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Abstract

Mathematical equations are an important part of dissemina-
tion and communication of scientific information. Students,
however, often feel challenged in reading and understand-
ing math content and equations. With the development of
the Web, students are posting their math questions online.
Nevertheless, constructing a concise math headline that gives
a good description of the posted detailed math question is
nontrivial. In this study, we explore a novel summarization
task denoted as geNerating A concise Math hEadline from a
detailed math question (NAME). Compared to conventional
summarization tasks, this task has two extra and essential
constraints: 1) Detailed math questions consist of text and
math equations which require a unified framework to jointly
model textual and mathematical information; 2) Unlike text,
math equations contain semantic and structural features, and
both of them should be captured together. To address these
issues, we propose MathSum, a novel summarization model
which utilizes a pointer mechanism combined with a multi-
head attention mechanism for mathematical representation
augmentation. The pointer mechanism can either copy textual
tokens or math tokens from source questions in order to gen-
erate math headlines. The multi-head attention mechanism
is designed to enrich the representation of math equations
by modeling and integrating both its semantic and structural
features. For evaluation, we collect and make available two
sets of real-world detailed math questions along with human-
written math headlines, namely EXEQ-300k and OFEQ-10k.
Experimental results demonstrate that our model (MathSum)
significantly outperforms state-of-the-art models for both the
EXEQ-300k and OFEQ-10k datasets.

Introduction

Math equations are widely used in the fields of Science,
Technology, Engineering, and Mathematics (STEM). How-
ever, it is often daunting for students to understand math
content and equations when they are reading STEM pub-
lications (Liu and Qin 2014; Jiang et al. 2018). Because of
the Web, students post detailed math questions online for
help. Recent question systems, such as Mathematics Stack
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Detailed Math Question: 
While studying the proof of the existence theorem for weak solutions for parabolic equations 
using the Galerkin approximation I encountered the following problem: 
Assume that               is an open set and                  is an orthonormal basis of             such that        
l                is also orthogonal in                 .  For every             let       be the     -orthogonal 
projection onto                         , i.e. 

It is clear that                                                  for every              and                      . However, what 
I need is the following: 

I'm not even sure it is true, but I need it to obtain some a priori estimates. 
I'll appreciate any help. 

Math Headline: 
Orthogonal projection in              andL2(Ω)
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Complex and Long

Clear and Brief

Figure 1: Example of a detailed math question along with its
headline. The question is complex and long and the headline
is clear and brief.

Exchange1 and MathOverflow2, attempt to address this need.
From the viewpoint of questioners, the contents of detailed
math questions are usually complex and long. In order to
efficiently help those who pose the question, it would be
helpful to have a headline which is concise and to the point.
Correspondingly, those who will answer the question (an-
swerers) also need a clear and brief headline to quickly de-
termine if they should bother to respond. Therefore, giving
a concise math headline to a detailed question is important
and meaningful. Figure 1 illustrates an example of the ques-
tion along with its headline posted in Mathematics Stack Ex-
change3. It’s clear that, a complicated question can make it
difficult for answerers to understand the intent of the ques-
tioner, while a concise headline can effectively reduce the
cost of this operation.

To this end, we explore a novel approach for geNerating
A Math hEadline for detailed questions (NAME). Here,
we define the NAME task as a summarization task. Com-
pared to conventional summarization tasks, the NAME task

1https://math.stackexchange.com
2https://mathoverflow.net
3https://math.stackexchange.com/questions/3331385
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has two extra essential issues that need to be addressed:
1) Jointly modeling text and math equations in a unified
framework. Textual (words) and mathematical (equations)
information are usually coexisting in detailed questions and
brief headlines, as shown in Figure 1. As such, it is natural
and necessary to process in some way text and math equa-
tions together (Schubotz et al. 2016; Yasunaga and Lafferty
2019). However, it is not evident how to model this in a uni-
fied framework. For instance, Yasunaga and Lafferty (Ya-
sunaga and Lafferty 2019) attempted to utilize both text and
mathematical representations, but both were treated as sep-
arate components. We argue that this approach loses much
crucial information, e.g., the position and the semantic de-
pendency between text and equations. 2) Capturing seman-
tic and structural features of math equations synchronously.
Unlike text, math equations not only contain semantic fea-
tures, but also structural features. For instance, equation
“f = a

b ” and “fb = a” have the same semantic fea-
tures, but different structural features. However, most ex-
isting research separately considers only one of these two
characteristics. For instance, this work (Yuan et al. 2016;
Zanibbi et al. 2016) only considered the structural infor-
mation of equations for mathematical information retrieval
tasks while other work (Deng et al. 2017; Yasunaga and Laf-
ferty 2019) treated a math equation as basic symbols and
modeled them as text, which led to structural features loss.

To address these issues, we propose MathSum, a novel
method that combines pointers with multi-head attention
for mathematical representation augmentation. The pointer
mechanism can either copy textual tokens or math tokens
from source questions in order to generate math headlines.
The multi-head attention mechanism is designed to enrich
the representation of each math equation separately by mod-
eling and integrating both semantic and structural features.
For evaluation, we construct two large datasets (EXEQ-300k
and OFEQ-10k) which contain 290,479 and 12,548 detailed
questions with corresponding math headlines from Mathe-
matics Stack Exchange and MathOverflow, respectively. We
compare our model with several abstractive and extractive
baselines. Experimental results demonstrate that our model
significantly outperforms several strong baselines on the
NAME task.

In summary, the contributions of our work are:

• an innovative NAME task for generating a concise
math headline in response to giving a detailed math
question.

• a novel summarization model MathSum that ad-
dresses the essential issues of the NAME task, in
which the textual and mathematical information can
be jointly modeled in a unified framework; while
both semantic and structural features of math equa-
tions can be synchronously captured.

• novel math datasets4. To the best of our knowledge,
these are the first mathematical content/question
datasets associated with headline information.

4https://github.com/yuankepku/MathSum

Related Work

Mathematical Equation Representation

Unlike text, math equations are often highly structured. They
not only contain semantic features, but also structural fea-
tures. Recent work (Roy, Upadhyay, and Roth 2016; Zanibbi
et al. 2016; Yuan et al. 2018; Jiang et al. 2018) focused
mainly on the structural features of math equations, and uti-
lized tree structures to represent equations for mathematical
information retrieval and mathematical word problem solv-
ing. Other work (Gao et al. 2017; Krstovski and Blei 2018;
Yasunaga and Lafferty 2019) instead focused mainly on the
semantic features of equations. They processed an equation
as a sequence of symbols in order to learn its representation.

Mathematical Equation Generation

Similar to text generation, math equation generation has
been widely explored. Recent work (Deng et al. 2017;
Zhang, Bai, and Zhu 2019; Le, Indurkhya, and Nakagawa
2019) utilized an end-to-end framework to generate equa-
tions from mathematical images, e.g., handwritten math
equations. Other work (Roy, Upadhyay, and Roth 2016;
Wang et al. 2018) inferred math equations for word problem
solving. However, this work only supported limited types of
operators (i.e., +, −, ∗, /). The work (Yasunaga and Laf-
ferty 2019) most related to ours created a model to gener-
ate equations given specific topics (e.g., electric field). Our
task (NAME), instead, aims at generating math headlines
from both equations and text without clear topics. Thus, our
NAME is quite challenging since it requires models to gen-
erate correct equations in the correct positions in the gener-
ated headlines.

Summarization and Headline Generation

Summarization, a fundamental task in Natural Language
Processing (NLP), can be categorized basically into ex-
tractive methods and abstractive methods. Extractive meth-
ods (Mihalcea and Tarau 2004; Nishikawa et al. 2014) ex-
tract sentences from the original document to form the sum-
mary. Abstractive methods (See, Liu, and Manning 2017;
Tan, Wan, and Xiao 2017a; Narayan, Cohen, and Lapata
2018; Gavrilov, Kalaidin, and Malykh 2019) aim at gener-
ating the summary based on understanding the document.

We view headline generation as a special type of sum-
marizaton, with the constraint that only a short sequence
of words is generated and that it preserves the essential
meaning of a math question document. Recently, head-
line generation methods with end-to-end frameworks (Tan,
Wan, and Xiao 2017b; Narayan, Cohen, and Lapata 2018;
Zhang et al. 2018; Gavrilov, Kalaidin, and Malykh 2019)
achieved significant success. Math headline generation is
similar to existing headline generation tasks, but still dif-
fers in several aspects. The major difference is that a math
headline consists of text and math equations which require
jointly modeling and inferring text and math equations.
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Datasets avg. math num avg. text tokens avg. math tokens avg. sent. num text vocab. size math vocab. size
ques. headl. ques. headl. ques. headl. ques. headl. ques. headl. headl. ques.

EXEQ-300k 6.08 1.72 60.65 7.72 12.27 9.91 4.68 1.52 84,272 21,568 1,049 663
OFEQ-10k 8.56 1.41 105.92 8.61 10.04 6.84 6.53 1.40 25,733 6,721 581 393

Table 1: Statistics of the EXEQ-300k and OFEQ-10k (where avg. math num = average math equation number; avg. text tokens
= average textual token number; avg. math tokens = average math equation token number; avg. sent. num = average sentence
number; text vocab. size = text vocabulary size; math vocab. size = math vocabulary size; ques. = detailed question (source);
headl. = math headline (target)).

datasets question pairs correct question pairs

EXEQ-300k 346,202 290,4794
OFEQ-10k 13,408 12,548

Table 2: Statistics of two datasets (EXEQ-300k and OFEQ-
10k) with respect to overall number of collected question
pairs and the number of correct question pairs.

Figure 2: Proportion of novel n-grams for the gold standard
math headlines in EXEQ-300k and OFEQ-10k.

Task and Dataset

Task Definition

Let us define the NAME task as a summarization one. Let
S = (s0, s1, ..., sN ) denote the sequence of the input de-
tailed question. N is the number of tokens in the source,
s ∈ {sw, se}, sw represents the textual token (word), and
se indicates the math token5. For each input S , there is a
corresponding output math headline with M tokens Y =
(y0, y1, ..., yM ) where y ∈ {yw, ye} and yw, ye are textual
tokens and math tokens, respectively. The goal of NAME is
to generate a math headline learned from the input question,
namely, S → Y .

Dataset

Since this NAME task is new, we could find no public
benchmark dataset. As such, we build two real-world math

5Math token is the fundamental element which can form a math
equation(Deng et al. 2017)

datasets, EXEQ-300k (from Mathematics Stack Exchange)
and OFEQ-10k (from MathOverflow), for model training
and evaluation. Both datasets consist of detailed questions
with corresponding math headlines.

In EXEQ-300k and OFEQ-10k, each question is written
in detailed math, and the corresponding headline is a human-
written question summary with math equations, typically by
the questioner. In Mathematics Stack Exchange and Math-
Overflow, math equations are enclosed by the “$$” symbols.
We use in our datasets “<m>” and “</m>” to replace “$$”
in order to indicate the begin and end of an equation. In ad-
dition, The toolkit Stanford CoreNLP6 and LATEX tok-
enizer in im2mark7 are used to tokenize separately the text
and equations in questions and headlines.

Specifically, we collect 346,202 pairs of <detailed ques-
tions, math headline> from Mathematics Stack Exchange
and 13,408 pairs from MathOverflow. To help with analy-
sis and ensure quality, we remove pairs which contain math
equations that cannot be tokenized by LATEX tokenizer. This
results in 290,479 pairs from Mathematics Stack Exchange
which form EXEQ-300k and 12,548 pairs from MathOver-
flow which form OFEQ-10k. See Table 1 and Table 2 for
more details. In EXEQ-300k, on average there are respec-
tively 6.08 and 1.72 math equations in the question and
headlines. In contrast, OFEQ-10k contains more math equa-
tions in the question (8.56) and less in the headline (1.41).
In EXEQ-300k the questions have 60.65 textual tokens and
12.27 math tokens on average, while the headline has 7.72
textual tokens and 9.91 math tokens on average. Corre-
spondingly, in OFEX-10k, there are on average 105.92 tex-
tual tokens and 10.04 math tokens in the question, and on
average 10.04 textual tokens and 6.84 math tokens in the
headline. Compared to EXEQ-300k, OFEX-10k contains
more tokens (textual token and math token) in questions, and
less in headlines. From Figure 2, we also see that OFEQ-
10k has a higher proportion of novel n-grams than EXEQ-
300k. Based on the above observations, we believe that the
constructed datasets are significantly different and mutually
complementary.

Approach

Here we describe our proposed deep model, MathSum,
which we designed for the NAME task.

6https://stanfordnlp.github.io/CoreNLP/
7https://github.com/harvardnlp/im2markup
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Figure 3: Architecture of MathSum. For a question, each math equation vector representation [sej , ..., s
e
j+m] will pass through

a multi-head attention block to produce a new vector representation sej to sej+m which updates the original representation. The
updated vector representation [s

′
0, ..., s

′
N ] is then fed into an update layer one-by-one.

MathSum Model

As shown in Figure 3, MathSum utilizes a pointer mech-
anism with a mutli-head attention mechanism for mathe-
matical representation augmentation. It consists of two main
components: (1) an encoder which jointly learns the repre-
sentation of math equations and text, (2) a decoder which
learns to generate headlines from the learned representation.

For the encoder, the crucial issue is to build effective rep-
resentations for tokens in an input question. As mentioned in
NAME task, there are two different token types (i.e., textual
and math) and their characteristics are intrinsically different.
Math tokens not only contain the semantic features (mathe-
matical meaning) but also the structural features (e.g., su-
per/sub script, numerator/denominator, recursive structure).
Therefore, the representation learning should vary according
to the token type. In this study, we introduce a multi-head
attention mechanism to enrich the representation of math to-
kens.

The token si of the input question S is first converted into
a continuous vector representation si, so that the vector rep-
resentation of the input is S = [s0, ..., sN ] where N is the
number of tokens in the input and sw, se are vector rep-
resentation of textual and math tokens, respectively. Then
the vectors of math tokens within an equation are fed into a
block with multi-head attention (Vaswani et al. 2017) which
then enriches its representation by considering both its se-
mantic and structural features. Please note that each equa-
tion in the input will be separately fed into the block since
an equation is a fundamental unit for characterizing the se-
mantic and structural features of a series of math tokens. Let

Mk = {sej , ..., sej+m} denote the initial vector representa-
tion of the k-th math equation with m math tokens as input.
Then the multi-head attention block transforms the sei to its
enriched representation sei . This is calculated by
sei = fMulti−head(s

e
i , [s

e
j , ..., s

e
j+m]), i ∈ {j, .., j +m} (1)

where fMulti−head is the multi-head attention block. j is the
beginning index of math equation Mk and j +m is the end
index.

After that, the enriched vector representation of the input
is S

′
= [s

′
0, ..., s

′
N ] where s

′ ∈ {sw, se} is fed into the up-
date layer (a single-layer bidirectional LSTM) one-by-one.
The hidden state hi is updated according to the previous hid-
den state hi−1 and current token vector s

′
i,

hi = f(hi−1, s
′
i) (2)

where f is the dynamic function of LSTM unit and hi is the
hidden state of token s

′
in the step i.

In the decoder, we aggregate the encoder hidden states
h0, ..., hN using a weighted sum that then becomes the con-
text vector Ct:

Ct =
∑

i

αithi (3)

where

αt = softmax(et)

eit = υTtanh(Whhi +Wh′h
′
t + battn)

(4)

υ,Wh,Wh′ and battn are the learnable parameters. h
′
t is

the hidden state of the decoder at time step t. The attention
α is the distribution over the input position.
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At this point, the generated math headline may con-
tain textual tokens or math tokens from the source which
could be out-of-vocabulary. Thus, we utilize a pointer net-
work (See, Liu, and Manning 2017) to directly copy tokens
from source. Considering that the token w maybe copied
from the source or generated from the vocabulary, we use
the copy probability pc as a soft switch to choose copied
tokens from the input or generated textual tokens from the
vocabulary.

p(yt = w|S, y<t) = pc
∑

i:wi=w

αit + (1− pc)f(h
′
t, Ct)

pc = f(Ct, h
′
t, xt)

(5)
where f is non-linear function and xt is the decoder input at
timestep t.

Finally, the training loss at time step t is defined as the
negative log likehood of the target word w∗

t where

Losst = − log p(yt = w∗
t |S, y<t) (6)

Experimental Setup

Comparison of Methods

We compare our model with baseline methods on both the
EXEQ-300k and OFEQ-10k for the NAME task. Four ex-
tractive methods are implemented as baselines: Random,
randomly selects a sentence from the input question. Lead,
simply selects the leading sentence from the input question,
while Tail selects the last sentence, and TextRank8 extracts
sentences from the text according to their scores computed
by an algorithm similar to PageRank. In addition, three ab-
stractive methods9 are also used to compare against Math-
Sum. Seq2Seq is a sequence to sequence model based on
the LSTM unit and attention mechanism (Bahdanau, Cho,
and Bengio 2015). PtGen is a pointer network which al-
lows copying tokens from the source (See, Liu, and Manning
2017). Transformer is a neural network model that is de-
signed based on a multi-head attention mechanism (Vaswani
et al. 2017).

Experiment Settings

We randomly split EXEQ-300k into training (90%,
261,341), validation (5%, 14,564), and testing (5%, 14,574)
sets. In order to get enough testing samples, we split OFEQ-
10k in a 80% training (10,301), 10% validation (1,124), and
10% testing (1,123) proportions10.

For our experiments, the dimensionality of the word em-
bedding is 128 and the number of hidden states for LSTM

8For TextRank, we use the implementation in summanlp,
https://github.com/summanlp/textrank

9We use the implementation of OpenNMT,
https://github.com/OpenNMT/OpenNMT-py

10For a fair comparison, all models used the same experimental
data setup. For EXEQ-300k, all models are trained and tested on
the same dataset. For OFEQ-10k, in order to achieve better exper-
imental results, all models are first trained on the training set of
EXEQ-300k, then fine-tuned and tested using OFEQ-10k

units for both encoder and decoder is 512. The multi-head at-
tention block contains 4 heads and 256-dimensional hidden
states for the feed-forward part. The model is trained using
AdaGrad (Duchi, Hazan, and Singer 2011) with a learning
rate of 0.2, an initial accumulator value of 0.1, and a batch
size of 16. Also, we set the dropout rate as 0.3. The vocabu-
lary size of the question and headline are both 50,000. In ad-
dition, the encoder and decoder share the token representa-
tions. At test time, we decode the math headline using beam
search with beam size of 3. We set the minimum length as
20 tokens on EXEQ-300k and 15 tokens on OFEQ-10k. We
implement our model in PyTorch and train on a single Titan
X GPU.

Experimental Results

Quantity Performance

Metrics Here we use three standard metrics:
ROUGE (Lin 2004), BLEU (Papineni et al. 2002) and
METEOR (Denkowski and Lavie 2014) for evaluation. The
ROUGE metric measures the summary quality by counting
the overlapping units (e.g., n-gram) between the generated
summary and reference summaries. We report the F1 scores
for R1 (ROUGE-1), R2 (ROUGE-2), and RL (ROUGE-L).
The BLEU score is a widely used as an accuracy measure
for machine translation and computes the n-gram precision
of a candidate sequence to the reference. METEOR is
recall-oriented and evaluates translation hypotheses by
aligning them to reference translations and calculating
sentence-level similarity scores. The BLEU and METEOR
scores are calculated by using nlg-eval11 package,
and ROUGE scores are based on rouge-baselines12

package.
We use the edit distance and exact match to check the

similarity of the generated equations compared with the
gold standard equations in the math headlines. These two
metrics are widely used for the evaluation of equation
generation (Deng et al. 2017; Wu et al. 2018). Edit dis-
tance quantifies how dissimilar two strings are by count-
ing the minimum number of operations required to trans-
form one string into the other. Based on N samples in the
test set, we use two types of edit distance. One is Edit Dis-
tance(m) which is math-level dissimilar score and is de-
fined as EditDistance(m) =

∑N
i=0

minMdi

max(|Pi|,|Gi|) , where
minMd is the minimum edit distance between equations
in the generated headline and the gold standard headline,
|Pi| and |Gi| are the number of equations in the i-th gen-
erated headline and gold headline. The other Edit Dis-
tance(s) is the sentence-level dissimilar score, and is formu-
lated as EditDistance(s) =

∑N
i=0 minMdi

N . Exact Match
checks the exact match accuracy between the gold standard
math tokens and generated math tokens and is calculated as
ExactMatch =

∑N
i=0(PMi&GMi)

N , where PMi and GMi

are the sets of math tokens in the i-th generated headline
and gold standard headline.

11https://github.com/Maluuba/nlg-eval
12https://github.com/sebastianGehrmann/rouge-baselines
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Models EXEQ-300k OFEQ-10k
R1 R2 RL BLEU-4 METEOR R1 R2 RL BLEU-4 METEOR

Random 31.56 21.35 28.99 24.32 23.40 22.95 11.48 19.85 13.19 18.00
Tail 22.55 14.69 20.76 22.23 23.78 15.46 7.03 13.36 11.13 11.68
Lead 42.23 31.30 39.29 29.89 31.61 27.68 14.92 24.07 14.56 20.99

TextRank 42.19 30.85 38.99 28.29 31.78 29.66 16.41 25.59 14.20 23.71

Seq2Seq 52.14 38.33 49.00 42.20 30.65 38.64 23.42 35.24 27.67 25.27
PtGen 53.26 39.92 50.09 44.10 31.76 40.27 25.30 36.51 28.07 25.90

Transformer 54.49 40.57 50.90 45.79 32.92 40.54 24.36 36.39 28.82 25.89

MathSum 57.53 45.62 54.81 52.00 37.47 42.44 28.15 38.99 29.44 26.84

Table 3: Comparison of different models on the EXEQ-300k and OFEQ-10 test sets for F1 scores of R1 (ROUGE-1), R2
(ROUGE-2), RL (ROUGE-L), BLEU-4, and METEOR.

Models EXEQ-300k OFEQ-10k
Edit Distance(m) Edit Distance(s) Exact Match Edit Distance(m) Edit Distance(s) Exact Match

Random 8.76 21.84 9.29 7.20 17.73 5.60
Tail 9.42 20.89 6.65 7.30 14.45 3.47
Lead 7.47 20.27 12.39 6.58 17.75 6.70

TextRank 7.68 21.36 12.68 6.75 20.27 7.71

Seq2Seq 6.68 13.57 13.26 8.69 16.78 8.68
PtGen 6.59 13.43 13.60 8.06 15.56 8.56

Transformer 6.32 13.23 13.94 5.56 10.51 8.41

MathSum 5.82 12.07 15.21 5.71 10.76 8.98

Table 4: Comparison of different models on the EXEQ-300k and OFEQ-10k test sets according to math evaluation metrics.
Edit Distance(m) and Edit Distance(s) evaluate those that are dissimilar (the smaller the better). Exact Match is the number of
math tokens accurately generated in math headlines (the larger the better).

Results Comparisons of models can be found in Table 3.
All models perform better on EXEQ-300k than OFEQ-10k.
A possible explanation is that the EXEQ-300k contains a
lower proportion of novel n-grams in its gold standard math
headlines (illustrated in Figure 2). For extractive models, we
find that Lead obtains a good performance on EXEQ-300k,
while TextRank performs well on OFEX-10k. Since OFEX-
10k contains more sentences for each question, TextRank
is more likely to pick out the accurate sentence. Unsur-
prisingly, abstractive models perform better than extractive
models on both datasets. Compared to ordinary Seq2Seq,
PtGen gets better performance, since it uses a copying strat-
egy to directly copy tokens from the source question. The
transformer can outperform PtGen, which implies that by
utilizing multi-head attention mechanism, we obtain a bet-
ter learning of representation. MathSum significantly out-
performs other models for all evaluation metrics on both
datasets. Thus, MathSum initially addresses some of the
challenges of NAME task and generates satisfactory head-
lines for questions.

In addition, we also evaluate the gap between the gener-
ated headlines and human-written headlines. The Edit Dis-
tance(m), Edit Distance(s) and Exact Match scores for dif-
ferent models using EXEQ-300k and OFEQ-10k are shown
in Table 4. The results show that extractive models perform

worse, if we use the metric Edit Distance(s) instead of Edit
Distance(m) for evaluation. Since extractive models directly
select sentences from source questions, some selected sen-
tences may not contain math equations. For abstractive base-
lines, the Transformer obtains the best performance. This
observation reinforces the claim that a mutli-head attention
mechanism can construct a better representation for math
equations. On EXEQ-300k, our model, MathSum, achieves
the best performance on all metrics. On OFEX-10k, Math-
Sum gets the best performance for Exact Match and sec-
ond best performance (slightly weaker than Transformer)
for Edit Distance(m) and Edit Distance(s). A possible rea-
son is that in OFEX-10k, the lengths of math equations in
source questions are usually long, while the ones in head-
lines are often short. Compared to the Transformer, the
copying mechanism could cause MathSum to copy long
equations from the source questions, which may result in a
slight decreased performance for Edit Distance(m) and Edit
Distance(s) metrics.

Quality Analysis

Jointly modeling quality The heatmap in Figure 4 visual-
izes the attention weights from MathSum. Figure 4(a) com-
pares the source detailed question with its human-written
math headline and the generated math headline from Math-
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Detailed Question: 
In          we define coordinate triangle to be the one with  
sides                                  and               . How would you  
define its interior? What kind of equation should it satisfy?

ℂℙ2

{x0 = 0}, {x1 = 0} {x2 = 0}

Human Written Math Headline: 
interior of a triangle in C P2

MathSum Generated Math Headline: 
interior of coordinate triangle in         .ℂℙ2

(a) An example of detailed question 
(b) Attention weights for partial source detailed question tokens 

Figure 4: Heatmap of attention weights for source detailed questions. MathSum learns to align key textual tokens and math
tokens with the corresponding tokens in the source question.

Sum. As Figure 4 shows, there are both textual tokens and
math tokens in the generated headline. Note that both math
tokens and textual tokens can be effectively aligned to their
corresponding tokens in the source. For instance, the textual
tokens “coordinate”, “triangle” and the math tokens “P ”,
“C” are both all successfully aligned.

Case study To gain an insightful understanding regarding
the generation quality of our method, we present three typ-
ical examples in Table 5. The first two are selected from
EXEQ-300k13,14 and the last one is selected from OFEQ-
10k15. From the examples, we see that the generated head-
lines and the human-written headlines have comparability
and similarity. Generally, the generated headlines are coher-
ent, grammatical, and informative. We also observe that, it
is important to locate the main equations for NAME task. If
the generation method emphasizes a subordinate equation, it
will generate an unsatisfactory headline, such as the second
example in Table 5.

Conclusions and Future Work

Here we define and explore the novel NAME task of auto-
matic headline generation for online math questions using
a new deep model, MathSum. Two new datasets (EXEQ-
300k and OFEQ-10k) are constructed for algorithm training
and testing and are made available. Our experimental results
demonstrate that our model can often generate useful math
headlines and significantly outperform a series of state-of-
the-art models. Future work could focus on enriched repre-
sentations of math equations for mathematical information
retrieval and other math-related research.

13https://math.stackexchange.com/questions/2431575
14https://math.stackexchange.com/questions/752067
15https://mathoverflow.net/questions/291434

Examples

Partial Math
Detailed
Question
(EXEQ-300k)

So I am asked to find the inverse
elements of this set Z[i] = {a +
ib|a, b ∈ Z} (I know that this is
the set of Gaussian integers). I was
pretty much do...

Human-
Written

finding the inverse elements of
Z[i] = {a+ ib|a, b ∈ Z}

MathSum finding the inverse elements of
Z[i] = {a+ ib|a, b ∈ Z}

Partial Math
Detailed
Question
(EXEQ-300k)

Suppose that the function ψ : R2 →
R is continuously differentiable. De-
fine the function g : R2 → R by...

Human-
Written

using the chain rule in R
n

MathSum find ∂g
∂s (s, t)

Partial Math
Detailed
Question
(OFEQ-10k)

In the paper of Herbert Clemens
Curves on generic hypersurfaces the
author shows that for a generic hy-
persurface V of P

n of sufficiently
high degree there is no rational...

Human-
Written

rational curves in P
n and immersion

MathSum rational curves in P
n

Table 5: Examples of generated math headlines given de-
tailed questions.
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