
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Time-Inconsistent Planning:
Simple Motivation Is Hard to Find

Fedor V. Fomin,1 Torstein J. F. Strømme1

1University of Bergen, Norway

Abstract

People sometimes act differently when making decisions af-
fecting the present moment versus decisions affecting the
future only. This is referred to as time-inconsistent behaviour,
and can be modeled as agents exhibiting present bias. A re-
sulting phenomenon is abandonment, which is when an agent
initially pursues a task, but ultimately gives up before reaping
the rewards.
With the introduction of the graph-theoretic time-inconsistent
planning model due to Kleinberg and Oren, it has been possi-
ble to investigate the computational complexity of how a task
designer best can support a present-biased agent in completing
the task. In this paper, we study the complexity of finding a
choice reduction for the agent; that is, how to remove edges
and vertices from the task graph such that a present-biased
agent will remain motivated to reach his target even for a lim-
ited reward. While this problem is NP-complete in general,
this is not necessarily true for instances which occur in prac-
tice, or for solutions which are of interest to task designers.
For instance, a task designer may desire to find the best task
graph which is not too complicated.
We therefore investigate the problem of finding simple moti-
vating subgraphs. These are structures where the agent will
modify his plan at most k times along the way. We quantify
this simplicity in the time-inconsistency model as a structural
parameter: The number of branching vertices (vertices with
out-degree at least 2) in a minimal motivating subgraph.
Our results are as follows: We give a linear algorithm for
finding an optimal motivating path, i. e. when k = 0. On the
negative side, we show that finding a simple motivating sub-
graph is NP-complete even if we allow only a single branching
vertex — revealing that simple motivating subgraphs are in-
deed hard to find. However, we give a pseudo-polynomial
algorithm for the case when k is fixed and edge weights are
rationals, which might be a reasonable assumption in practice.

Introduction

Time-inconsistent behavior is a theme attracting great at-
tention in behavioral economics and psychology. The field
investigates questions such as why people let their bills go
to debt collection, or buy gym memberships without actually
using them. More generally, inconsistent behavior over time
occurs when an agent makes a multi-phase plan, but does not

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

follow through on his initial intentions despite circumstances
remaining essentially unchanged. Resulting phenomenons
include procrastination and abandonment.

A common explanation for time-inconsistent behavior is
the notion of present bias, which states that agents give undue
salience to events that are close in time and/or space. This
idea was described mathematically already in 1930’s when
(Samuelson 1937) introduced the discounted-utility model,
which has since been refined in different versions (Laibson
1994).

George Akerlof describes in his lecture (Akerlof 1991)
an even simpler mathematical model; here, the agent simply
has a salience factor causing immediate events to be empha-
sized more than future ones. He goes on to show how even
a very small salience factor in combination with many re-
peated decisions can lead to arbitrary large extra costs for the
agent. This salience factor also has support from psychology,
where (McClure et al. 2004) showed by using brain imaging
that separate neural systems are in play when humans value
immediate and delayed rewards.1

In 2014, (Kleinberg and Oren 2018) introduced a graph-
theoretic model which elegantly captures the salience factor
and scenarios of Akerlof. In this framework, where the agent
is maneuvering through a weighted directed acyclic graph,
it is possible to model many interesting situations. We will
provide an example here.

Example

The student Bob is planning his studies. He considers taking
a week-long course whose passing grade is a reward he quan-
tifies to be worth r = 59. And indeed, Bob discovers that he
can actually complete the course incurring costs and effort
he quantifies to be only 46 — if he works evenly throughout
the week (the upper path in Figure 1). Bob will reevaluate
the cost every day, and as long as he perceives the cost to be
at most equal to the reward, he will follow the path he finds
to have the lowest cost.

1We remark that quasi-hyperbolic discounting (discussed in
(Laibson 1994; McClure et al. 2004)) can be seen as a generaliza-
tion of both the discounted-continuity model (Samuelson 1937) and
the salience factor (Akerlof 1991). There has been some empirical
support for this model; however there are also many known psy-
chological phenomena about time-inconsistent behavior it does not
capture (Frederick, Loewenstein, and O’Donoghue 2002).

9843

6s 10

6

x

10

6

y

10 21z

16

10 10 10
t

r = 59

b = 3

Figure 1: Acyclic digraph illustrating the ways in which Bob
can distribute his efforts in order to complete the course. The
upper path (green dashed line) is Bob’s initial plan requiring
the least total effort. The middle path (blue, narrowly dotted
line) is the plan which appears better when at vertex x, and
lower path (red, widely dotted line) is the plan he ultimately
changes to at vertex y.

The first day of studies incurs a cost of 6 for Bob due to
some mandatory tasks he needs to do that day. But because
Bob has a salience factor b = 3, he actually perceives the
cost of that day’s work to be 18, and of the course as a whole
to be 58 (18+10+10+10+10). The reward is even greater,
though, so Bob persists to the next day.

When the second day of studies is about to start, Bob quasi-
subconsciously makes the incorrect judgment that reducing
his studies slightly now is the better strategy. He then changes
his plan to the middle path in Figure 1. In terms of our model,
the agent Bob standing at vertex x reevaluates the original
plan (the upper path) to now cost 3 · 10+10+10+10 = 60,
whereas the middle path is evaluated to only cost 3 · 6+ 10+
16 + 10 = 54. He therefore chooses to go on with the plan
that postpones some work to later, incurring a small extra
cost to be paid at that time.

On the third day Bob finds himself at vertex y, and is yet
again faced with a choice. The salience factor, as before,
cause him to do less work in the present moment at the
expense of more work in the future. He thus changes his plan
to the lower path of Figure 1. However, it turns out that the
choice was fatal — on the last day of the course (at vertex
z), Bob is facing what he perceives to be a mountain of work
so tall that it feels unjustified to complete the course; he
evaluates the cost to be 3 · 21 = 63, strictly larger than the
reward. He gives up and drops the course.

Because Bob abandons the task in our example above, we
say that the graph in Figure 1 is not motivating. A natural
question is to ask what we can do in order to make it so.

An easy solution for making a model motivating is to sim-
ply increase the reward. By simulating the process, it is also
straightforward to calculate the minimum required reward to
obtain this. However, it might be costly if we are the ones
responsible for purchasing the reward, or even impossible if
the reward is not for us to decide. A more appealing strategy
might therefore be to allow the agent to only move around
in a subgraph of the whole graph; for instance, if the lower
path did not exist in our example above, then the graph would

actually be motivating for Bob.2 Finding such a subgraph is a
form of choice reduction, and can be obtained by introducing
a set of rules the agent must follow; for instance deadlines.

The aim of the current paper is not, however, to delve into
the details of any particular scenario, but rather to investi-
gate the formal underlying graph-theoretic framework. In
the same spirit, (Kleinberg and Oren 2018) showed that the
structure of a minimal motivating subgraph is actually quite
restricted, and ask whether there is an efficient algorithm
finding such subgraphs. Unfortunately, (Tang et al. 2017)
and (Albers and Kraft 2019) independently proved that this
problem is NP-complete in the general case. However, this
does not exclude the existence of polynomial time algorithms
for more restricted classes of graphs, or algorithms where
the exponential blow-up occurs in parameters which in prac-
tical instances are small. This is what we investigate in the
current paper; specifically, we look at restricting the number
of branching vertices (vertices with out-degree at least 2) in
a minimal motivating subgraph. This parameter can also be
understood as the number of times a present-biased agent
changes his plan.

Before we present our results, let us introduce the model
more formally.

Formal model

We here present the model due to (Kleinberg and Oren 2018).
Formally, an instance of the time-inconsistent planning model
is a 6-tuple M = (G,w, s, t, r, b) where:

• G = (V (G), E(G)) is an acyclic digraph called a task
graph. V (G) is a set of elements called vertices, and
E(G) ⊆ V (G) × V (G) is a set of directed edges. The
graph is acyclic, which means that there exists an ordering
of the vertices called a topological order such that, for
each edge, its first endpoint comes strictly before its sec-
ond endpoint in the ordering. Informally speaking, vertices
represent states of intermediate progress, whereas edges
represent possible actions that transitions an agent between
states.

• w : E(G) → R≥0 is a function assigning non-negative
weight to each edge. Informally speaking, this is the cost
incurred by performing a certain action.

• s ∈ V (G) is the start vertex.

• t ∈ V (G) is the target vertex.

• r ∈ R≥0 is the reward.

• b ∈ R≥1 is the agent’s salience factor.3

2Removing edges and/or vertices that destroys the lower path is
also the only option for how to make the example graph motivating;
the upper path must be kept in its entirety, otherwise the agent will
not be motivated to move from s to x; the middle path must also be
kept in its entirety, otherwise the agent will give up when at x.

3While we in the current paper use b for the salience factor
as introduced in (Kleinberg and Oren 2018), the literature about
time-inconsistent planning commonly use the term β = b−1 in-
stead, which (while slightly more convoluted to work with for our
purposes) seamlessly integrates with the quasi-hyperbolic discount-
ing model. An artifact of our current definition is that the reward

9844

An agent with salience factor b is initially at vertex s and
can move in the graph along edges in their designated di-
rection. The agent’s task is to reach the target t, at which
point the agent can pick up a reward worth r. We can usually
assume that there is at least one path from s to each vertex,
and at least one path from each vertex to t, as otherwise these
vertices are of no interest to the agent.

When standing at a vertex u, the agent evaluates (with
a present bias) all possible paths from u to t. In particular,
a u-t path P ⊆ G with edges e1, e2, . . . , ep is evaluated
by the agent standing at u to cost ζM (P) = b · w(e1) +∑p

i=2 w(ei). We refer to this as the perceived cost of the path.
For a vertex u, its perceived cost to the target is the minimum
perceived cost of any path to t, ζM (u) = min{ζM (P) |
P is a u-t path}. If the perceived cost from vertex u to the
target is strictly larger than the reward, ζM (u) > r, then an
agent standing there abandons the task. Otherwise, he will
(non-deterministically) pick one of the paths which minimize
perceived cost of reaching t, and traverse its first edge. This
repeats until the agent either reach t or abandons the task.

If every possible route chosen by the agent will lead him
to t, then we say that the model instance is motivating. If
the model instance is clear from the context, we take that
the graph is motivating to mean the same thing, and we may
drop the subscript M in the notation.

Definition 1 (Motivating subgraph). If G′ is a subgraph of
G belonging to a time-inconsistent planning model M =
(G,w, s, t, r, b), then we call G′ a motivating subgraph if
G′ contains s and t and M ′ = (G′, w|E(G′), s, t, r, b) is
motivating.

In the current paper, we investigate the problem of finding
a simple motivating subgraph. In order to quantify what we
mean by simple, we first provide the definition of a branching
vertex:

Definition 2 (Branching vertex). The out-degree of a vertex
u in a digraph G is the number of edges in G that have u as
its first endpoint. We say that u is a branching vertex, if its
out-degree is at least two.

In its most general form, we will investigate the following
problem:

SIMPLE MOTIVATING SUBGRAPH
Input: A time-inconsistent planning model M = (G,w
s, t, r, b), and a non-negative integer k ∈ Z≥0.
Question: Does there exist a motivating subgraph G′ ⊆ G
with at most k branching vertices?

Previous work

Time-inconsistent behavior is a field with a long history in
behavioral economics, see (Akerlof 1991; Frederick, Loewen-
stein, and O’Donoghue 2002; O’Donoghue and Rabin 1999).
The model used in this paper was introduced by (Kleinberg
and Oren 2018), and they also give structural results concern-
ing how much extra cost the salience factor can incur for

is not scaled by b when the agent is one leg away; however, both
algorithms and hardness proofs can be adapted to account for this
technical difference.

Aϕ

For a set A and a constraint ϕ : A→ {T,F},
the set A constrained to ϕ denotes the el-
ements of A that satisfy ϕ, i. e. {a ∈ A |
ϕ(a) = T}. For example, Z≥0 indicates the
set of all non-negative integers.

[x] For x ∈ Z≥1, [x] is the set {1, 2, . . . , x}.

⊆
For sets, ⊆ is the standard subset notation.
For graphs G and H , H is a subgraph of
G, denoted H ⊆ G, if V (H) ⊆ V (G), and
E(H) ⊆ E(G).

f |A
For a function f : B → C and a set A ⊆ B,
the function f restricted to A is a function
f |A : A → C such that for every a ∈ A,
f |A(a) = f(a).

CG(u, v)
For a graph G and vertices u, v ∈ V (G), the
(true) cost from u to v is the minimum sum
of weights for a path from u to v in G.

G[A]

For a directed graph G and vertex set A ⊆
V (G), the induced subgraph G[A] is the
graph where V (G[A]) = A and E(G[A]) =
E(G) ∩A×A.

Table 1: Summary of notation.

an agent, and how many values the salience factor can take
which will lead the agent to follow distinct paths. They raise
the issue of motivating subgraphs, and give a characterization
of the minimal among them which we will see later.

(Tang et al. 2017) refine the structural results concerning
extra costs caused by present bias. Furthermore, they show
that finding motivating subgraphs is NP-complete in the gen-
eral case by a reduction from 3-SAT. They also investigate
a few variations of the problem where intermediate rewards
can be placed on vertices.

(Albers and Kraft 2019) independently show that finding
motivating subgraphs is NP-complete, by a reduction from
the �-LINKAGE problem in acyclic digraphs. Furthermore,
they show that the approximation version of the problem
(finding the smallest r such that a motivating subgraph exists)
cannot be approximated in polynomial time to a ratio of√
n/3 unless P = NP; but a 1+

√
n -approximation algorithm

exists. They also explore another variation of the problem
with intermediate rewards.

There have been work on variations on the model and prob-
lem where the designer is free to raise edge costs (Albers and
Kraft 2017a), where the agents are more sophisticated (Klein-
berg, Oren, and Raghavan 2016), exhibit multiple biases
simultaneously (Kleinberg, Oren, and Raghavan 2017), or
where the salience factor varies (Albers and Kraft 2017b;
Gravin et al. 2016).

Our contribution

We prove two main results about the complexity of SIMPLE
MOTIVATING SUBGRAPH. First, we show that the problem is
solvable in linear time when k = 0, and is NP-complete oth-
erwise. Secondly, we show that when the costs are bounded

9845

by some polynomial in the size of the task graph, then it is
solvable in polynomial time for every fixed k. More precisely,
we show the following.
Theorem 3. SIMPLE MOTIVATING SUBGRAPH is solvable
in polynomial time for k = 0, and is NP-complete for any
k ≥ 1.

The reduction we use to prove NP-completeness of the
problem in Theorem 3 is from SUBSET SUM, which is weakly
NP-complete. Indeed, our hardness reduction strongly ex-
ploits constructions with exponentially large (or small) edge
weights; the parameter W in our reduction — the sum of all
edge weights when scaled to integer values — is exponential
in the number of vertices in the graph. A natural question
is hence whether SIMPLE MOTIVATING SUBGRAPH can
be solved by a pseudo-polynomial algorithm, i. e. an algo-
rithm which runs in polynomial time when W is bounded by
some polynomial of the size of the graph. Unfortunately, this
is highly unlikely. A closer look at the NP-hardness proof
of (Tang et al. 2017) for finding a motivating subgraph, re-
veals that instances created in the reduction from 3-SAT have
weights that depend only on the constant b.

On the other hand, in the reduction of (Tang et al. 2017)
the number of branchings in their potential solutions grows
linearly with the number of clauses in the 3-SAT instance.
This leaves a possibility that when W is bounded by a polyno-
mial of the size of the input graph G and k is a constant, then
SIMPLE MOTIVATING SUBGRAPH is solvable in polynomial
time. Theorem 4 confirms that this is exactly the case. (In this
theorem we assume that all edge weights are integers — but
since scaling the reward and all edge weights by a common
constant is trivially allowed, it also works for rationals.)
Theorem 4. SIMPLE MOTIVATING SUBGRAPH is solvable
in time (|V (G)| · W)O(k) whenever all edge weights are
integers and W is the sum of all weights.

Theorem 4 naturally leads to another question, whether
SIMPLE MOTIVATING SUBGRAPH is solvable in time
(|V (G)| ·W)O(1) · f(k) for some function f of k only. Or in
other words, whether the problem is fixed-parameter tractable
parameterized by k when W is encoded unary? We observe
that the hardness proof of (Albers and Kraft 2019), reducing
from the �-LINKAGE problem in acyclic digraphs, combined
with hardness result for the �-LINKAGE problem by (Slivkins
2010), implies the following theorem.
Theorem 5. Unless FPT = W[1], there is no algorithm
solving SIMPLE MOTIVATING SUBGRAPH in time (|V (G)| ·
W)O(1) · f(k) for any function f of k only.

A dichotomy

(proof of Theorem 3)

In this section we prove Theorem 3. Recall that the theorem
states that SIMPLE MOTIVATING SUBGRAPH is solvable in
polynomial time for k = 0, and is NP-complete for any k ≥ 1.
We split the proof into two subsections. The first subsection
contains a polynomial time algorithm solving SIMPLE MO-
TIVATING SUBGRAPH for k = 0 (Lemma 7). The second
subsection proves that the problem is NP-complete for every
k ≥ 1 (Lemma 8).

A linear-time algorithm for motivating paths

Any connected graph without branching vertices is a path.
Thus, we refer to the variant of SIMPLE MOTIVATING SUB-
GRAPH with k = 0 as to the MOTIVATING PATH problem.
This algorithm is essentially a variation on the classical lin-
ear time algorithm computing a shortest path in an acyclic
digraph.

We give an algorithm which solves the MOTIVATING PATH
problem in O(|V (G)|+ |E(G)|) time. In fact, our algorithm
will solve the problem of finding the minimum cost such path,
if one exists.

Algorithm 6: MOTIVATING PATH

Input: An instance of MOTIVATING PATH
Output: The cost of a cheapest motivating s-t path

witnessing a yes-instance; or∞ if no
motivating path exists.

For each vertex u ∈ V (G), let du ←∞
For the target t, let dt ← 0
for each vertex u ∈ V (G) in rev. topological order do

for each out-neighbor v ∈ N(u) do
if b · w(uv) + dv ≤ r and w(uv) + dv < du
then

du ← w(uv) + dv
end

end

end
return ds

Lemma 7. The MOTIVATING PATH problem can be solved
in linear time.

Proof. We prove that Algorithm 6 is correct. We assume that
every vertex has a path to t in G (otherwise we can simply
remove it), hence t will come last in the topological order.
For every u ∈ V (G), we claim that du holds the minimum
cost of a motivating path from u to t. We observe that our
base, u = t, is correct since dt = 0.

Consider some vertex u. Because the vertices are visited in
reverse topological order, all out-neighbors of u are already
processed, and hold by the induction hypothesis the correct
value. An agent standing at vertex u is motivated to move to
the next vertex v in a path P if b · w(uv) + CP (v, t) ≤ r.
Hence, if the condition holds, prepending a motivating path
from v to t with u will also yield a motivating path. By choos-
ing the minimum total cost among all feasible candidates for
the next step, the final value is in accordance with our claim.

Finally, we observe that the runtime is correct. Assuming
an adjacency list representation of the graph, a topological
sort can be done in linear time. The algorithm then process
each vertex once and touches each edge once.

We remark that the graph produced by Algorithm 6 is a
(1 +

√
n) -approximation to the general motivating subgraph

problem. This follows because the approximation algorithm
of (Albers and Kraft 2019) with the stated approximation
ratio always produce a path; Algorithm 6 will on the other
hand find the optimal path, and is hence at least as good.

9846

Hardness of allowing branching vertices

Deciding whether there exists a path which will motivate a
biased agent to reach the target turns out to be easy, but we
already know by the results of (Tang et al. 2017) and (Albers
and Kraft 2019) that finding a motivating subgraph in general
is NP-hard. Both aforementioned results give hardness re-
ductions where the feasible solutions to the reduced instance
have a “complicated” structure in the sense that they contain
many branching vertices. A natural question is whether it
could be easier to find motivating subgraphs whose structure
is simpler, as in the case of the path.

A first question might be whether SIMPLE MOTIVATING
SUBGRAPH is fixed parameter tractable (FPT) parameterized
by k, the number of branching vertices. Unfortunately, this
is already ruled out by the reduction of Albers and Kraft,
since they reduce from the W[1]-hard �-LINKAGE problem
for acyclic digraphs — the number of branchings in their
feasible solutions is linear in �.

As the �-LINKAGE problem can be solved in time nf(�)

for acyclic digraphs (Bang-Jensen and Gutin 2008), their
reduction does not rule out an XP-algorithm. In this section
we show that SIMPLE MOTIVATING SUBGRAPH is actually
NP-hard even for k = 1, and is thus an even harder problem.

We show this by a reduction from the NP-hard SUBSET
SUM problem. The reduction is provided in the form of Al-
gorithm 9, whereby someone who wants to solve SUBSET
SUM can give their problem instance as input, and receive a
SIMPLE MOTIVATING SUBGRAPH-instance with k = 1 as
output. This can then be piped into an (imaginary) algorithm
which solves SIMPLE MOTIVATING SUBGRAPH efficiently
for k = 1. If said imaginary algorithm runs in polynomial
time, this implies P=NP.

Lemma 8. The SIMPLE MOTIVATING SUBGRAPH problem
is NP-complete for every k ≥ 1.

Proof. Deciding whether a given graph is motivating can be
done in polynomial time by simply checking whether it is
possible for the agent to reach a vertex where the perceived
cost is greater than the reward. This implies the membership
of SIMPLE MOTIVATING SUBGRAPH in NP.

To prove NP-completeness, we reduce from the classical
NP-complete problem SUBSET SUM (Karp 1972).

SUBSET SUM
Input: A set of integers X = {x1, x2, . . . , xn} ⊆ Z≥0

and a target W ∈ Z≥0.
Question: Does there exists a subset X ′ ⊆ X such that
its elements sums to W ?

The reduction is described in the form of Algorithm 9 and
an example is given in Figure 2. Soundness of the reduction
is proved in the following claim.

Claim 10. Algorithm 9 is safe. Given as input an instance I
of SUBSET SUM and a salience factor b ∈ R>0, the output
instance I ′ of SIMPLE MOTIVATING SUBGRAPH is a yes-
instance if and only if I is a yes-instance.

Proof of claim. Before we begin the proof, we will adapt
the following notation: For a vertex u and subgraph H ⊆ G
containing at least one path from u to t, we let ζH(u) denote

Algorithm 9: Reduction from SUBSET SUM to SIMPLE
MOTIVATING SUBGRAPH (k = 1)
Input: An instance I = (X = {x1, x2, . . . , xn},W) of

SUBSET SUM; and any salience factor b ∈ R>1.
Output: An instance I ′ = (G,w, s, t, b, r, k) of SIMPLE

MOTIVATING SUBGRAPH with k = 1 and
salience factor b.

V (G)← {s, a0, a1, a2, a3, t} ∪
{c1, c∗1, c2, c∗2, . . . , cn, c∗n} ∪{cn+1, cn+2}

E(G)← {sa0, a0a1, a1a2, a2a3, a3t} ∪
{cic∗i , cici+1, c

∗
i ci+1 | i ∈ [n]} ∪

{a0c1, cn+1cn+2, cn+2t}
w ←⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a3t→ 1
b

a2a3 → 1−w(a3t)
b

a1a2 → 1−w(a2a3)−w(a3t)
b

a0a1 → 1−w(a1a2)−w(a2a3)−w(a3t)
b

sa0 → 1−(
∑2

i=0 w(aiai+1))−w(a3t)

b + ε
b

cn+2t→ w(a3t) + ε
cn+1cn+2 → w(a2a3)− 2ε− 2ε

b−1

cici+1 → xi·w(a1a2)
W for i ∈ [n]

a0c1 → w(a0a1) +
2ε
b−1→ 0 otherwise

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

return (G,w, s, t, b, r = 1, k = 1)

the perceived cost from vertex u to t in H . In other words,
ζH(u) = min{ζ(P) | P ⊆ H is a u-t path}.

For the forward direction of the proof, assume that I is
a yes-instance and let X ′ ⊆ X be a witness to this. Let
G′ ⊆ G be the graph where for each i ∈ [n] the vertex c∗i
and incident edges are removed if xi ∈ X ′, and the edge
cici+1 is removed if xi /∈ X ′. We make a series of step-wise
observations which shows that G′ is motivating:

1. G′ contains a single vertex with out-degree at least 2,
namely a0. There are two possible paths from s to t: The
a-path Pa = [s, a0, a1, a2, a3, t]; and the c-path Pc =
[s, a0, c1, (c

∗
1), c2, (c

∗
2), . . . , cn, (c

∗
n), cn+1, cn+2, t]

(where for each i ∈ [n], Pc only include vertex c∗i when
xi /∈ X ′).

2. In the path Pa, the agent will by construction perceive
the cost of moving towards t to be 1, regardless of which
vertex he resides on. The only exception to this is when
the agent is at s; then the perceived cost of following the
path Pa is 1 + ε. In other words, ζ(Pa) = 1 + ε and for
each of i ∈ {0, 1, 2, 3}, ζPa

(ai) = 1.

3. The cost from c1 to cn+1 in G′ is
∑

xi∈X′
xi·w(a1a2)

W ,
which simplifies to exactly w(a1a2). This holds because
X ′ sums to W by the initial assumption. In other words,
CPc(c1, cn+1) = w(a1a2).

4. The cost from a0 to t is ε shorter in the c-path compared
to the a-path, CPc

(a0, t) = CPa
(a0, t)− ε. This follows

from (3) and how the remaining weights in the c-path are
defined.

9847

s a0

c1

a1

c2 c3 c4 c5

c∗1 c∗2 c∗3

t

a3a2

1
32 + ε

2

1
16

1
8

1
4

1
2

1
16 + 2ε

3
80

6
80

7
80

0 0 00 0 0

1
4 − 4ε

1
2 + ε

Figure 2: The graph G constructed by Algorithm 9 on in-
put X = {3, 6, 7},W = 10, b = 2. The solution to
SUBSET SUM is X ′ = {3, 7} and the corresponding mo-
tivating subgraph G′ is formed by thick arcs. In graph
G the agent is tempted to pursue the lower path Pc =
[s, a0, c1, c

∗
1, c2, c

∗
2, c3, c

∗
3, c4, c5, t] but will lose motivation

at node c5. In graph G′, at node s, the agent’s plan will be to
follow the lower path P ′

c but at node a0 the agent will switch
to the upper path Pa. At every step on this path the agent is
motivated to reach t.

5. The perceived cost from s to t in Pc is 1, ζ(Pc) = 1
(follows by combining (2) and (4), and observing that
the two paths share their first leg). The agent is hence
motivated to move from s to a0 with a plan of following
Pc towards the target.

6. The perceived cost from a0 to t in Pc is ε more than the
perceived cost from a0 to t in Pa. This follows from the
following chain of substitutions:

ζPc(a0) = b · w(a0c1) + CPc(c1, t)

+ w(cn+1cn+2) + w(cn+2t)

= b · w(a0a1) + b · 2ε

b− 1
+ w(a1a2)

+ w(a2a3)− 2ε− 2ε

b− 1
+ w(a3t) + ε

= b · w(a0a1) + w(a1a2)

+ w(a2a3) + w(a3t) + ε

= b · w(a0a1) + CPa
(a1, t) + ε

= ζPa
(a0) + ε

It follows from (6) that an agent standing at a0 is not
willing to walk along Pc, but change his plan to walking
along Pa instead. The agent will stay motivated on the a-
path, and will reach the reward (2). Hence, the graph G′ is
motivating.

For the reverse direction of the proof, assume there is a
motivating subgraph G′ ⊆ G that motivates the agent to
reach t. We notice that G′ must contain the a-path, since any
agent moving out of the a-path will by the construction of
G′ need to walk past cn+2 — however, an agent standing at
this vertex will by the construction always give up. We also
notice that Pa itself is not motivating, hence G′ must contain

at least one other path from s to t. Let Pc denote the cheapest
s-t path that is different from Pa.

We begin by observing that Pc must start at s, include a0
and c1,, a path from ci to ci+1 for every i ∈ [n], as well as
the vertices cn+1, cn+2, and t.

There are some cost requirements that Pc needs to fulfill in
order for G′ to be motivating. In order to motivate an agent
at s to move to a0, the cost from a0 to t in Pc can be at most
CPa

(a0, t)− ε. This implies that CPc
(c1, cn+1) ≤ w(a1a2).

However, Pc can not have so low cost that it tempts the
agent to move off the a-path. In particular, an agent standing
at a0 must perceive the a-path to be strictly cheaper than
walking along Pc. We obtain the following inequality:

ζPa
(a0) < ζPc

(a0)

b · w(a0a1) + CPa
(a1, t) < b · w(a0c1) + CPc

(c1, t)

CPa
(a1, t) < b · 2ε

b− 1
+ CPc

(c1, t)

w(a1a2) + w(a2a3) + w(a3t) < b · 2ε

b− 1

+ CPc(c1, cn+1)

+ w(a2a3)− 2ε− 2ε

b− 1

+ w(a3t) + ε

w(a1a2) < (b− 1) · 2ε

b− 1

+ CPc
(c1, cn+1)− ε

w(a1a2)− ε < CPc
(c1, cn+1)

We now construct a solution X ′ ⊆ X to SUBSET SUM by
including xi in X ′ if Pc use the edge cici+1. Notice that the
sum of edge weights for these edges will make up the cost
CPc

(c1, cn+1). We can lift the bounds for that cost to the sum
of elements in X ′:

w(a1a2)− ε < CPc
(c1, cn+1) ≤ w(a1a2)

w(a1a2)− ε <
∑

xi∈X′

xi · w(a1a2)
W

≤ w(a1a2)

W − ε · W

w(a1a2)
<

∑
xi∈Pc

xi ≤W

By choosing ε strictly smaller than w(a1a2)
W , we guarantee

that the set X ′ has value exactly W (note: this bound on ε
is a function of b and W). This concludes the proof of the
soundness of the reduction. �

By the claim, SIMPLE MOTIVATING SUBGRAPH is NP-
complete for k = 1 and hence is also for every k ≥ 1.

A pseudo-polynomial algorithm

(proof of Theorem 4)

The reduction in the previous section shows that restricting
the number of branchings in the motivating structures we
look for does not make the task of finding them significantly

9848

easier. However, we notice that the weights used in the graph
constructed in the reduction can be exponentially small, and
depend on W as well as on b. On the other hand, in the
hardness proof for MOTIVATING SUBGRAPH by (Tang et al.
2017), the instances created in the reduction from 3-SAT have
weights that depend only on the constant b; but the number
of branchings in their potential solutions grows linearly with
the number of clauses in the 3-SAT instance.

Hence, MOTIVATING SUBGRAPH is hard even if the num-
ber of branchings in the solution we are looking for is
bounded, and it is also hard if the input instance only use in-
teger weights bounded by a constant. But what if we impose
both restrictions simultaneously? In this section we prove
that if the input instance has bounded integer weights, then
we can quickly determine whether it contains a motivating
subgraph with few branchings.

We will make a use of an auxiliary problem which is a vari-
ation of the exact �-LINKAGE problem in acyclic digraphs,
but which also impose restrictions on the links — requir-
ing them to be motivating for biased agents. We define the
problem:

EXACT MOTIVATING k-LINKAGE IN DAG (EMKL)
Input: An acyclic digraph G; edge weights w : E(G)→
Z≥0 s. t.

∑
e∈E(G) w(e) = W ; sources s1, s2, . . . , sk ∈

V (G); sinks t1, t2, . . . , tk ∈ V (G); target link weights
�1, �2, . . . , �k ∈ Z≥0; salience factors b1, b2, . . . , bk ∈
R≥1; and rewards r1, r2, . . . , rk ∈ R≥0.
Question: Does there exist (internally) vertex disjoint
paths P1, P2, . . . , Pk such that for each i ∈ [k], Pi starts
in si, ends in ti, has weight �i, and is such that an agent
with salience factor bi will be motivated by a reward ri to
move from si to ti?

We solve the EXACT MOTIVATING k-LINKAGE IN DAG
problem using dynamic programming, inspired by the so-
lution of (Fortune, Hopcroft, and Wyllie 1980) for the �-
LINKAGE problem in acyclic digraphs (see also (Bang-Jensen
and Gutin 2008)).

Lemma 11. EXACT MOTIVATING k-LINKAGE IN DAG can
be solved in time O(knk+1W k).

Proof sketch. We solve the problem by dynamic program-
ming using a Boolean table dp of size O(nkW k). The table
is indexed by vertices ui ∈ V (G) and weights di ∈ [W] for
i ∈ [k]. We define a cell dp[u1, u2, . . . , uk, d1, d2, . . . , dk]
to be TRUE if and only if there exists vertex disjoint paths
P1, P3, . . . , Pk, such that for each i ∈ [k] the following
holds:

• Pi starts in ui and ends in ti, and
• Pi has cost di, and
• an agent with salience factor bi is motivated by a reward

ri to move from ui to ti in Pi.

Observe that the final answer to the EMKL instance will by
this definition be found in dp[s1, s2, . . . , sk, �1, �2, . . . , �k].
In the recurrence, try every neighbor of every vertex in the
current index, to see whether it is possible to find a partial

solution where one of the k paths is one leg shorter, and then
extend that partial solution with one vertex.

Returning to our problem SIMPLE MOTIVATING SUB-
GRAPH with integer weights, we make use of the following
observations that enables us to give an algorithm.

Proposition 12 ((Kleinberg and Oren 2018, Theorem 5.1)).
If G′ is a minimal motivating subgraph, then it contains a
unique s-t path P ⊆ G′ that the agent will follow. Moreover,
every node of G′ has at most one outgoing edge that does not
lie on P .

Note that a consequence of Proposition 12 is that all
branching vertices of a minimal motivating subgraph are
on the path P . We can further observe that the number of ver-
tices with in-degree two or more is bounded by the number
of branching vertices. We are now prepared for the algorithm
that proves Theorem 4. Due to space constraints we only
present a short sketch.

Proof sketch of Theorem 4. We give an algorithm sketch for
SIMPLE MOTIVATING SUBGRAPH. First, we guess all “inter-
esting” vertices of a solution G′ ⊆ G, namely those which
are either branching vertices, their immediate out-neighbors,
or vertices of in-degree at least two. By Proposition 12, there
are at most O(k) such vertices.

After guessing the interesting vertices, we guess how they
are interconnected, and specifically which cost the paths be-
tween them have in G′. This gives rise to an instance of
EMKL, where the sources, sinks and target link costs corre-
sponds to the interesting vertices and how they are guessed
to be interconnected. The salience factor is given as either
b or 1 depending on where the agent is guessed to move,
and the rewards are calculated based on the guessed dis-
tance to the target. In total, there will be created at most
(|V (G)| ·W)O(k) instances of EMKL, each of which will
run in time (|V (G)| · W)O(k). The total runtime is hence
(|V (G)| ·W)O(k).

Conclusion

We have shown that the SIMPLE MOTIVATING SUBGRAPH
problem is polynomial-time solvable when k = 0, and
NP-complete otherwise (Theorem 3). However, when edge
weights are (scaled to) integers and their sum is bounded by
W , we gave a pseudo-polynomial algorithm which solves the
problem in time (|V (G)| ·W)O(k) (Theorem 4). Finally, we
observed that an algorithm with run-time (|V (G)| ·W)O(1) ·
f(k) where f is a function of k only is not possible unless
FPT=W[1] (Theorem 5).

We end the paper with an open question and a reflection
for further research. First, a question; in Theorem 5, a more
careful analysis reveals that the statement holds even when
W ∈ O(k2). But is it also the case when W is a constant?

Finally, a reflection. In Theorem 4 we give a pseudo-
polynomial algorithm for SIMPLE MOTIVATING SUBGRAPH
when the edge weights are scaled to integer values and the
number of branchings is constant. While we can reasonably
assume that edge weights are represented as fractions or in-
tegers after storing them in a computer, this suggests that

9849

the values might have been quantized or approximated in
some way. However, this rounding could potentially alter the
solution space. In particular when the cost of two paths are
perceived to be almost equal at the branching point — then
rounding values even a tiny bit can have big consequences.
To overcome this, one might change the model such that the
perceived difference of costs must exceed an epsilon for the
agent’s choice to be unequivocal.

Acknowledgments

This work has been supported by the Research Council of
Norway via the project “MULTIVAL”. We also thank the
AAAI reviewers for valuable suggestions.

References

Akerlof, G. A. 1991. Procrastination and obedience. The
American Economic Review 81(2):1–19.
Albers, S., and Kraft, D. 2017a. On the value of penalties in
time-inconsistent planning. In Chatzigiannakis, I.; Indyk, P.;
Kuhn, F.; and Muscholl, A., eds., 44th International Collo-
quium on Automata, Languages, and Programming (ICALP
2017), volume 80 of Leibniz International Proceedings in In-
formatics (LIPIcs), 10:1–10:12. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.
Albers, S., and Kraft, D. 2017b. The price of uncertainty in
present-biased planning. In International Conference on Web
and Internet Economics, 325–339. Springer.
Albers, S., and Kraft, D. 2019. Motivating time-inconsistent
agents: A computational approach. Theory of Computing
Systems 63(3):466–487.
Bang-Jensen, J., and Gutin, G. 2008. Digraphs: Theory,
Algorithms and Applications. Springer Monographs in Math-
ematics. Springer London.
Fortune, S.; Hopcroft, J.; and Wyllie, J. 1980. The directed
subgraph homeomorphism problem. Theoretical Computer
Science 10(2):111 – 121.
Frederick, S.; Loewenstein, G.; and O’Donoghue, T. 2002.
Time discounting and time preference: A critical review. Jour-
nal of Economic Literature 40(2):351–401.
Gravin, N.; Immorlica, N.; Lucier, B.; and Pountourakis,
E. 2016. Procrastination with variable present bias. In
Proceedings of the 2016 ACM Conference on Economics and
Computation, 361–361. ACM.
Karp, R. M. 1972. Reducibility among combinatorial prob-
lems. In Complexity of Computer Computations. New York:
Plenum Press. 85–103.
Kleinberg, J., and Oren, S. 2018. Time-inconsistent planning:
A computational problem in behavioral economics. Commu-
nications of the ACM 61(3):99–107.
Kleinberg, J.; Oren, S.; and Raghavan, M. 2016. Planning
problems for sophisticated agents with present bias. In Pro-
ceedings of the 2016 ACM Conference on Economics and
Computation, 343–360. ACM.
Kleinberg, J.; Oren, S.; and Raghavan, M. 2017. Planning
with multiple biases. In Proceedings of the 2017 ACM Con-
ference on Economics and Computation, 567–584. ACM.

Laibson, D. I. 1994. Hyperbolic Discounting and Con-
sumption. Ph.D. Dissertation, Massachusetts Institute of
Technology, Department of Economics.
McClure, S. M.; Laibson, D. I.; Loewenstein, G.; and Cohen,
J. D. 2004. Separate neural systems value immediate and
delayed monetary rewards. Science 306(5695):503–507.
O’Donoghue, T., and Rabin, M. 1999. Doing it now or later.
American Economic Review 89(1):103–124.
Samuelson, P. A. 1937. A note on measurement of utility.
The Review of Economic Studies 4(2):155–161.
Slivkins, A. 2010. Parameterized tractability of edge-disjoint
paths on directed acyclic graphs. SIAM Journal on Discrete
Mathematics 24(1):146–157.
Tang, P.; Teng, Y.; Wang, Z.; Xiao, S.; and Xu, Y. 2017. Com-
putational issues in time-inconsistent planning. In Proceed-
ings of the 31st t AAAI Conference on Artificial Intelligence
(AAAI).

9850

