisticated version of
DC-DISPATCH that executes events as soon as all preceding
events had been completed, can outperform SREA.

We note that both of our approaches took longer to com-
pute than the DC-DISPATCH algorithm, which is to be ex-
pected given that it does not attempt to optimize for over-
constrained PSTNs. MIN-LOSS took on average roughly 4
times longer to run than DC-DISPATCH. However, we note
that this computation occurs offline before execution begins,
and so is unlikely to preclude its use in any situation where
DC-DISPATCH can be deployed.

Most of our empirical comparisons are against approaches
that computed their dispatch strategy in an offline fash-
ion prior to execution. However, we compare also against
DREA, the version of DREAM that reruns SREA ev-
ery time new information about the schedule is received.
As shown in Table 1, both of our DC based approaches
outperform DREA in terms of execution success rate for
the DREAM benchmark. For CAR-SHARING, only MIN-
LOSS has a higher average robustness than DREA, though
the difference is not statistically significant.

The fact that MIN-LOSS DC achieves a higher average
success rate than DREA is surprising and notable, because
MIN-LOSS DC (like MAX-GAIN DC) computes a dispatch-
able network offline, prior to execution and so incurs no ad-
ditional computational overhead during execution compared
to other dynamic dispatch methods. This is in stark con-
trast to DREA, whose advantage is that it gets to recom-
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pute a completely new, strongly controllable schedule that
re-optimizes for new information every time new informa-
tion arrives. As noted in Table 1, this leads to immense com-
putational overhead, with DREA expending two orders of
magnitude more computation than MIN-LOSS DC. These
results provide many promising future avenues of explo-
ration; for instance, we believe MIN-LOSS DC could re-
place SREA as the re-optimization technique in an approach
such as DREAM, since it provides both higher success rates
at lower computational costs.

Conclusions and Future Work

This paper presents two new approaches for attempting to
schedule around the uncertainty present in PSTNs. MIN-
LOSS DC works by identifying potential conflicts and min-
imally relaxing contingent edge bounds to resolve the con-
flicts. MAX-GAIN DC, on the other hand, works by per-
forming iterative binary searches over the bounds on con-
tingent edges until it can identify the bounds that capture
the most probability. These are the first known approaches
that attempt to find dynamically, rather than strongly, con-
trollable STNU approximations of the PSTNs that attempt
to maximize the probability of successful execution. Fi-
nally, our empirical evaluation confirms that both of our
approaches improve upon or match the success rate of
two existing state-of-the-art offline approaches, with MIN-
LOSS DC consistently providing impressive improvements.
In fact, MIN-LOSS DC outperforms dynamic approaches
that allow for complete online re-computation of the dis-
patch strategy during execution.

In the future, we are interested in better understanding
how both of our methods perform on PSTN benchmarks
containing a wider diversity of distribution shapes. For in-
stance, the MAX-GAIN DC algorithm currently symmetri-
cally expands from the center of the distribution to capture
as much probability mass as possible. Thus, we could poten-
tially enhance the algorithm by considering the expansions
of the lower bounds and the upper bounds separately. This
could also make the algorithm more robust when encounter-
ing asymmetric probability distributions.

We are also interested in expanding our comparison
against the DREAM algorithm. We believe there are nat-
ural ways to integrate our DC-based approaches into the
DREAM framework to gracefully trade more online com-
putation for more optimization of our dispatch. As previ-
ously mentioned, the DREAM algorithm works by invoking
SREA after enough new information is received (Abrahams
et al. 2019). Swapping SREA out for a successful DC-based
approach like MINLOSS DC may further mitigate the need
to recompute. We believe there might be principled, conflict-
directed heuristics for determining when computing a new
dynamically controllable schedule might be worth the com-
putational overheard.
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