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Abstract

Distributional representations of words, also known as word
vectors, have become crucial for modern natural language
processing tasks due to their wide applications. Recently, a
growing body of word vector postprocessing algorithm has
emerged, aiming to render off-the-shelf word vectors even
stronger. In line with these investigations, we introduce a
novel word vector postprocessing scheme under a causal in-
ference framework. Concretely, the postprocessing pipeline is
realized by Half-Sibling Regression (HSR), which allows us
to identify and remove confounding noise contained in word
vectors. Compared to previous work, our proposed method
has the advantages of interpretability and transparency due
to its causal inference grounding. Evaluated on a battery of
standard lexical-level evaluation tasks and downstream senti-
ment analysis tasks, our method reaches state-of-the-art per-
formance.

Introduction

Distributional representations of words have become an in-
dispensable asset in natural language processing (NLP) re-
search due to its wide application in downstream tasks such
as parsing (Bansal, Gimpel, and Livescu 2014), named en-
tity recognition (Lample et al. 2016), and sentiment analy-
sis (Tang et al. 2014). Of these, “neural” word vectors such
as Word2Vec (Mikolov et al. 2013), GloVe (Pennington,
Socher, and Manning 2014), and Paragram (Wieting et al.
2015) are amongst the most prevalently used and on which
we focus in this article.

There has been a recent thrust in the study of word vec-
tor postprocessing methods (Faruqui et al. 2015; Fried and
Duh 2015; Mrksic et al. 2016; 2017; Shiue and Ma 2017;
Mu and Viswanath 2018; Liu, Ungar, and Sedoc 2019;
Tang, Mousavi, and de Sa 2019). These methods directly
operate on word embeddings and effectively enhance their
linguistic regularities in light-weight fashions. Nonetheless,
existing postprocessing methods usually come with a few
limitations. For example, some rely on external linguistic
resources such as English WordNet (Faruqui et al. 2015;
Fried and Duh 2015; Mrksic et al. 2016; 2017; Shiue and
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Ma 2017), leaving out-of-database word vectors untouched.
Others use heuristic methods to flatten the spectrum of
word vector embedding matrices (Mu and Viswanath 2018;
Liu, Ungar, and Sedoc 2019; Wang et al. 2019; Tang,
Mousavi, and de Sa 2019). Although being effective, these
spectral flattening algorithms are primarily motivated by ex-
perimental observations but lack of direct interpretability.

In this paper, we propose a novel word vector postprocess-
ing approach that addresses these limitations. Under a causal
inference framework, the proposed method meets the joint
desiderata of (1) theoretical interpretability, (2) empirical
effectiveness, and (3) computational efficiency. Concretely,
the postprocessing pipeline is realized by Half-Sibling Re-
gression (HSR) (Scholkopf et al. 2016), a method for iden-
tifying and removing confounding noise of word vectors.
Using a simple linear regression method, we obtain results
that are either on-par or outperform state-of-the-art results
on a wide battery of lexical-level evaluation tasks and down-
stream sentiment analysis tasks. More specifically, our con-
tributions are as follows:

e We formulate the word vector postprocessing task as a
confounding noise identification problem under a puta-
tive causal graph. This formulation brings causal inter-
pretability and theoretical support to our postprocessing
algorithm.

e The proposed method is data-thrifty and computation-
ally simple. Unlike many existing methods, it does not
require external linguistic resources (e.g., synonym rela-
tionships); besides, the method can be implemented easily
via simple linear regressions.

e The proposed postprocessing method yields highly com-
petitive empirical results. For example, while achieving
the best performance on 20 semantic textual similarity
tasks, on average, our proposed method brings 4.71%,
7.54%, and 6.54% improvement respectively compared
to the previously best results, and it achieves 7.13%,
22.06%, and 9.83% improvement compared to the orig-
inal word embedding when testing on Word2Vec, GloVe,
and Paragram.

The rest of the paper is organized as follows. We first
briefly review prior work on word vector postprocessing.
Next, we introduce Half-Sibling Regression as a causal in-
ference framework to remove confounding noise; we then



proceed to explain how to apply Half-Sibling Regression
to remove noise from word embeddings. Then, we show-
case the effectiveness of the Half-Sibling Ridge Regression
model on word similarity tasks, semantic textual similarity
tasks, and downstream sentiment analysis tasks using three
different pre-trained English word embeddings. Finally, we
condluct statistical significance tests on all experimental re-
sults’.

Prior Work

In this section, we review prior art for word vector postpro-
cessing. Modern word vector postprocessing methods can be
broadly divided into two streams: (1) lexical and (2) spatial
approaches.

The Lexical Approach The lexical approach uses lexi-
cal relational resources to enhance the quality of word vec-
tors. These lexical relational resources specify semantic re-
lationships of words such as synonym and antonym rela-
tionships. For example, Faruqui et al. (2015) inject synonym
lexical information into pre-trained collections of word vec-
tors. Mrksic et al. (2016) generalize this approach and insert
both antonym and synonymy constraints into word vectors.
Mrksic et al. (2017) use constraints from mono- and cross-
lingual lexical resources to fine-tune word vectors. Fried and
Duh (2015) and Shiue and Ma (2017) propose to use hier-
archical semantic relations such as hypernym semantics to
enrich word vectors. To make sure that word vectors satisfy
the lexical relational constraints, supervised machine learn-
ing algorithms are used.

The Spatial Approach The spatial approach differs from
the lexical approach in that it does not require external
knowledge bases. The general principle of this approach is
to enforce word vectors to be more “isotropic”, i.e., more
spread out in space. This goal is usually achieved by flat-
tening the spectrum of word vectors. For example, Mu
and Viswanath (2018) propose All-But-The-Top (ABTT)
method which removes leading principal components of
word vectors; Wang et al. (2019) extend this idea by softly
shrinking principal components of word embedding ma-
trix using a variance normalization method; Liu, Ungar,
and Sedoc (2019) propose the Conceptor Negation (CN)
method, which employs regularized identity maps to filter
away high-variance latent features of word vectors; more re-
cently, Tang, Mousavi, and de Sa (2019) develop Search-
Beta (SB) that uses a centralized kernel alignment method
to smooth the spectrum of word vectors.

The Causal Inference Approach for Word
Vector Postprocessing
The lexical and spatial approaches introduced in the pre-
vious section have empirically proven to be effective.

'Our codes are available at https://github.com/KunkunYang/
denoiseHSR-AAAI
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Nonetheless, they also suffer from a few limitations. A short-
coming of the lexical approach is that it is unable to postpro-
cess out-of-database word vectors. Indeed, lexical relational
resources like synonym-antonym relationships are informa-
tive for word meaning, in particular word meaning of ad-
Jectives. However, many non-adjective words do not have
abundant lexical connections with other words, and for this
reason, they are not well-represented in lexical-relationship
databases. For instance, most nouns (e.g., car) and verbs
(e.g., write)have few synonyms and even fewer antonyms,
making the lexical postprocessing methods inapplicable to
these words. The spatial approach favorably avoids this
problem by lifting the requirement of lexical relational re-
sources. Yet, one major downside of the spatial approach is
its lack of direct interpretability. For example, many spatial
approaches propose to completely or softly remove a few
leading principal components (PCs) of word vectors. How-
ever, it is rather unclear what exactly has been encoded by
these leading PCs other than the empirical finding that these
leading PCs are somehow correlated with word frequencies
(Mu and Viswanath 2018).

In this paper, we go beyond the lexical and spatial
schemes and introduce a novel causal inference approach
for postprocessing word vectors. The method does not seek
to infer the causal structure of words or word vectors; in-
stead, in line with Scholkopf et al. (2012) and Scholkopf
et al. (2016), it incorporates causal beliefs and assumptions
for empirical objectives — postprocessing off-the-shelf word
vectors in our case. Concretely, this is achieved by identi-
fying and removing confounding noise of word vectors us-
ing Half-Sibling Regression (HSR) method (Scholkopf et al.
2016). Here we first briefly introduce HSR and then explain
how to apply HSR to word vectors.

Half-Sibling Regression

In the passing, we introduce HSR mainly based on the pre-
sentation of Scholkopf et al. (2016). Consider a hypotheti-
cal causal graph, shown in Figure 1, where each vertex la-
beled by @, N, Y, and X are random variables defined on
an underlying probability space and each directed edge in-
dicates the probabilistic dependency between two random
variables. We are mostly interested in quantities taken by
the random variable ). Unfortunately, it is not possible to
directly observe these quantities. Instead, we are given only
the corrupted observations of (), taken value by the random
variable Y. That is, intuitively Y can be seen as a noisy,
lossy version of ). A natural assumption of Y is that it sta-
tistically depends on its “clean” version @ as well as some
noise, whose values are taken by some unobservable random
variable IV that encodes the noise source. We further assume
that the noise source N affects another random variable, X,
whose quantities are directly observable. Importantly, we re-
quire X to be independent of Q.

Recall that we are mostly interested in the unobservable
random variable ). Hence the question we aim to answer is:
How to reconstruct the quantities taken by () by leveraging
the underlying statistical dependency structure in Figure 1?
HSR provides a simple yet effective solution to this question

— It estimates @ via its approximation Q which is defined
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Figure 1: The causal graph for HSR (adapted from
Scholkopf et al. (2016)). Each vertex labeled by @, N, Y,
and X is a random variable defined on an underlying proba-
bility space. Directed edges connecting random variables de-
scribe probabilistic dependency between random variables.

as

Q=Y —E[Y | X]. (1)

The HSR Equation 1 can be straightforwardly interpreted
as follows. Recall that X is independent of (), and there-
fore X is not predictive to @) or @’s influence on Y. How-
ever, X is predictive to Y, because X and Y are both in-
fluenced by the same noise source N. When predicting Y
based on X realized by the term E[Y" | X], since those sig-
nals of Y coming from () cannot be predicted by X, only
those noise contained in Y coming from N could be cap-
tured. To reconstruct @ from Y, we can therefore remove
the captured noise E[Y" | X] from Y, resulting in the recon-
struction Q == Y — E[Y | X], which is Equation 1. This
procedure is referred to as Half-Sibling Regression because
X and Y share one parent vertex N. Y is regressed upon
its half-sibling X to capture the components of Y inherited
from their shared parent vertex N.

HSR enjoys a few appealing theoretical properties. In
particular, it is possible to show that Q reconstructs Q
(up to its expectation E[Q)]) at least as good as the mean-
subtraction Y —E[Y] does. We refer the readers to Scholkopf
et al. (2016) for detailed theoretical discussions.

Applying HSR to De-Noise Word Vectors

We now explain how we apply HSR to remove noise from
word vectors. Before getting into the details, we first recall
some linguistic basics of words, which are the key enablers
of our approach. Semantically, words can be divided into
two basic classes: (1) content or open-class words and (2)
function or closed-class words (also known as stop words).
Content words are those that have meaning or semantic
value, such as nouns, verbs, adjectives, and adverbs. Func-
tion words have little lexical meaning; rather, they mainly
exist to explain grammatical or structural relationships with
other words. In English, examples of function words include
a, to, for, of, the, and more.

Based on these basic linguistic facts, we posit that
content-word vectors and function-word vectors can be seen
as half-siblings as their linguistic properties align well with
the HSR foundations. Indeed, since function-word vectors
carry little semantic content, they could not be predictive
to clean content-word vectors. Additionally, since content-
word vectors and function-word vectors are induced from
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Algorithm 1: HSR algorithm for word vector postpro-
cessing

: (i) {v) }E |+ a collection of K content-word

vectors, each of dimension n; VY isan x K
matrix whose columns are from {v} } 2. (ii)
{v¥}E_,: acollection of P function-word
vectors, each of dimension n; VX isan x P
matrix whose columns are from {v:X }Z_, . (iii)
Regression constants oy, ag > 0.
1 Postprocess content-word vectors:
Step 1.1: Identify noise contained in content-word
vectors: Estimate a weight matrix W1 such that

VY = Viw,,

Input

with ridge regression
W, = (V) TVX o) (V) TVY,

Step 1.2: Remove noise contained in content-word
vectors: R
VY =VY - VYW,
2 Postprocess stop-word vectors:

Step 2.1: Identify noise contained in stop-word
vectors: Estimate a weight matrix W5 such that

VY 2 VYW,
with ridge regression
Wy = (VV)TVY +a00) (V) TV,

Step 2.2: Remove noise contained in stop-word
vectors:
VY =VY - VYW,

Output: (i) HSR postprocessed content-word vectors
{#Y}, which are columns of V; (ii) HSR
postprocessed stop-word vectors {9 }, which
are columns of V.

some shared training corpora, we hypothesize that they are
subjected to the same noise profile. Using HSR language of
Figure 1, this means we can model the off-the-shelf stop-
word vectors with X, off-the-shelf content-word vectors
with Y, and “clean” yet unseen content-word vectors with
. Under the HSR framework, when we regress content-
word vectors upon function-word vectors, only the noise of
the former is captured. Once such noises are identified, they
can be directly subtracted, so that the clean content-word
vectors will be reconstructed.

The above described procedure can be mathematically
realized as follows. Let {v;*}Z, be a collection of
function-word vectors and let {v} }X, be a collection of
content-word vectors. To postprocess content-word vec-
tors {v¥ }X |, we run a simple two-step algorithm. In the
first step, we estimate parameters of a linear multiple-

output model (Hastie, Tibshirani, and Friedman 2001, Sec-



tion 3.2.4), in which we use model inputs v:¥,- - ,v3 to
predict model outputs v}, --- ,v};. This amounts to es-
timate each w;; such that v}’ ~ Y27 w;v¥ for each
j € {l,---,K}. In the second step, we remove the regres-
sion result from the target of the regression. That is, we let
Y = v =321 wi;v{¥ be the postprocessed content-word
vector.

So far, we have described how to postprocess content-
word vectors. To postprocess function-word vectors, we
can employ a similar pipeline with the predictor and target
flipped. That is, to identify confounding noise contained in
stop-word vectors, we use off-the-shelf content-word vec-
tors as features to predict off-the-shelf stop-word vectors.
The full algorithm is summarized in Algorithm 1.

We provide a few remarks on the practical implementa-
tions and further generalizations of Algorithm 1. Our first
remark goes to how to identify the function and content
words in practice. Throughout our experiments, to identify
function words, we use the stop word list provided by Nat-
ural Language Toolkit (NLTK) package?, which is a list of
179 words. We regard words outside of this list to be con-
tent words. A small amount of stop words works efficiently
when postprocessing tens of thousands of content-word vec-
tors because in this case, we only have a handful of features.
However, when postprocessing stop-word vectors, it is cum-
bersome because the number of content words as features
are too large to be efficiently implemented. For this reason,
in practice, we only use a small sample of commonly used
content-word vectors as features for postprocessing stop-
word vectors. Specifically, borrowing the word list provided
by Arora, Liang, and Ma (2017), we use the most frequent
1000 content words as features in Step 2.1 and Step 2.2 of
Algorithm 1.

Moreover, while our framework postprocesses both con-
tent and function words, we have tried only postprocessing
content words and leaving function words unchanged. We
discover that the experimental results are still better than the
baseline spatial approaches but worse than postprocessing
both content and function words. The reason might be that
stop words play non-trivial roles in various NLP tasks. As
all baseline spatial approaches postprocess both content and
function words, we follow this setting.

Finally, we remark that the linear model used in Algo-
rithm 1 can be straightforwardly generalized to non-linear
models. For this, we have formulated and tested Multilayer
Perceptrons (MLPs) as extensions to the linear model used
in Algorithm 1. The detailed MLP version of Algorithm 1 is
postponed to the appendix.

~
~

Experiments

We evaluate the HSR postprocessing algorithm described in
Algorithm 1 (denoted by HSR-RR as it is based on ridge
regression). We test it on three different pre-trained En-
glish word embeddings including Word2Vec® (Mikolov et

Zhttps://www.nltk.org/
*https://code.google.com/archive/p/word2vec/
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al. 2013), GloVe* (Pennington, Socher, and Manning 2014),
and Paragram® (Wieting et al. 2015). The original word vec-
tors, as well as word vectors postprocessed by ABTT (Mu
and Viswanath 2018), CN (Liu, Ungar, and Sedoc 2019),
and SB (Tang, Mousavi, and de Sa 2019), are set as base-
lines. The performances of these baselines against HSR-RR
are compared on word similarity tasks, semantic textual sim-
ilarity tasks, and downstream sentiment analysis tasks. A
statistical significance test is conducted on all experimen-
tal results to verify whether our method yields significantly
better results compared to the baselines. For ABTT, we set
d = 2 for GloVe and d = 3 for Word2Vec and Paragram as
suggested by the original authors. For CN, we fix d = 2 for
all word embeddings as suggested by the original authors.
For HSR, we fix the regularization constants 1, as = 50 for
HSR-RR. Generally, we recommend using a, ae = 50 for
HSR-RR and other HSR models. Furthermore, we construct
a Multilayer Perceptrons HSR model (denoted by HSR-
MLP), and the experimental result of HSR-MLP is shown
in the appendix.

Word Similarity

We use seven popular word similarity tasks to evaluate the
proposed postprocessing method. The seven tasks are RG65
(Rubenstein and Goodenough 1965), WordSim-353 (Finkel-
stein et al. 2002), Rare-words (Luong, Socher, and Manning
2013), MEN (Bruni, Tran, and Baroni 2014), MTurk (Radin-
sky et al. 2011), SimLex-999 (Hill, Reichart, and Korhonen
2015), and SimVerb-3500 (Gerz et al. 2016).

For each task, we calculate the cosine similarity between
the vector representation of two words, and the Spearman’s
rank correlation coefficient (Myers and Well 1995) of the
estimated rankings against the human rankings is reported
in Table 1. In the table, the result marked in bold is the best,
and the results underlined are the top three results.

From the table, we could see that while no postpro-
cessing method performs dominantly better than others,
HSR-RR has the best performance overall by performing
the best on the most number of tasks for two out of the
three word embeddings, which are Word2Vec and Paragram.
HSR-RR generally achieves the best on these five tasks:
WordSim-353, MEN, MTurk, SimLex-999, and SimVerb-
3500. Notably, HSR-RR has the best performance on the
task SimVerb-3500 for all three word embeddings, which
achieves 8.72%, 40.04%, and 1.98% improvement respec-
tively on SimVerb-3500 dataset relative to the original word
embeddings and 2.84%, 9.58%, and 1.04% increase com-
pared to the runner-up method. Since SimVerb-3500 is the
state-of-the-art task that contains the highest number of
word pairs and distinguishes genuine word similarity from
conceptual association (Hill, Reichart, and Korhonen 2015),
the result obtained on SimVerb-3500 is usually deemed to
be more telling than those of other tasks (Liu, Ungar, and
Sedoc 2019).

“https://nlp.stanford.edu/projects/glove/
Shttps://www.cs.cmu.edu/~jwieting/



Table 1: Spearman’s rank correlation coefficient of seven word similarity tasks

WORD2VEC GLOVE PARAGRAM
Orig. ABTT CN SB HSR-RR Orig. ABTT CN SB HSR-RR Orig. ABIT CN SB  HSR-RR
RG65 0.7494 07869 0.8041 0.7964 07569 07603 0.7648 0.7913 0.7850  0.7694 0.7630 0.7683 0.7594 0.7898  0.7760
WordSim-353  0.6999  0.6929 0.6992 0.6856 07059 0.7379 0.7668 0.7886 0.7115  0.7887 07302 0.7386 0.7321 0.7196  0.7338
RW 0.5997 0.5984 0.6036 0.5998  0.6033 0.5101 0.5716 0.5898 04879 05580 0.5972 0.6038 0.6006 0.5769  0.6023
MEN 07706 07929 0.7901 07888  0.7726 0.8013 0.8234 0.8339 0.7853  0.8258 07728 0.7705 07746 0.7693  0.7750
MTurk 0.6831 0.6538 0.6610 0.6846  0.6854 0.6916 07233 07116 0.6731 07074 0.6300 0.6106 0.6251 0.6147  0.6319
SimLex-999  0.4427 04629 04728 04702 04672 04076 04650 04858 03985 04728 0.6847 0.6862 0.6854 0.6878  0.6903
SimVerb-3500 03659 03792 0.3868 0.3865 03978 0.2842 0.3433 03632 02671 03980 05411 05461 0.5413 0.5389  0.5518
Table 2: Pearson correlation coefficient of 20 semantic textual similarity tasks
WORD2VEC GLOVE PARAGRAM
Orig. ABTT CN_ SB  HSR-RR Orig. ABTT CN SB HSR-RR Orig. ABTT CN  SB  HSR-RR
STS-2012-MSRpar 4178 3870 3942 4077 3442 4206 4141 4127 4L15 3249 3932 38.84 39.84 37.72 41.44
STS-2012-MSRvid 7627 7560 7532 7498 79.63 6585 67.84 6250 64.71 80.03 5634 57.65 5678 55.55 62.31
STS-2012-surprise.OnWN ~ 70.62  70.89 70.73  69.99 7127 60.74  69.48 67.87 57.02 7224 62.60 6461 6321 60.68 67.91
STS-2012-SMTeuroparl 3120 3571 3529 33.88 4032 5197 5436 5258 50.06 5160 50.64 51.64 50.63 51.34 51.92
STS-2012-surprise. SMTnews 51.07  46.24 47.34  47.10 5009 4635 4819 47.69 45.18 5441 5294 5018 52.66 54.16 53.87
CSTS-2012 5419 5343 53.62° 5334 5515 5339 5626 5438 51.62 5815 5237 5258 5262 5189 5549
STS-2013-FNWN 39.68  43.51 4340 4295 49.09 39.48 4581 4203 39.15 4647 3579 3605 3593 3435 38.00
STS-2013-OnWN 6798 7056 69.29 69.12 7557 5375 63.86 5745 52.36 7491 48.07 48.18 4823 48.28 56.57
_STS-2013-headlines 6329 6324 6362 6322 _ 63.65 6354 6670 6700 6065 6856 6443 6513 6469 6299 6690
STS-2013 5698 5910 38.77 5843 6277 5226 5879 5549 50.72 6331 2943 4979 49.62° 4834 53382
STS-2014-OnWN 74.85 7592 7527 74.43 8140 6191 7093 6643 60.36 8139 6029 6195 60.75 59.45 68.30
STS-2014-deft-forum 4130 4225 4274 42.03 4673 28.82 3890 3757 2591 4585 3517 37.60 3575 33.59 40.84
STS-2014-deft-news 6676  64.87 6545 64.97 67.88 6341 6872 69.08 61.27 70.60 6219 6373 6275 61.09 66.66
STS-2014-headlines 60.87  60.61 61.09 60.66 6093 5928 6134 6171 56.25 64.01 6084 6072 6097 60.21 62.83
STS-2014-tweet-news 7333 7513 74.87 73.66 76.00 6243 7462 7538 58.70 7509 6929 7243 70.14 6675 75.16
STS-2014-images 7744 7781 7842 7711 80.55 61.89 6940 65.81 59.03 7845 53.67 5829 54.86 51.58 65.10
CSTS-2014 " 6576 66.10 66.31° 6548 6892 5629 6399 62.66 5359 6923 5691 59.12 57.54 5545 6315
STS-2015-answers-forums ~ 52.65 5401 53.99 50.51 66.77 36.86 49.58 48.62 36.76 6546 3879 41.19 3925 3835 48.37
STS-2015-answers-students ~ 70.82 7092 71.65 69.74 7216 6277  69.46 69.68 61.84 67.38 67.52 69.46 67.96 66.80 71.98
STS-2015-belief 60.11 6191 61.62 58.10 77.08 4420 6143 5977 4119 7612 49.77 5557 5079 46.98 61.32
STS-2015-headlines 68.11 6828 68.65 68.19 69.02 6542 6890 69.20 63.25 7141 6785 6840 68.09 66.92 70.38
STS-2015-images 80.07  80.18 80.74 79.48 83.08 69.14 73.53 7143 67.81 80.58 66.55 68.29 67.08 65.55 7317
CSTS-2015 6635 67.06 67.337 6520  73.62 5568 6458 63.74 5417 7219 5810 60.58 58.63 5692 65.04
SICK 7225 7249 7240 7232 7202 66.64 6812 6642 66.03 7162 6455 6489 6478 64.05 67.07

Semantic Textual Similarity

Next, we test the sentence-level effectiveness of our pro-
posed HSR method on semantic textual similarity (STS)
tasks, which measure the degree of semantic equivalence
between two texts (Agirre et al. 2012). The STS tasks we
employ include 20 tasks from 2012 SemEval Semantic Re-
lated task (SICK) and SemEval STS tasks from 2012 to
2015 (Marelli et al. 2014; Agirre et al. 2012; 2013; 2014;
2015).

To construct the embedding of each sentence in the tasks,
we first tokenize the sentence into a list of words, then av-
erage the word embedding of all words in the list as the
vector representation of the sentence. Following Agirre et
al. (2012), we calculate the cosine distance between the two
sentence embeddings and record the Pearson correlation co-
efficient of the estimated rankings of sentence similarity
against the human rankings.

In Table 2, we present the result of the 20 STS tasks as
well as the average result each year. From the table, we could
observe that HSR-RR dominantly outperforms the original
word embedding as well as other postprocessing methods,
as the average result by year of HSR-RR is the best for all
tasks except the SICK task on Word2Vec. On average, HSR-
RR improves the Pearson correlation coefficient by 4.71%,
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7.54%, and 6.54% respectively over the 20 STS tasks com-
pared to the previously best results, and it achieves 7.13%,
22.06%, and 9.83% improvement respectively compared to
the original word embeddings.

Downstream Task: Sentiment Analysis

Since the success of intrinsic lexical evaluation tasks does
not imply success on downstream tasks, we test the perfor-
mance of HSR on four sentiment analysis tasks. The dataset
we adopt include Amazon reviews® (AR), customer reviews
(CR) (Hu and Liu 2004), IMDB movie reviews (IMDB)
(Maas et al. 2011), and SST binary sentiment classification
(SST-B) (Socher et al. 2013), which are all binary sentence-
level sentiment classification tasks. Sentiment analysis is an
important task in NLP which has been widely applied in
business areas such as e-commerce and customer service.
Similar to the STS tasks, we first tokenize the sentence,
then average the corresponding word embeddings as the vec-
tor representation of the sentence. We use a logistic regres-
sion model trained by minimizing cross-entropy loss to clas-
sify the sentence embeddings into positive or negative emo-
tions. This procedure was adopted in previous studies such

®https://www.kaggle.com/bittlingmayer/amazonreviews\
#train.ft.txt.bz2



Table 3: Five-fold cross-validation accuracy of four sentiment analysis tasks

WORD2VEC GLOVE PARAGRAM
Orig. CN ABTT SB HSR-RR Orig. CN ABTT SB HSR-RR Orig. CN ABTT SB HSR-RR
AR 0.8375 0.8338 0.8329 0.8302  0.8377 0.8441 0.8431 08444 08426  0.8454 08124 08129 08113 08124  0.8152
CR 0.7800 0.7792 0.7718 0.7726  0.7824 0.7829 0.7800 0.7808 0.7819  0.7792 0.7657 0.7649 0.7628 0.7644  0.7673
IMDB  0.8392 0.8369 0.8370 0.8281 0.8434  0.8491 0.8453 0.8493 0.8459  0.8493 07957 0.7960 0.7953 0.7938  0.7999
STS-B  0.8071 0.8062 0.8048 0.8052  0.8056 0.8044 0.8045 0.8049 0.8031  0.8053 0.7818 0.7819 0.7778 0.7813  0.7846
Table 4: P-value of one-tailed Student’s t-test of three experiments
Word Similarity Semantic Textual Similarity Sentiment Analysis
Orig. ABTT CN SB Orig. ABIT CN SB Orig. ABIT CN SB
WORD2VEC  2.51e-02  3.56e-01 3.29e-01 3.38e-01 2.92¢-03 1.12e-03 2.22e-03 1.42e-03 9.27e-02 1.35¢-03 3.84e-03  2.49e-04
GLOVE 6.85¢-03 1.83e-01 2.30e-01 7.02¢-03 2.88e-05 1.35e-03 5.49e-04 5.51e-06 4.02¢-01 4.58e-01 1.25¢-01 1.28e-01
PARAGRAM 4.86e-03 7.13e-02  1.62e-02 5.13e-02 5.35e-07 1.17e-07 5.94e-07 3.69e-07 1.23e-04 3.32¢-04 5.62e-04 1.20e-05

as Zeng et al. (2017). We report the five-fold cross-validation
accuracy of the sentiment classification results in Table 3.

From Table 3, we could observe that HSR-RR has the best
downstream-task performance among all the tested post-
processing methods. Specifically, for Paragram, HSR-RR
achieves the highest classification accuracy on all four tasks;
for Word2Vec and GloVe, HSR-RR performs the best on
three out of the four tasks.

Statistical Significance Test

To show that our proposed method yields significant im-
provement compared to the baselines, we employ the one-
tailed Student’s t-test. The p-value of the t-test of HSR-RR
against other methods for all three experiments is shown in
Table 4 in scientific notation. We use the convention that a
p-value is significant if it is smaller than 0.05, and all signif-
icant p-values are marked in bold.

From Table 4, we observe that on word similarity and
STS tasks, the improvements yielded by HSR are significant
when compared to all three original word vectors. On senti-
ment analysis tasks, the improvement on Paragram is signif-
icant. We also test the significance of improvement of results
yielded by HSR-RR with those yielded by other state-of-the-
art baseline methods (ABTT, CN, and SB). We find that, for
STS tasks, improvements against all three baseline methods
on all three word vectors are significant; for sentiment anal-
ysis, the improvements against all three baseline methods
on Word2Vec and Paragram are significant; for word simi-
larity, only two results (SB on GloVe and CN on Paragram)
are significant. While in other cases, improvements of HSR-
RR over the original word vectors and the baseline algo-
rithms are not significant, conversely, the baseline methods
and the original word vectors also fail to surpass the perfor-
mance of HSR-RR when the null hypothesis and alternative
hypothesis are switched. Therefore, we conclude that HSR-
RR yields solid improvement when compared to the original
word vectors, and it is either significantly better or on-par
with other state-of-the-art baseline methods.

We want to remark that, while statistical significance tests
are useful for algorithm comparison, it is mostly excluded in
previous word vector evaluation papers (Bullinaria and Levy
2007; Levy, Goldberg, and Dagan 2015; Faruqui et al. 2015;
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Fried and Duh 2015; Mrksic et al. 2016; 2017; Shiue and Ma
2017; Mu and Viswanath 2018; Liu, Ungar, and Sedoc 2019;
Tang et al. 2014), and there could be a valid reason for this.
As pointed out by Dror et al. (2018), the way how existing
NLP datasets are structured tends to cripple those widely
adopted significance tests: while most statistical significance
tests (e.g., t-test) assume that the test set consists of indepen-
dent observations, NLP datasets usually violate this hypoth-
esis. For instance, most STS datasets only contain sentences
from a certain source (e.g., news or image captions) and
word similarity datasets usually contain words of special-
ized types (e.g., verbs). This makes a proper significance test
quite challenging. Some NLP researchers even contend to
abandon the null hypothesis statistical significance test ap-
proach due to this hard-to-meet assumption (Koplenig 2019;
McShane et al. 2019).

Conclusion and Future Work

In this paper, we present a simple, fast-to-compute, and
effective framework for postprocessing word embeddings,
which is inspired by the recent development of causal in-
ference. Specifically, we employ Half-Sibling Regression
to remove confounding noise contained in word vectors
and to reconstruct latent, “clean” word vectors of interest.
The key enabler of the proposed Half-Sibling Regression
is the linguistic fact that function words and content words
are lexically irrelevant to each other, making them natural
“half-siblings”. The experimental results on both intrinsic
lexical evaluation tasks and downstream sentiment analysis
tasks reveal that the proposed method efficiently eliminates
noise and improves performance over the existing alterna-
tive methods on three different brands of word embeddings.

The current work has a few limitations, which we wish to
address in the future. The first limitation resides in the way
we formulate the regression. Note that, when performing the
multiple-output regression step in HSR algorithm (Step 1.1
and Step 2.1 of Algorithm 1), we do not take the correlation
of targets into account. Such correlations, however, could be
beneficial in some cases. Consider, for instance, the task of
predicting content words based on stop words (Step 1.1 of
Algorithm 1). As content words as targets are strongly corre-
lated (e.g., synonyms and antonyms), such correlations can



be further employed to facilitate the regression with well-
studied methods such as Reduced-rank regression (Ander-
son and Rubin 1949). For a survey of these multiple out-
come regression methods taking output into account, please
see Hastie, Tibshirani, and Friedman (2001), Section 3.7.

The second line of future work concerns how to use a
non-linear model for HSR more effectively. Although we
have tried neural-network-based HSR algorithms for var-
ious tasks (see the appendix for details), empirically they
bring marginally improved results, if not slightly worsened.
One hypothesis for explaining this phenomenon is that neu-
ral networks tend to be highly expressive, overfitting small
datasets easily. For future work, we plan to explore more
regularization methods which may improve the results of
neural-network-based HSR.

The third line of future work is to develop a unified frame-
work for understanding word vector postprocessing. As vari-
ous word vector postprocessing algorithms yield (sometimes
surprisingly) similar results in a few cases, it is our hope to
establish connections between these approaches in the fu-
ture. The recent work by Zhou, Sedoc, and Rodu (2019)
points toward this direction.

Last but not least, we believe that there remain ample
opportunities for using HSR in other NLP tasks and mod-
els. For instance, recently, we have observed that pre-trained
language models such as BERT (Devlin et al. 2019) start
to replace word vectors as default feature representations
for downstream NLP tasks. The HSR framework, in princi-
ple, can be incorporated in language model postprocessing
pipelines as well. We would like to explore these possibili-
ties in the future.
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