
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

A Joint Model for Definition Extraction
with Syntactic Connection and Semantic Consistency

Amir Pouran Ben Veyseh,1∗ Franck Dernoncourt,2 Dejing Dou,1 Thien Huu Nguyen1,3

1Department of Computer and Information Science, University of Oregon, Eugene, Oregon 97403, USA
2Adobe Research, San Jose, CA, USA

3VinAI Research, Hanoi, Vietnam
{apouranb, dou, thien}@cs.uoregon.edu, dernonco@adobe.com

Abstract

Definition Extraction (DE) is one of the well-known topics in
Information Extraction that aims to identify terms and their
corresponding definitions in unstructured texts. This task can
be formalized either as a sentence classification task (i.e.,
containing term-definition pairs or not) or a sequential la-
beling task (i.e., identifying the boundaries of the terms and
definitions). The previous works for DE have only focused
on one of the two approaches, failing to model the inter-
dependencies between the two tasks. In this work, we pro-
pose a novel model for DE that simultaneously performs the
two tasks in a single framework to benefit from their inter-
dependencies. Our model features deep learning architectures
to exploit the global structures of the input sentences as well
as the semantic consistencies between the terms and the def-
initions, thereby improving the quality of the representation
vectors for DE. Besides the joint inference between sentence
classification and sequential labeling, the proposed model is
fundamentally different from the prior work for DE in that the
prior work has only employed the local structures of the in-
put sentences (i.e., word-to-word relations), and not yet con-
sidered the semantic consistencies between terms and defi-
nitions. In order to implement these novel ideas, our model
presents a multi-task learning framework that employs graph
convolutional neural networks and predicts the dependency
paths between the terms and the definitions. We also seek
to enforce the consistency between the representations of the
terms and definitions both globally (i.e., increasing seman-
tic consistency between the representations of the entire sen-
tences and the terms/definitions) and locally (i.e., promoting
the similarity between the representations of the terms and the
definitions). The extensive experiments on three benchmark
datasets demonstrate the effectiveness of our approach.1

Introduction

One of the cornerstones of human knowledge that can con-
vey meaningful, concise and informative understanding of
different concepts are definitions. Due to their importance,

∗This work was done when the first author was an intern at
Adobe Research.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Source code is available at https://github.com/amirveyseh/
definition extraction.

resources such as dictionaries and glossaries are created
for both general and specific domains. However, manually
creating these resources from raw text is expensive, time-
consuming and requiring extensive domain and linguistic
knowledge. Thus, automatic definition extraction from raw
text has gained much attention from the computational lin-
guistic community, finding its applications on many down-
stream tasks (e.g., Question Answering, Knowledge Base
Completion, and Taxonomy Learning).

Formally, the task of Definition Extraction (DE) aims to
detect term-definition pairs in raw text. In a coarse-grained
setting, the goal is to classify the input sentences as defini-
tional or not (i.e., sequence classification) where a sentence
is definitional if it contains a term-definition pair. On the
other hand, in a fine-grained setting, DE aims to recognize
the terms and definitions within the sentences, usually casted
as a sequence labeling task. For instance, the sentence “The
phrase <Term>atoms and molecules</Term>is explained
in the dictionary by the expression of <Definition>building
blocks of materials</Definition>” is definitional as its
term and definition are specified by the corresponding tags.

The prior work has only formulated DE as either a se-
quence classification or sequence labeling task, ignoring the
inter-dependencies between these two tasks. This is not de-
sirable as there exist the mutual dependencies between the
two tasks for which the knowledge for one task can help to
improve the performance for the other. In particular, know-
ing the word-level labels of the words for terms and def-
initions (i.e., sequence labeling) would be sufficient to in-
fer the sentence level labels (i.e., sentence classification) as
the latter task is a simplified version of the former. On the
other hand, predicting the sentence level label can also im-
prove the knowledge of the models about the different tem-
plates/patterns to express/connect terms and definitions in
text that would be helpful to recognize the boundaries of the
terms and definitions. Consequently, in this paper, we pro-
pose to simultaneously predict the sentence labels and word-
level labels for terms and definitions in the sentences based
on deep learning to benefit from the inter-dependencies be-
tween the two tasks. To the best of our knowledge, this is
the first work to jointly perform sequence classification and
sequence labeling for DE in the literature.

9098

The recent works have shown that structure information
available in dependency parse trees can help to improve the
performance of deep learning models for DE due to their
ability to capture the head-modifier relations between words
in the input sentences (Anke and Schockaert 2018). How-
ever, despite such performance gain, the application of the
dependency trees in the previous work for DE is only lim-
ited to the local structures (i.e., the word-by-word relations
of the trees), ignoring the global structure of the input sen-
tences (i.e., whole dependency trees). Such global structures
of the sentences are useful for DE as they can identify the
important context words for the terms and definitions in the
sentences (e.g., via the dependency paths between terms and
definitions). These contextual information (e.g., the words
“explained”, “by”, and “expression” in the above example)
would help to provide better evidences to distinguish defi-
nitional sentences (i.e., for the sequence classification task)
and recognize the boundaries for the terms and definitions
(i.e., for the sequence labeling task). In order to address the
local structure issue in the previous work for DE, in this
work, we propose to explicitly model the whole structures of
the sentences to better exploit the dependency trees for DE.
To this end, we employ Graph Convolutional Neural Net-
work (GCN) to obtain the structure-aware representations
for the words and the input sentences based on the whole de-
pendency trees to perform DE in this work. Afterwards, in a
multi-task learning framework, in addition to the DE tasks,
we seek to predict which words in the sentences belong to
the dependency paths between the terms and the definitions
during the training process of the models.

Another issue of the previous work on DE is that they
fail to exploit the semantic consistency between the terms,
the definitions and the entire sentences containing such el-
ements. In particular, in the sentences that define terms and
definitions, the definitions are in general the detailed expla-
nations or representation of the terms while the combina-
tions of the terms and definitions would constitute the major
information of the entire sentences needed for the DE tasks.
Consequently, we expect that if a deep learning model can
identify the terms and definitions well, it should be able to
achieve some level of similarity or consistency between the
representations for the terms, the definitions and the entire
sentences. In order to exploit this intuition, in this work, we
propose to introduce explicit constraints to promote the sim-
ilarity of such representations into the overall loss function
of the models for DE. Specifically, we consider both the lo-
cal and global semantic consistencies in this work.

First, in the local semantic consistency, it is a natural intu-
ition that the semantics of the terms and their definitions are
similar to each other. In this work, we argue that such intu-
ition can be used as an inductive bias to improve the repre-
sentations learned by deep learning for DE. To this end, we
propose to extensively employ this intuition by introducing
both direct and indirect constraints to promote the similar-
ity/consistency between the representations of the terms and
definitions. In the direct constraint, we seek to increase the
dot product of the term and definition representations in the
overall loss function. The indirect constraint, on the other
hand, achieves the semantic relatedness between the terms

and the definitions by ensuring that the representations of
the definitions are more similar to the representations of the
words in the terms than those for the other words in the sen-
tences. This is implemented via a discriminator that learns to
predict the similarity scores between the representation vec-
tors of the definitions and the other words in the sentences.

Second, for the global semantic consistency, we learn
the representations for the entire sentences and the term-
definition pairs that are then constrained to be similar to
each other. The rationale is the sentences might involve some
words and/or phrases that are not directly related to the def-
initions, the terms and their connections (i.e., the important
context words between terms and definitions). The typical
representations of the entire sentences might thus incur some
noisy information for DE due to the modeling of such irrel-
evant words/phrases. The consistency constraints with the
term-definition pairs would help to restrict the topical infor-
mation in the sentence representations to mainly focus on
the definitions and terms for DE. However, as the sentence
representations might need to additionally involve the infor-
mation about the important context words between the terms
and the definitions, we only attempt to impose a mild and
indirect consistency constraint for the sentence and term-
definition representations in this case. In particular, instead
of directly enforcing the representation similarity, we only
seek to ensure that the representations for the sentences can
be used to predict the same latent labels as those predicted
by the representations for the term-definition pairs.

Our extensive experiments in multiple DE benchmark
datasets prove the effectiveness of our approach, yielding
the state-of-the-art performance for such datasets over both
the sequence classification and sequence labeling settings.
In summary, the contributions of this work include: (i) a new
joint model to perform sequence labeling and sequence clas-
sification for DE, (ii) a novel method to exploit the global
syntactic structures for DE, (iii) multiple consistency en-
forcement techniques to achieve the local and global seman-
tic consistency for terms, definitions, and sentences, and (iv)
the state-of-the-art performance on multiple DE datasets.

Related Work
We can categorize the previous work on DE into three
categories: 1) the rule-based approach: the first attempts
in DE have defined linguistic rules and templates to cap-
ture patterns to express the term-definition relations (Kla-
vans and Muresan 2001; Cui, Kan, and Chua 2004; 2005;
Fahmi and Bouma 2006). While the rule-based approach is
intuitive and has high precision, it suffers from the low re-
call issue; 2) the feature engineering approach: this approach
address the low recall issue by relying on the statistical ma-
chine learning models (i.e., SVM and CRF) with carefully
designed features (i.e., syntax and semantics) to solve DE
(Jin et al. 2013; Westerhout 2009). However, this approach
cannot be adapted to new domains efficiently as the designed
features might be unavailable or less effective in the new do-
mains; 3) the deep learning approach: similar to many natu-
ral language processing (NLP) tasks, deep learning has been
recently shown as the state-of-the-art approach for DE due
to its ability to effectively exploit the word embeddings via

9099

multiple layers of neural networks. In a recent work, (Anke
and Schockaert 2018) present a deep learning model for
coarse-grained DE that leverages the representation learning
capacity from both convolutional neural networks (CNN)
and Long-short term memory networks (LSTM). The head-
modifier relations of the dependency trees are employed in
this work to improve the DE performance.

The DE task is also related to the popular tasks of named
entity recognition (NER) (i.e., both need to solve a se-
quence labeling problem) (Ando and Zhang 2005; Ratinov
and Roth 2009; Florian et al. 2003; Chiu and Nichols 2016;
Nguyen et al. 2016b) and relation extraction (RE) (i.e.,
both need to consider the relations/connections between
two mentions in text) (Zhou et al. 2005; Zeng et al. 2014;
Nguyen and Grishman 2015a; Nguyen, Plank, and Grish-
man 2015c; Miwa and Bansal 2016; Nguyen and Grishman
2016d) in NLP. However, DE is different from NER in that
the terms and definitions in DE are in general longer and
involve richer semantic structures than the names and men-
tions in NER. Also, in DE, the terms and definitions are usu-
ally not known in advance while the two entity mentions in
RE are often given, causing the essential difference for such
problems.

Model

Problem Definition Formally, the problem of Definition
Extraction (DE) is described as follows. First, for the se-
quence labeling task, given an input sentence/sequence
W = w1, w2, . . . , wN (N is the number of words in the sen-
tence and wi is the i-th word/token in the sentence), we need
to assign a label li to each word wi in the sentence so the re-
sulting label sequence L = l1, l2, . . . , lN would reveal the
terms and definitions W (i.e., word-level prediction). In this
work, we use the BIO tagging schema to encode the label
li that basically defines the five possible word labels for the
terms and definitions, i.e.: B-Term, I-Term, B-Definition,
I-Definition, and O (Others). Second, for the sequence clas-
sification task, we need to make a binary decision l for the
overall sentence to determine if the sentence contains any
term-definition pair or not (i.e., sentence-level prediction).

The model in this work is trained in a multi-task learning
framework where the word-level predictions (i.e., assigning
labels for all the words in the sentence for sequence label-
ing) and the sentence-level prediction are done simultane-
ously. The major modules in the proposed model include:
sentence encoding, sequence labeling, sequence classifica-
tion, syntactic connection, and semantic consistency.

Sentence Encoding In order to prepare the input sentence
W for the following neural computation, we first transform
each word wi ∈ W into a real-valued vector. In this work,
we use the concatenation of the pre-trained word embedding
of wi and the embedding vector for its part of speech (POS)
in the sentence (i.e., POS embedding) to constitute the vec-
tor ei to represent wi. Both the POS embeddings (initialized
randomly) and the pre-trained word embeddings would be
optimized during training in this work. This would convert
the input sentence W into a sequence of representation vec-
tor E = e1, e2, . . . , eN .

In the next step, to enrich the word representations with
the contextualized information in W , we feed E into a bidi-
rectional LSTM (BiLSTM) network, producing a hidden
vector sequence H = h1, h2, . . . , hN as the output. Each
vector hi is the concatenation of the hidden vectors from the
forward and backward LSTM networks at position i to cap-
ture the contextualized information for wi.

Due to the sequential order to process the words in the
sentence of the BiLSTM layer, a hidden vector hi ∈ H
for wi would tend to encode the context information of the
neighboring words of wi (i.e., with closer distances) more
intensively than those for the other words (i.e., with far-
ther distances). This is not desirable as the important con-
text words to reveal the underlying semantics of wi are not
necessary its neighbors and might be distributed at farther
positions in the sentence. It is thus desirable to identify such
important context words for each word wi ∈ W to com-
pute more effective representation vectors for the words. To
this end, we propose to use the whole dependency tree of W
as a way to link the words in the sentence to their impor-
tant context words. A GCN layer (Kipf and Welling 2017;
Xu et al. 2018) is then applied over this dependency tree
structure to enrich the representation vectors for the words
in the sentence with the information from the important con-
text words.

In particular, the GCN module involves multiple layers
where each layer consumes a sequence of hidden vectors
and return another hidden vector sequence as the output.
Let Ĥt = ĥt

1, ĥ
t
2, . . . , ĥ

t
N be the input vector sequences for

the t-th GCN layer. The output vector sequence Ĥt+1 =

ĥt+1
1 , ĥt+1

2 , . . . , ĥt+1
N of the t-th layer is then computed by:

ĥt+1
i = ReLU(Wth̄

t+1
i), h̄t+1

i = Σj∈N(i)ĥ
t
j/deg(i). Here,

N(i) is index set of the neighbors of wi (including i itself),
Wt is the weight matrix for t-th layer, and deg(i) is the de-
gree of wi in the dependency tree. The biases in the equa-
tions are omitted for brevity in this work.

In this work, we employ two layers for the GCN mod-
ule (i.e., fine-tuned on the development datasets). The input
for the first GCN layer is the sequence of hidden vectors
H = h1, h2, . . . , hN from BiLSTM while the output vec-
tor sequence of the last GCN layer (i.e., the second layer)
is denoted by Ĥ = ĥ1, ĥ2, . . . , ĥN for convenience. The
representation vector in ĥi ∈ Ĥ would encode rich contex-
tualized context information for wi that is augmented with
the dependency structure for the important context words in
W .

Sequence Labeling The goal of the sequence labeling
module is to assign a label for each word in the sentence to
encode the boundaries of the terms and definitions (if any).
In particular, for each word wi ∈ W , we use the concate-
nation h′

i of its BiLSTM output vector hi and GCN output
vector ĥi (i.e., h′

i = [hi, ĥi]) as the feature vector to perform
the label prediction for wi. Essentially, based on the feature
vector h′

i, we first transform it into a score vector Si whose
dimensions correspond to the possible word labels/tags (i.e.,
the five BIO tags) and quantify the possibility for wi to re-
ceive the corresponding labels: Si = WSh

′
i where WS is the

9100

trainable weight matrix and |Si| = 5.
In the next step, we feed the score vectors Si for the words

wi into a conditional random field (CRF) layer to compute
the scores to quantify the possibilities of the possible label
sequences l̂1, l̂2, . . . , l̂N for the words in W . The purpose of
this CRF layer is to capture the dependencies between the
BIO labels/tags that have been shown to be useful for the
other sequence labeling tasks in NLP (Lafferty, McCallum,
and Pereira 2001). In particular, the score for a possible label
sequence l̂1, l̂2, . . . , l̂N for W would be:

Score(l̂1, l̂2, ..., l̂N |W) = ΣN
j=1

(
Sl̂j

+ Tl̂j−1,l̂j

)
(1)

where T is the trainable transition matrix for the BIO
labels. For CRF, we compute the normalization score to
form the probability distribution Plabeling(l̂1, l̂2, ..., l̂N |W)
for the possible label sequences for W via dynamic pro-
gramming (Lafferty, McCallum, and Pereira 2001). We use
the negative log-likelihood Llabeling of the input example as
the objective function for this sequence labeling module:

Llabeling = − logPlabeling(l1, l2, . . . , lN |W) (2)

where L = l1, l2, . . . , lN is the golden label sequence for
W . Finally, the Viterbi decoder is employed to infer the se-
quence of labels with highest score for the input sentence.

Sequence Classification In this module, we need to pre-
dict the label for the input sentence W to indicate whether
W contains a pair of a term and definition or not (i.e.,
a binary decision). For this task, we first obtain a rep-
resentation vector ĥS for the input sentence by aggregat-
ing the syntax-enriched and context-aware vectors Ĥ =

ĥ1, ĥ2, . . . , ĥN from GCN with the max-pooling operation:
ĥS = Max Pooling(ĥ1, ĥ2, . . . , ĥN).

As the vectors in Ĥ are obtained via GCN over the whole
dependency tree of W and BiLSTM vectors, we expect that
their aggregated vector ĥS would be able to capture the
most important context features for the sequence classifi-
cation task via max pooling. Consequently, ĥS would be
fed into a 2-layer feed forward neural network with a soft-
max layer in the end to compute the probability distribution
Pclassification(.|W) over the two possibilities for the label
of W (i.e., definitional or not). This probability distribution
would be used for both prediction and training. We use also
negative log likelihood as the loss function Lclassification

for the sequence classification module in this work:

Lclassification = − logPclassification(l|W) (3)

where l is the true definitional label for W .

Syntactic Connection between Term and Definition
The GCN module in the encoding is one way to exploit the
whole dependency structure of the input sentence to infer
effective representations for the labeling and classification
tasks. However, the application of GCN for the dependency
structure is agnostic to the positions of the terms and defi-
nitions as well as the relevant context words to connect the
terms and the definitions in the sentences. In this work, we

argue that if the representation vectors from the GCN mod-
ule are trained to be more aware of the terms and the defini-
tions in the sentences, they can be more customized for the
DE tasks and achieve better performance. Motivated by this
idea, from the dependency tree and the term and definition
in W , we identify the words along the shortest dependency
path SP between the term and the definition in the sentence.
This information allows us to assign a binary label di for
each word wi ∈ W where di = 1 if wi belong to the depen-
dency path and 0 otherwise. Afterward, we encourage the
GCN vectors Ĥ = ĥ1, ĥ2, . . . , ĥN to be aware of the terms
and definitions by using the vectors ĥi to predict the mem-
bership on the dependency path SP of wi. In particular, the
GCN vectors ĥi would be consumed by a 2-layer feed for-
ward neural network with a softmax in the end to obtain the
distribution P dep

i (.|W) over the two possibilities of wi to
belong to SP or not. We would then optimize the negative
log-likelihood Ldep for the dependency path prediction task
based on the distributions P dep

i (.|W) and the ground-truth
sequence label D = d1, d2, . . . , dN for the words in W :

Ldep = −
N∑

i=1

logP dep
i (di|W) (4)

Note that as the term and definition in W might have mul-
tiple words, we use the lowest node among the common an-
cestors of the pairs of words in the term and definition to
determine the dependency path SP . For the sentences that
do not contain any pair of terms and definitions, we simply
set di = 0 for every word in the sentences.

Semantic Consistency As presented in the introduction,
we seek to enforce the semantic consistency between the
representations of the terms, definitions, and the entire sen-
tences to improve the representations induced by the model
for DE. In this work, we achieve this goal at both the local
and global levels.

The Local Level
At the local level, we aim to ensure that the representa-

tions of the terms and the definitions are similar to each
other due to their reference to the same concepts in prac-
tice. In order to implement this idea, we first compute the
representations for the term and definition in W using the
max pooling operation. In particular, let startT and endT
be the indexes of the first and last token for the term in W
respectively (i.e., 1 ≤ startT ≤ endT ≤ N). Similarly, let
startD and endD denote the starting and ending indexes of
the words in the definition in W (if any). The representations
hT and hD for the term and definition in W are then com-
puted by: hT = Max Pooling(hi|startT ≤ i ≤ endT)
and hD = Max Pooling(hi|startD ≤ i ≤ endD).

Note that we use the BiLSTM output vectors hi instead
of the GCN vectors ĥi to compute semantic representations
for the terms and representations in this case as we would
like to avoid the confusion between semantics and syntax
for the GCN vectors Ĥ that have been intended to encode
rich syntactic context information for W .

As the terms and the definitions are naturally related, the
semantic consistency between hT and hD would be exten-

9101

sively exploited in this work. In particular, we would en-
force the similarity between hT and hD both directly and
indirectly in this work. First, for the direct enforcement, we
attempt to maximize the dot product between the two vec-
tors in the loss function:

L1
sem = −hThD (5)

Second, in the indirect enforcement, we seek to improve the
consistency/similarity of hT and hD by ensuring that hD is
more similar to the representation vectors for the words in
the term (i.e., hi for startT ≤ i ≤ endT) than the vec-
tors for the words in the sentence (i.e., hi for i �∈ I =
[startT , endT] ∪ [startD, endD]). To this goal, we employ
a discriminator DI that can produce a similarity score be-
tween hD and the representation vectors for the other words
in the sentence. In particular, for some word wi, the input for
DI is the concatenation of its BiLSTM representation vec-
tor hi and the definition representation hD (i.e., [hi, h

D]).
DI would feed [hi, h

D] into a 2-layer feed forward neural
network that uses the sigmoid activation function σ and pro-
duces a single scalar ŝi to represent the similarity of hi and
hD (0 ≤ ŝi ≤ 1): ŝi = DI(hi, h

D). Afterward, in the train-
ing process, the model would be tasked to increase the sim-
ilarity scores between hD and the representation vectors for
the words in the term, and decrease the similarity between
hD and the vectors for the other words. The loss function in
this case would be:

L2
sem =

endT∑

i=startT

logDI(ŝi) +
∑

i �∈I

log(1−DI(ŝi)) (6)

The Global Level
At the global level, we attempt to enforce the consistency

between the representation vectors for the whole sentence
and the term-definition pair in W . The goal is to encour-
age the representation vector for the sentence W to mainly
focus on the information about the term and definition pre-
sented in the sentence, thereby reducing the effect of the ir-
relevant words in the representation vector of W for the DE
problems. Similar to the local level, we also start by comput-
ing the representation vectors hS and hTD for the sentence
and the term-definition pair respectively via the max pool-
ing operation: hS = Max Pooling(h1, h2, . . . , hN) and
hTD = Max Pooling(hi|i ∈ I).

We can also follow the direct approach in the local level
to promote the consistency between hS and hTD. However,
as hS might need to involve the information for the impor-
tant context words between the term and definition in W (in
addition to the information about the term and the defini-
tion themselves), the direct consistency with the dot product
might be too strict that can eliminate the important informa-
tion about the context. Consequently, in this global level, we
only aim to introduce a mild and indirect consistency con-
straint for hS and hTD. In particular, in a latent label pre-
diction framework, we ensure that hS can be used to predict
the same latent label as the one predicted by hTD, implic-
itly requiring hS to maintain the most important information
in hTD. In order to implement this idea, we select a fixed
number U of latent labels. Afterward, we feed hS and hTD

into a feed forward neural network with the softmax layer
in the end to obtain the probability distributions P sem

S (.|W)
and P sem

TD (.|W) (respectively) over the U latent labels. We
would then obtain the latent label lTD predicted by hTD via
the argmax function: lTD = argmaxyP

sem
TD (y|W).

In the next step, lTD would be used as the ground-truth la-
tent label to compute the negative log-likelihood L3

sem based
on the P sem

S (.|W) distribution that would be optimized in
the training process:

L3
sem = − logP sem

S (lTD|W) (7)

To summarize, the total loss for the semantic consistency for
DE would be: Lsem = aL1

sem + bL2
sem + cL3

sem.
Finally, the overall loss to train the model in this work

would be: Lall = αLlabeling + βLclassification + γLdep +
ηLsem where a, b, c, α, β, γ, and η are the trade-off param-
eters to be tuned on the development datasets.

Experiments

Dataset & Hyper Parameters

We evaluate our model on three benchmark datasets for DE:
•WCL: Word Class Lattices (WCL) was introduced by

(Navigli and Velardi 2010a). It consists of 1,871 definitional
and 2,847 non-definitional sentences from Wikipedia. The
term and definitions of WCL belong to the general domain.
•W00: This dataset is contributed by (Jin et al. 2013).

It has 731 definitional and 1454 non-definitional sentences
from the ACL-ARC anthology. The definitions in W00 are
from the scientific domain (i.e., the NLP papers).
•DEFT: This is a recently released dataset for DE (Spala

et al. 2019). DEFT consists of two categories of defini-
tions: a) Contracts: involving 2,433 sentences from the 2017
SEC contract filing with 537 definitional and 1906 non-
definitional sentences. Besides terms and definitions, this
corpus has an additional type qualifier. It indicates the
words/phrases specifying the conditions, dates or locations
in which the definitions are valid for the terms. We also
use the BIO tagging schema for this type. 2) Textbook: in-
volving 21,303 sentences from the publicly available text-
books in different domains, including biology, history, and
physics. This corpus contains 5,964 definitional and 15,339
non-definitional sentences.

For all the datasets, we use the standard data splits to en-
sure a comparable comparison with the prior work. We fine
tune the model parameters on the validation set of the DEFT
Contract dataset and fix the detected parameters to train and
evaluate the models on the other datasets for consistency.
The parameters we found include: 50 dimensions for the
POS embeddings; 200 dimensions for the LSTM and GCN
hidden vectors and all the feed forward neural networks in
the model; a = 1, b = 1, c = 1, α = 1, β = 10, γ = 1
and η = 1 for the trade-off parameters; U = 3 for the latent
labels in the semantic consistency module; and the learning
rate of 0.003 for the Adam optimizer. We use the pre-trained
word embeddings GloVe with 300 dimensions from (Pen-
nington, Socher, and Manning 2014) to initialize the model.
Finally, to assess how well our model could benefit from the

9102

WCL W00 Textbook Contract
P R F1 P R F1 P R F1 P R F1

DefMiner (Jin et al. 2013) 82.0 78.5 80.5 52.5 49.5 50.5 - - - - - -
LSTM-CRF (Li, Xu, and Chung 2016) 83.4 80.5 81.7 57.1 55.9 56.2 46.7 47.5 47.0 63.2 73.5 67.4
GCDT (Liu et al. 2019) 82.5 81.3 81.2 57.9 56.6 57.4 45.8 48.9 47.0 63.5 73.2 66.7
CVT (Clark et al. 2018) 83.0 82.3 82.5 59.3 57.9 58.9 46.1 49.2 47.3 64.1 74.5 68.2
Ours 85.1 81.9 83.3 60.9 60.3 60.6 52.8 48.7 50.6 66.1 76.1 71.7

Ours + BERT 87.1 83.8 85.3 66.9 67.3 66.9 53.8 54.5 54.0 65.7 74.3 68.2

Table 1: Sentence Labeling Performance. The WCL and W00 results are based on the 10-fold cross validation performance
while the results for DEFT (i.e., Textbook and Contract) are obtained on the test sets. The proposed model is significantly better
the baselines (p < 0.01).

pre-trained contextualized word embeddings, we also per-
form an additional experiment where BERT (Devlin et al.
2019) is used to initialize the word embeddings in the model.

Results

Sequence Labeling Performance This section evaluates
the models on the sequence labeling task for DE. As the
evaluation metrics, following previous work on word-level
DE, we use macro averaged Precision, Recall and F1 score
of all distinct classes (i.e., Term and Definition in WCL
and W00, and Term, Definition and Qualifier in DEFT). We
compare the proposed model with the following baselines:

DefMiner: A feature engineering model for DE, using 12
hand crafted linguistic features in (Jin et al. 2013). DefMiner
is the state-of-the-art feature-based model for sequence la-
beling DE on the WCL and W00 datasets.

LSTM-CRF A deep learning model for sequence label-
ing for DE based on LSTM and CRF (Li, Xu, and Chung
2016).

GCDT: A very recent deep learning method for sequence
labeling (Liu et al. 2019). GCDT enriches the pre-trained
word embeddings with the representations of the sentence
and the character-based word embeddings for an LSTM-
based decoder.

CVT: A recent state-of-the-art deep learning model for
the general sequence labeling problem that enriches the par-
tial representations of the input sentences with the prediction
from the full representation (Clark et al. 2018). Essentially,
CVT employs the predictions obtained from the full repre-
sentation of the input as the golden labels to train auxiliary
models to exploit partial representations of the input (e.g.,
only the forward LSTM instead of BiLSTM). We use the
released implementation of CVT to evaluate it on the DE
datasets in this work for a fair comparison.

Table 1 shows the performance of the models on all the
four datasets The most important observation from the ta-
ble is that the proposed model significantly outperform the
baseline models across different matrices (only except the
recall in the WCL dataset). The performance gap is substan-
tial on the Textbook and Contract datasets (i.e., up to 3.3%
improvement on the absolute F1 score over the second best
system CVT), clearly demonstrating the effectiveness of the
proposed model in this work. This table also shows that our
model can benefit from the contextualized embeddings (e.g.,
BERT (Devlin et al. 2019)) as BERT can significantly im-
prove the proposed model over three out of four datasets.

P R F1
WCL (Navigli and Velardi 2010b) 98.8 60.7 75.2
DefMiner (Jin et al. 2013) 92.0 79.0 85.0
B&DC (Boella et al. 2014) 88.0 76.0 81.6
E&S (Espinosa-Anke et al. 2016) 85.9 85.3 85.4
LSTM-POS (Li, Xu, and Chung 2016) 90.4 92.0 91.2
SA (Anke and Schockaert 2018) 94.2 94.2 94.2
Ours 99.7 99.4 99.5

Table 2: Sequence classification performance on WCL. The
results are based on the 10-fold cross validation with the
same data splits.

Sequence Classification Performance This section eval-
uates the models on the sentence classification task for DE.
Due to its popularity in the DE literature for this setting, we
first report the performance of the models on the general do-
main dataset WCL. The following baselines are chosen for
comparison in this dataset:

Feature engineering models: These models perform the
classification using the hand designed features from the
input text (i.e., WCL (Navigli and Velardi 2010b) and
DefMiner (Jin et al. 2013)).

Structure based models: These models benefit from
the structure information in the given sentence to perform
classification (i.e., B&DC (Boella et al. 2014) and E&S
(Espinosa-Anke et al. 2016)).

Deep learning models: These models employ deep learn-
ing architectures (e.g., LSTM and CNN) for classification
(i.e., LSTM-POS (Li, Xu, and Chung 2016) and SA (Anke
and Schockaert 2018)). SA is the state-of-the-art model for
sequence classification DE on WCL and W00 datasets.

The performance of the models is shown in Table 2. It is
clear from the table that the deep learning models are gener-
ally better than the feature engineering and structure-based
models with large performance gap. Among the deep learn-
ing models, the proposed model significantly outperforms
the other models (p < 0.01) (i.e., up to 5% improvement on
the absolute F1 score over SA), thereby further confirming
the advantage of the proposed model for DE in this work.

Regarding the W00 and DEFT datasets for the sequence
classification setting, we compare the proposed model with
the state-of-the-art SA model in (Anke and Schockaert
2018) The models’ performance is presented in Table 4,
clearly showing that the proposed model is significantly su-
perior to SA over different metrics and datasets.

9103

Textbook Contract
P R F1 P R F1

Full Model 52.8 48.7 50.6 66.1 76.1 71.7
Full - SC 50.5 47.8 48.8 65.0 73.8 68.5
Full - GCN 51.1 47.3 48.8 65.0 74.3 68.5
Full - DPP 50.3 46.9 48.1 64.2 74.2 68.2
Full - DLSC 50.9 47.2 49.6 66.2 75.6 70.5
Full - ILSC 50.9 47.8 49.8 65.8 74.1 69.6
Full - GSC 51.2 47.5 49.0 65.2 74.5 69.1

Table 3: Sequence labeling performance for the ablation
study.

W00 Textbook Contract
P R F1 P R F1 P R F1

SA 52.0 67.6 57.4 70.1 57.8 64.2 83.3 84.9 84.1
Ours 67.0 68.0 67.2 75.0 66.1 70.3 88.1 95.6 91.7

Table 4: The sequence classification performance of the
models on W00, Textbook, and Contract.

Analysis

Ablation Study We have seven major components of the
model in this work, i.e., sequence labeling, sequence classi-
fication (SC) (i.e., Equation 3), the graph convolutional neu-
ral networks (GCN), dependency path prediction (DPP) for
the syntactic connection (i.e., Equation 4), the direct and lo-
cal semantic consistency (DLSC) (i.e., Equation 5), the in-
direct and local semantic consistency (ILSC) (i.e., Equation
6), and the global semantic consistency (GSC) (i.e., Equa-
tion 7). Considering sequence labeling as the main DE task
(due to its more challenging nature for DE) , we exclude the
other six components from the proposed model one by one
to evaluate their contribution to the overall model. Table 3
presents the performance of the models on the test sets of
Textbook and Contract, the two largest datasets in this work.

As we can see from the table, all the proposed compo-
nents in the model are necessary for the sequence label-
ing setting of DE as removing any of them would hurt the
model’s performance significantly on both Textbook and
Contract. Specifically, the removal of the sequence classi-
fication module SC would reduce the F1 scores by 1.8%
and 3.2% on the Textbook and Contract datasets respec-
tively, thus demonstrating the benefit of the jointly inference
for sequence labeling and sequence classification for DE in
this work. Among the semantic consistency constraints, the
global consistency (i.e., GSC) seems more important than
the local consistency (i.e., DLSC and ILSC) due to the larger
performance reduction caused by GSC.

Interestingly, the dependency path prediction (i.e., DPP)
seems to contribute the most to the performance of the pro-
posed model as its absence would lead to the largest per-
formance loss of the model (i.e., a F1 reduction of 2.5%
on Textbook and 3.5% on Contract). The goal of DPP is to
capture the important context words between the terms and
definitions that might be far away from each other via the
dependency structures. As the GCN also relies on the de-
pendency structures to model the syntactically neighboring
context words at each layer, a natural question is whether we
can replace DPP with a deeper GCN model (i.e., more lay-

Textbook Contract
P R F1 P R F1

Full Model 52.8 48.7 50.6 66.1 76.1 71.7
Full - DPP (2-layer GCN) 51.1 47.3 48.8 65.0 74.3 68.5
Full - DPP (3-layer GCN) 50.4 47.1 48.5 64.8 74.1 68.0
Full - DPP (4-layer GCN) 49.2 46.9 48.0 64.6 73.8 67.3

Table 5: The model’s performance with different numbers of
layers for GCN when DPP is excluded.

Textbook Contract
P R F1 P R F1

B-Term 68.1 57.5 62.4 84.0 93.2 88.4
I-Term 60.6 52.3 56.1 85.5 94.3 89.6
B-Definition 62.8 57.0 59.8 62.8 67.4 65.0
I-Definition 65.6 60.6 63.0 78.5 88.4 83.2

Table 6: Per class performance on Textbook and Contract
datasets of DEFT corpora.

ers) to increase the dependency coverage (i.e., more hops)
for each word and implicitly encode the dependency paths
between the terms and definitions. Consequently, we eval-
uate the performance of the proposed model when DPP is
eliminated, but more layers of GCN are applied in Table
5 (on the Textbook and Contract test sets). As we can see
from the tables, when the DPP component is not incorpo-
rated, simply increasing the depth of the GCN module is not
sufficient to model the dependency paths between the terms
and definitions (i.e., the performance of the model in such
cases are significantly worse than those of the initially pro-
posed model). This clearly demonstrates the benefits of the
dependency path prediction proposed in this work for DE.

Per Class Performance We study the per class perfor-
mance of the proposed model for terms and definitions
in this section. In particular, Table 6 reports the preci-
sion, recall and F1 score per class (i.e, B-Term, I-Term, B-
Definition, and I-Definition) of the model on the Textbook
and Contract test sets. In general, we see that extracting
terms is more manageable than definitions on both Text-
book and Contract due to the better performance of B-Term
over B-Definition and I-Term over I-Definition (except for
I-Term vs I-Definition on Textbook). This is reasonable as
definitions are often presented in much more complicated
expressions than terms.

Conclusion

We introduce a novel model for the problem of definition
extraction that presents a multi-task learning framework to
jointly perform sequence classification and sequence label-
ing for this problem based on deep learning. In order to
improve the representations learned by the model, we pro-
pose several mechanisms to exploit the whole dependence
structures of the input sentences and the semantic consis-
tency between the terms, the definitions and the sentences.
We achieve the state-of-the-art performance on four bench-
mark datasets.

9104

Acknowledgments

This work has been supported in part by Vingroup Innova-
tion Foundation (VINIF) in project code VINIF.2019.DA18,
IARPA BETTER, the NSF grant CNS-1747798 to the IU-
CRC Center for Big Learning, and Adobe Research Gift.

References

Ando, R., and Zhang, T. 2005. A high-performance semi-
supervised learning method for text chunking. In ACL.
Anke, L. E., and Schockaert, S. 2018. Syntactically aware
neural architectures for definition extraction. In NAACL-
HLT.
Boella, G.; Di Caro, L.; Ruggeri, A.; and Robaldo, L. 2014.
Learning from syntax generalizations for automatic seman-
tic annotation. Journal of Intelligent Information Systems
43(2):231–246.
Chiu, J. P., and Nichols, E. 2016. Named entity recognition
with bidirectional LSTM-CNNs. In TACL.
Clark, K.; Luong, M.-T.; Manning, C. D.; and Le, Q. V.
2018. Semi-supervised sequence modeling with cross-view
training. In EMNLP.
Cui, H.; Kan, M.-Y.; and Chua, T.-S. 2004. Unsupervised
learning of soft patterns for generating definitions from on-
line news. In WWW.
Cui, H.; Kan, M.-Y.; and Chua, T.-S. 2005. Generic soft pat-
tern models for definitional question answering. In SIGIR.
ACM.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of deep bidirectional transformers for
language understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), 4171–4186. Minneapo-
lis, Minnesota: Association for Computational Linguistics.
Espinosa-Anke, L.; Carlini, R.; Saggion, H.; and Ronzano,
F. 2016. Defext: a semi supervised definition extraction tool.
arXiv preprint arXiv:1606.02514.
Fahmi, I., and Bouma, G. 2006. Learning to identify defini-
tions using syntactic features. In Proceedings of the Work-
shop on Learning Structured Information in Natural Lan-
guage Applications.
Florian, R.; Ittycheriah, A.; Jing, H.; and Zhang, T. 2003.
Named entity recognition through classifier combination. In
CoNLL-2003.
Jin, Y.; Kan, M.-Y.; Ng, J.-P.; and He, X. 2013. Mining
scientific terms and their definitions: A study of the acl an-
thology. In EMNLP.
Kipf, T. N., and Welling, M. 2017. Semi-supervised classi-
fication with graph convolutional networks. In ICLR.
Klavans, J. L., and Muresan, S. 2001. Evaluation of the
definder system for fully automatic glossary construction. In
Proceedings of the AMIA Symposium, 324. American Med-
ical Informatics Association.

Lafferty, J.; McCallum, A.; and Pereira, F. 2001. Condi-
tional random fields: Probabilistic models for segmenting
and labeling sequence data. In ICML.
Li, S.; Xu, B.; and Chung, T. L. 2016. Definition extraction
with lstm recurrent neural networks. In Chinese Computa-
tional Linguistics and Natural Language Processing Based
on Naturally Annotated Big Data.
Liu, Y.; Meng, F.; Zhang, J.; Xu, J.; Chen, Y.; and Zhou,
J. 2019. GCDT: A global context enhanced deep transition
architecture for sequence labeling. In ACL.
Miwa, M., and Bansal, M. 2016. End-to-end relation ex-
traction using LSTMs on sequences and tree structures. In
ACL.
Navigli, R., and Velardi, P. 2010a. Learning word-class
lattices for definition and hypernym extraction. In ACL.
Navigli, R., and Velardi, P. 2010b. Learning word-class
lattices for definition and hypernym extraction. In ACL.
Nguyen, T. H., and Grishman, R. 2015a. Relation extrac-
tion: Perspective from convolutional neural networks. In
Proceedings of the 1st NAACL Workshop on Vector Space
Modeling for NLP (VSM).
Nguyen, T. H., and Grishman, R. 2016d. Combining neural
networks and log-linear models to improve relation extrac-
tion. In Proceedings of IJCAI Workshop on Deep Learning
for Artificial Intelligence (DLAI).
Nguyen, T. H.; Sil, A.; Dinu, G.; and Florian, R. 2016b. To-
ward mention detection robustness with recurrent neural net-
works. In Proceedings of IJCAI Workshop on Deep Learning
for Artificial Intelligence (DLAI).
Nguyen, T. H.; Plank, B.; and Grishman, R. 2015c. Semantic
representations for domain adaptation: A case study on the
tree kernel-based method for relation extraction. In ACL-
IJCNLP.
Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global vectors for word representation. In Empirical Meth-
ods in Natural Language Processing (EMNLP).
Ratinov, L., and Roth, D. 2009. Design challenges and mis-
conceptions in named entity recognition. In CoNLL.
Spala, S.; Miller, N. A.; Yang, Y.; Dernoncourt, F.; and
Dockhorn, C. 2019. Deft: A corpus for definition extrac-
tion in free-and semi-structured text. In Proceedings of the
13th Linguistic Annotation Workshop, 124–131.
Westerhout, E. 2009. Definition extraction using linguistic
and structural features. In Proceedings of the 1st Workshop
on Definition Extraction.
Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.-i.;
and Jegelka, S. 2018. Representation learning on graphs
with jumping knowledge networks. In ICML.
Zeng, D.; Liu, K.; Lai, S.; Zhou, G.; and Zhao, J. 2014. Re-
lation classification via convolutional deep neural network.
In COLING.
Zhou, G.; Su, J.; Zhang, J.; and Zhang, M. 2005. Exploring
various knowledge in relation extraction. In ACL.

9105

