
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Distributed Representations for Arithmetic Word Problems

Sowmya S Sundaram,1 Deepak P,2 Savitha Sam Abraham1
1Indian Institute of Technology, Madras, India

2Queen’s University Belfast, UK
{sowmya, savithas}@cse.iitm.ac.in, deepaksp@acm.org

Abstract

We consider the task of learning distributed representations
for arithmetic word problems. We outline the characteristics
of the domain of arithmetic word problems that make
generic text embedding methods inadequate, necessitating
a specialized representation learning method to facilitate
the task of retrieval across a wide range of use cases
within online learning platforms. Our contribution is
two-fold; first, we propose several ’operators’ that distil
knowledge of the domain of arithmetic word problems
and schemas into word problem transformations. Second,
we propose a novel neural architecture that combines
LSTMs with graph convolutional networks to leverage word
problems and their operator-transformed versions to learn
distributed representations for word problems. While our
target is to ensure that the distributed representations are
schema-aligned, we do not make use of schema labels
in the learning process, thus yielding an unsupervised
representation learning method. Through an evaluation on
retrieval over a publicly available corpus of word problems,
we illustrate that our framework is able to consistently
improve upon contemporary generic text embeddings in
terms of schema-alignment.

Introduction

A word problem is a narrative involving a few sentences
describing a real-life scenario expressing a task that needs
to be solved by way of a mathematical calculation1. Central
to any system that processes word problems electronically is
a method to represent them in a meaningful way.

Notwithstanding the effectiveness of current embedding
methodologies such as (Mikolov et al. 2013) in general
NLP scenarios, there have been a number of efforts
in improving text embeddings for specific tasks. As an
example, SSWE (Tang et al. 2014) is a sentiment-specific
word embedding that builds on the observation that
generic word embedding models such as word2vec, being
sentiment-agnostic, tend to put words of opposite sentiment
polarity, such as good and bad, to neighboring locations
in the vector space. Such characteristics render them
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1https://www.theschoolrun.com/what-is-a-word-problem

inappropriate for sentiment-specific tasks, necessitating a
sentiment-specific word embedding that SSWE provides.
A similar motivation was leveraged in developing a
methodology for emotion-enriched word representations
(Agrawal, An, and Papagelis 2018). These indicate that
bespoke techniques to learn specialized text embeddings
are needed in order to make sure that the resultant
representations are useful for specific tasks.

Coming to word problems, schemas (Marshall 1996)
are classes of word problems meant to be indicative of
the kind of solution methodology that is to be adopted
to solve the problem. Table 1 lists three example word
problems along with their schemas. A schema may be
thought of as a categorization of word problems that
is aligned with the learning task. For example, combine
and change word problems can be solved effectively
by students who have understood the intricacies of the
mathematical operations involved in the respective domains.
Given this mapping between schemas and learning tasks,
schema-aligned retrieval of word problems is fundamental
to automation in student-centric learning frameworks such
as supportive scaffolding (Saxena 2010).

Lucy went to the grocery store. She bought 12 packs
of cookies and 5 packs of noodles. How many packs of
groceries did she buy in all? [ combine ]
Lucy was counting the two gifts she received on her
fifth birthday. The first gift was a set of two toy cars.
The second gift was a set of two rattle toys. How many
toys did she receive altogether? [ combine ]
Bobby went to the grocery store. He bought 12 packs
of noodles. He gave 6 packs to his friend, Lucy. How
many packs does Bobby have? [ change ]

Table 1: Example Word Problems and Schemas

In Table 1, the first and second problems involve the
combine schema, whereas the third problem involves a
change (i.e., transfer). It may be observed that the first and
the third problems relate to a grocery store context and have
a reasonable amount of word overlap, and that is liable
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to force a generic text representation learner (e.g.,doc2vec
(Le and Mikolov 2014)) to put them close to each other.
However, a representation that puts the first and second
problems closer to each other (as against the first and third)
would be more appropriate for incorporation in educational
support frameworks that seek to ensure that student learning
is achieved through gaining mastery over learning tasks in a
systematic fashion.
Our Contributions: In this paper, we present a specialized
representation learning method for word problems, the
first such method to our best knowledge. Our intent is to
develop representations that are well aligned with word
problem schemas, given that schemas correlate well with
learning tasks. We propose a set of operators that fall into
one of two categories; those that yield transformed word
problems that fall within the same schema, and those that
do not necessarily preserve schemas. We then propose a
novel neural architecture that combines LSTMs and GCNs
within a Siamese-inspired architecture designed to leverage
both the text sequence as well as linguistic structures to
accomplish learning vector embeddings for word problems.
We then illustrate, through experiments on retrieval tasks
over word problem datasets, that our representations are
superior to contemporary generic text embedding methods
in being schema-aligned, and thus are much more suited for
usage in automated learning support scenarios.

Related Work

We briefly cover background and related literature
across four different directions, viz., (i) methods for
automatically solving word problems, (ii) ML techniques for
representation learning, (iii) neural architectures targeted at
text data, and (iv) positioning our task within e-learning.

Automatic Word Problem Solving: Arithmetic word
problem solving has attracted interest starting from the
1960s (Bobrow 1964). The notion of schemas accelerated
progress in this area as can be seen in (Fletcher 1985),
(Bakman 2007) and (Sundaram and Khemani 2015). An
extensive survey (Mukherjee and Garain 2008) offers
perspectives on the literature. Since the 2010s, there has
been a resurgence of interest ((Kushman et al. 2014), (Roy
and Roth 2016), (Koncel-Kedziorski et al. 2015), etc.)
in solving word problems automatically using empirical
methods. There has been recent work in using neural
architectures over word problems. An upcoming trend 2 is to
model it as a neural machine translation task of ‘translating’
the word problem to the underlying equation (Robaidek,
Koncel-Kedziorski, and Hajishirzi 2018).

Representation Learning: Dimensionality reduction
offers a method of representing text in a compact fashion.
Principal Component Analysis (F.R.S. 1901) is a popular
method for general dimensionality reduction. Similarly,
Latent Semantic Indexing (LSI) (Deerwester et al. 1990)
is a text-oriented dimensionality reduction method using

2https://sites.google.com/view/nlp-word-problem-solving/

singular value decomposition. Newer methods for text
documents include GloVe (Pennington, Socher, and
Manning 2014), FastText3 and doc2vec (Le and Mikolov
2014). Recently, contextualised word representations
(Peters et al. 2018) have also been developed. Within
deep learning approaches, auto-encoders (Baldi 2012)
are most popular for representation learning. A popular
variant, denoising autoencoders, (Vincent et al. 2008) learn
noise-robust representations.

Neural Architectures for Text: Long-short term memory
units (LSTMs (Hochreiter and Schmidhuber 1997)) are
popular within NLP due to their ability to discern long-range
sequential dependencies. Bidirectional LSTMs (Bi-LSTMs)
are a variant of LSTMs that trace the document both
in the forward and reverse directions. Many NLP tasks
such as semantic parsing (Yang and Mitchell 2017),
dependency parsing (Wang et al. 2018), etc. have achieved
state-of-the-art results using LSTMs and Bi-LSTMs. Often,
text in specific domains may have grammatical regularities
that could be captured using dependency parsing (Nivre et
al. 2007), a classical NLP task that generates a structured
representation for the text. Such structured representations
may be exploited by neural frameworks such as graph
convolutional networks (GCNs) (Kipf and Welling 2016).
Graph neural networks have been recently popular for tasks
such as classification (Yao, Mao, and Luo 2019), sequence
labelling (Liu et al. 2019) and so on. We use both LSTMs
and GCNs in devising our methodology.

Positioning within E-Learning: Learning may be
thought of as the process of encoding new knowledge in
the learner’s brain; effective retrieval of such encoded
knowledge from the learner is a natural test of learning
effectiveness. Recent research (Karpicke 2012) suggests
that embedding the retrieval process more centrally within
learning promotes effective and longer-term learning. While
word problems have been an oft-used tool in mathematics
teaching, they have been criticized for being presented in
stereotyped fashion (Greer 1997). Online learning platforms
have an opportunity to address both these issues by
embedding contextual retrieval of word problems to ensure
lexical/scenario diversity as well as effective long-term
learning through invoking topical retrieval on the part of the
learner. A representation learner that can take unlabelled
word problems and produce a representation that is aligned
with learning tasks would be a core building block in
using word problem question banks to enrich formative
assessments and instructional scaffolding (Shepard 2005).
In the case of evaluation-oriented assessments, or summative
assessments, using unlabelled data is trickier, given the need
to ensure that the questionnaire covers problems overall
specified learning tasks intended to be assessed. High
accuracy tentative schema/task labels, such as those from a
classifier, would help ease such questionnaire building. In
this manner, both retrieval and classification can be of value
for e-learning scenarios.

3https://fasttext.cc/
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Problem Definition

The task that we address in this paper is that of unsupervised
representation learning for datasets of arithmetic word
problems. Specifically, given a dataset of word problems,W = {W1,W2, . . . ,Wn}, we would like to develop a
representation learning method that would convert this to
a dataset in a vector space R

d, where d is a user-specified
hyper-parameter. Formally:

{W1,W2, . . . ,Wn} Representation������→
Learning

{U1, U2, . . . , Un} (1)

where Ui ∈ R
d is a vector-space representation of

the word problem Wi. We would like the resultant
dataset in R

d, denoted as U , to be aligned well with
the schemas of word problems. Specifically, we would
like that word problem pairs that belong to the same
schema be placed, on an average, close to each other than
pairs that belong to different schemas. We address the
problem of schema-aligned representation learning within
an unsupervised setting, so the method would be applicable
for scenarios where schema labelled data is not available.

Schemas

The schema of word problems, which is indicative of the
learning task they relate to, plays a central role in the nature
of the solution process to be used to solve the word problem.
Automated word problem solvers (e.g., (Fletcher 1985))
often rely on schema-specific processing pipelines since the
solution approach is often widely different across schemas.
There is no universal standard of schemas; practitioners
categorize word problems according to what suits their
target dataset.

We do not make any assumptions in our method about
the particular schemas present within a dataset. Further, our
task being unsupervised, the schema categorization of the
dataset is used only during the evaluation of the results of our
representation learner. However, since an understanding of
schemas is critical to appreciate our approach and evaluation
metrics, we describe some schemas in our dataset briefly
herein.

• Combine - Word problems of this type often have some
entities being grouped as in a subset-superset relationship
or a union of entities.

• Change - These word-problems model a sequence of
events.

• Vary - ‘Vary’ word problems also describe a fixed
relationship, but they are of a multiplicative nature.

• Compare - Comparison word problems describe a fixed
relationship between two objects.

Methodology

Our task, as outlined in the problem definition, is to enable
an unsupervised transformation from the space of word
problems into vectors in R

d such that the vectors are aligned
with the schemas of the word problem. There has been

previous work in supervised learning which uses a similar
construction; a pioneering work (Chopra, Hadsell, and
LeCun 2005) targets conversion of a dataset of images into
a vector space such that the notion of similarity in the vector
space is aligned well with a notion of semantic similarity in
the original space. Our task, being the unsupervised version
of this task, is understandably harder.

Transformation Operators: We distil our knowledge
of the domain of word problems into what we call as
operators; these operators take a word problem text as input
and produce a transformed word problem text as output.
Our operators belong to one of two categories; schema
preserving and schema agnostic operators. We will describe
the nature of these operators and how these operators can be
used to learn word-problem representations.

Neural Architecture for Representation Learning:
Word problems along with their operator-transformed
versions are then used within a purpose-built neural
architecture to learn embeddings. Pairs of word problems
(original, transformed) are fed into our neural architecture.
The neural architecture is designed using BiLSTMs and
GCNs to leverage the text as well as grammatical structures
respectively, in our learning task. Once the training is
finished, the neural framework can be used to obtain
word-problem representations which then form the output of
our task. We describe the two parts in separate subsections
herein.

Transformation Operators

Our key insight in developing transformation operators
comes from the observation that some linguistic structures
within a word problem can be altered without changing
the learning task associated with it. Analogously, the
transformation of some other linguistic structures does not
necessarily preserve the schema. This leads us to two
kinds of operators for transforming word problems; schema
preserving and schema agnostic.

Schema Preserving Operators Word problems often deal
with people, entities and places. A transformation that
replaces people names with other names would evidently
not cause any change of schema. This intuition leads us to
the definition of three schema preserving operators. These
involve pre-processing using NER or POS Tagger from
Stanford CoreNLP (Manning et al. 2014).

• Person Change: This operator involves replacing a person
name within a word problem with another person name.

• Place Change: This replaces a place name with another.

• Entity Change: Analogous to the above, this replaces an
entity mention (e.g., mango, orange etc.) with another.

Schema Agnostic Operators Unlike the case of schema
preserving operators, changing certain linguistic structures
could potentially (but not necessarily) lead to transforming
the word problem to a different schema. We call them
schema agnostic operators. They have been implemented
using POS Tagger and WordNet (Miller 1995).
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• Verb Change: This operator involves replacing a verb with
another random verb from the dataset.

• Adjective Change: This operator changes the adjectives
in a particular word problem. Adjectives are instrumental
in identifying types of entities or the type of operation.

• Antonym Introduction: This operator replaces a verb or
an adjective in the word problem with its antonym as
obtained from WordNet.

Illustration of Operators We now illustrate the
transformations caused by the various operators. Consider
the following example combine schema word problem.

Mary put 5 red apples in a basket. John placed 2 red
apples. How many apples are in the basket altogether?

The transformed versions of this problem under the
various operators are listed in Table 2.

Operator Transformed Word Problem Schema

Person Change Stephen put 5 red apples in a basket. Clarissa
placed 2 red apples. How many apples are in the
basket altogether?

[ combine ]

Place Change Mary put 5 red apples in a bowl. John placed
2 red apples. How many apples are in the bowl
altogether?

[ combine ]

Entity Change Mary put 5 red cherries in a basket. John placed
2 red cherries. How many cherries are in the
basket altogether?

[ combine ]

Verb Change Mary put 5 red apples in a basket. John ate 2
red apples. How many apples are in the basket
altogether?

[ change ]

Adjective
Change

Mary put 5 red apples in a basket. John placed 2
more apples. How many apples are in the basket
altogether?

[ compare ]

Antonym
Introduction

Mary put 5 red apples in a basket. John
removed 2 red apples. How many apples are in
the basket altogether?

[ change ]

Table 2: Examples of Operator Application

It is pertinent to note that only one operator is applied at a
time. For example, a single application of a verb change (by
using one of 123 verbs available in the dataset) transforms
a problem X to Y, whereas an adjective change would be
separately applied to transform X to another version, Z.
We trained a language model over a subset of the data
and analyzed the conformance of the remainder as well as
its transformed versions, using perplexity. The perplexities
were 305.71 and 314.16 respectively, with 314.88 for the
schema agnostic operator transformed subset. While this is
a superficial analysis, it indicates that the well-formedness
is not disturbed much.

Operator-driven Representation Learning

We now describe our method for operator-driven
representation learning. First, we outline a novel neural
architecture for the task. Second, we will illustrate how the
operators introduced earlier can be used within the neural
architecture to accomplish representation learning.

Bi-LSTM+GCN Siamese Neural Network Architecture
Our neural network architecture, as illustrated in Figure 1,
is designed to process a pair of word problems in the
input; let [Wi,Wj] represent the input word problem pair.
Each word problem in the pair is converted into two kinds
of representations; the embeddings representation, and the
dependency representation. These are fed into Bi-LSTM
and GCN layers respectively. The representations from the
Bi-LSTM and GCN layers are then fused into a dense
layer which yields a vector representation. While this is
done separately for each word problem in the pair through
replicating the Bi-LSTM and GCN layers (thus yielding
separate dense layer representations), the weights for the
neural layers are tied in typical Siamese network fashion.
These weights are fine-tuned through a learning process
described later.
Embedding Representation + Bi-LSTM Layer: Consider
each word problem as a sequence of L words; shorter
problems padded appropriately. For each word in the L
length sequence in the input, the embedding representation
is formed by simply replacing the word by its vector
embedding from a pre-trained word embedding dataset.
We use a dataset of GloVe (Pennington, Socher, and
Manning 2014) embeddings trained over a very general
dataset as the source of the word embedding vectors. This
lookup transforms the sequence of L words in the input
to an L-length sequence of word-embedding vectors. This
sequence of L vectors is then passed through a Bi-LSTM
layer which produces a numeric vector as the output.
Dependency Representation + GCN Layer: Each word
problem is passed through a dependency parser to generate
a dependency parse tree; we use the SpaCy dependency
parser4 to derive the dependency parse tree representation.
This dependency parse tree is then passed through a graph
convolutional network (GCN) (Wu et al. 2019) that makes
use of graph proximity (as opposed to 2D proximity in
conventional convolutional neural networks) in order to
derive a vectorial representation.
Fusion and Weight Tying: The separate outputs from
the Bi-LSTM and GCN above are then simply fused by
means of a dense layer to form a d length numeric vector.
This pipeline thus yields two separate d length dense
layer representations for each word problem in the input
pair. The pair of d length representations are then used
to form a loss that would then be propagated backwards
in a learning process, which is described later. While the
d length representations are learnt separately for the two
input word problems, we impose the constraint that the
weights for the two separate Bi-LSTM and GCN layers be
the same. Such weight-tied networks, referred to as siamese
networks, have gained popularity in various contexts,
notably in question-answer processing (Koch, Zemel, and
Salakhutdinov 2015). The weight-tying is indicated in
Figure 1 using the middle box with W indicating a common
set of weights.

4https://spacy.io/usage/linguistic-features#dependency-parse
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Figure 1: System Architecture

Training Process: The outputs from the two
(Bi-LSTM/GCN)+dense layers are separate d length
vectors, and these serve as the representations for the
corresponding word problems. We refer to these vectors as
Ui and Uj respectively (corresponding to the word problems
Wi and Wj , the input pair). The training of the siamese
network is facilitated by quantifying the distance between
Ui and Uj . We use the standard formulation for contrastive
loss (Hadsell, Chopra, and LeCun 2006) as follows:

L(Ui, Uj) =
{(ED(Ui, Uj))2 if [Wi,Wj] ∈ SP(max{0,1.0 −ED(Ui, Uj)})2 if [Wi,Wj] ∈ SA (2)

where ED(Ui, Uj) denotes the euclidean distance
between Ui and Uj . SP is a set of word problem pairs
where we expect the resultant U vectors to be as close
as possible to each other; thus, the loss in this case is
simply the square of the euclidean distance, that being the
amount by which they deviate from the expectation. In the
other set of word problem pairs, denoted by SA, we expect
the resultant U vectors to be far away from each other,
ideally at a distance of 1.0 or more. We will describe the
construction of the sets SP and SA in the next section.
The neural architecture is simply trained by passing word
problem pairs, and propagating back the losses through the
Bi-LSTM/GCN layers appropriately.

Training Dataset Construction We now outline the
construction of the datasets SP and SA using the operators.
A pair within SP is expected to comprise two word
problems which belong to the same schema, whereas those
in SA are not necessarily so. These pair datasets are created
by using schema-preserving (SPO) and schema-agnostic
(SAO) operators respectively:

SP = {[W,W ′] ∣W ∈ W ∧W ′ = SPO(W )}
SA = {[W,W ′] ∣W ∈ W ∧W ′ = SAO(W )}

where SPO(W ) and SAO(W ) indicate the
transformation of W produced by a schema-preserving and
schema-agnostic operator respectively. It may be noted that
a particular word problem can be transformed by a chosen

operator multiple times to yield multiple results given the
possibility of choosing from among multiple replacement
words.

Representation Learning: Having described our neural
network architecture and the construction of its training
dataset, we now describe the end-to-end method:

• Training Dataset Creation Convert the datasetW to two
pair-datasets SP and SA using operators, which will be
used in training.

• Neural Network Training Initialize the neural
architecture in Figure 1 and train it using SP and
SA as outlined.

• Representations Take one ‘leg’ of the network
comprising Bi-LSTM & GCN layers (with weight-tying,
both legs are identical), and pass each Wi ∈ W through
them, reading off the d-length vector as Ui.

Experimental Study

Dataset

Though there are quite a few public datasets for math
word problem solving (Koncel-Kedziorski et al. 2016), the
only dataset which comprises word problems attached with
unique schemas is the SingleOp (Roy and Roth 2016)
dataset with 562 word problems. Thus, we choose this
dataset for our empirical study. The dataset is manually
annotated5 by schema labels for each problem and these
labels are used only during evaluation. The schema
labellings were done by two graduate students, who labelled
different subsets. On the overlapping subset, the agreement
was 0.63 using the kappa statistic, which is ‘substantial
agreement’ (Cohen 1960). The differences arose mainly due
to confusion between ‘change’ and ‘group’ schemas. After
unifying that dominant dissenting pair, we were able to get
an agreement of 0.81 (‘almost perfect agreement’). A third
annotator sorted the errors to arrive at a final labelling.

Experimental Setup

Pre-trained GloVe embeddings of 100 dimensions were used
in all the experiments as the source of the word vectors in the

5http://tiny.cc/word-probs-data
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embedding layer. Wherever LSTMs were used, the state size
was kept at 256. We undersampled the dataset for uniform
representation across schemas. The GCN network had 4
convolutional layers with 200 hidden states each. The word
problems in the dataset was subjected to 50 applications
of each operator (as was mentioned earlier, using multiple
replacement word candidates enables multiple applications
of the same operator), resulting in an ‘augmented’ dataset of
27852 problems that will be used in training.

Retrieval-based Evaluation Framework

Our primary evaluation of the learnt representations is over
a retrieval task. The proposed network is trained using word
problems from W and their operator-transformed versions.
After the training phase, we read off the d length vectors
from one of the legs of the neural network; this forms
a dataset U with each element of it having a one-to-one
correspondence to W . For each word problem Wi ∈ W ,
we do the following to measure how well aligned the
representations are, to the schemas of the word problems:

• Find the top-k most similar vectors to Ui from among the
other vectors in U , where similarity is assessed using the
Euclidean distance.

• For each of the top-k retrieved results, we check whether
their corresponding word problem bears the same schema
as Wi; we mark each such result as correct, and others
(i.e., those where the schema is different) as incorrect.

• We then use conventional Information Retrieval
evaluation measures such as precision and Normalised
Discounted Cumulative Gain (NDCG) (Wang et al.
2013) . While precision simply measures the fraction of
correct/same-schema results in the top-k, NDCG takes
into account the relative ordering within the top-k as well,
in quantifying result set quality.

Baselines

We use two baseline approaches that perform unsupervised
representation learning, in our evaluation. Each of these
models is trained over the dataset augmented with
operator-transformed versions of word problems, to ensure
fairness in comparison. These are: (i) LSTM Autoencoder
(lstm-ae) and (ii) LSTM Denoising Autoencoder (lstm-dae).
Apart from this, we also compare against two variations of
our architecture - using the Bi-LSTM layer or the GCN layer
alone in the Siamese architecture; this helps illustrate the
utility of using both text and grammatical information within
the learning process. We use this baseline to perform an
ablation study on the usefulness of the proposed components
of our architecture. We describe the baselines below.

• LSTM Autoencoder (lstm-ae): Autoencoders are
popular methods of deriving an object representation in
an unsupervised manner. We leverage LSTM units in
deriving a document embedding for word problems from
a corpus of documents.

• De-noising LSTM Autoencoder (lstm-dae): This
baseline is implemented by training LSTM autoencoders
with the original input as well as noisy input corrupted

by adding a random noise from [0,0.5] to each input
element.

• Bi-LSTM only (bilstm-sm): This is our architecture
which excludes the GCN layer and contains just the
Bi-LSTM.

• GCN only (gcn-sm): Analogously, this architecture
contains only the GCN layer and excludes the Bi-LSTM.

Comparative Evaluation over kNN Retrieval

We have evaluated the quality of embeddings for the original
SingleOp dataset of 562 word problems. The precision and
NDCG at various values of k are listed in Table 3, with
the best value achieved for each k highlighted in boldface.
We have performed statistical significance analysis based on
the independent t-test (Student 1908). If our method beats
the nearest competitor among the non-Siamese baselines
(i.e., lstm-ae and lstm-dae) by a statistical significance of
p < 0.05, we denote it with a ○ in the table. Similarly, if it has
a statistical significance of p < 0.01, we have denoted it with
a ●. In a similar fashion, we include statistical significance
results against the nearest Siamese baselines (i.e., bilstm-sm
and gcn-sm), with ☆ and ⋆ denoting statistical significance
with p < 0.05 and p < 0.01 respectively.

As may be observed therein, our method consistently
beats the baselines across the measures across a range of
values of k. It is notable that the improvements recorded by
our method decline very gradually with increasing k; this
indicates that our embeddings are able to ensure a wider
schema-homogeneous neighbourhood.

Precision NDCG

k→ 3 5 10 3 5 10
lstm-ae 0.7432 0.7021 0.6413 0.8653 0.8636 0.8494

lstm-dae 0.7419 0.7149 0.6489 0.8653 0.8602 0.8505
bilstm-sm 0.7272 0.6847 0.6276 0.8597 0.8607 0.8618

gcn-sm 0.7503 0.6943 0.6290 0.8729 0.8667 0.8522
Ours 0.8114●⋆ 0.7790●⋆ 0.7129●⋆ 0.8973●⋆ 0.8956●⋆ 0.8876●⋆

Impr. 8.14% 8.96% 9.86% 2.79% 3.33% 2.99%

Table 3: Precision and NDCG of Schema-Based Retrieval

Classification

We now demonstrate how our embeddings can help classify
word problems into the labelled schemas in Table 4. We use
the SingleOp dataset across three different classifiers - (i)
random forest classifier, (ii), AdaBoost and (iii) a multi layer
perceptron with two hidden layers. We consistently provide
better classification and the percentage improvement over
the best is indicated.

Generalizability Study

Equation Homogeneity in Retrieval: The actual equations
used in solving a word problem provide another indicator,
though less reliable, of the learning task involved. Equations
are less reliable indicators of the learning task than schemas
since the same equation could lead to different learning
tasks based on the choice of the unknown variable. We now
evaluate the utility of our schema-aligned representations in
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Random Forest Classifier Multilayer Perceptron AdaBoost
lstm-ae 0.8407 0.8053 0.5310
lstm-dae 0.8318 0.8141 0.6106

bilstm-sm 0.8053 0.7434 0.5929
gcn-sm 0.8142 0.8584 0.5664
Ours 0.8673 0.8761 0.6726

Impr. 3.16% 2.06% 10.14%

Table 4: Classification Accuracy

ensuring homogeneity in the space of equations associated
with the word problems. We converted the equations of the
SingleOp dataset to templates by replacing the numerals
with tokens such as n1, n2, etc. We replace the schema
matching operation in the retrieval evaluation framework
with exact match over equation templates. The results,
tabulated in Table 5, illustrate that our method is able to
outperform the baselines convincingly in this task as well.

Precision NDCG

k→ 3 5 10 3 5 10
lstm-ae 0.5546 0.4978 0.3989 0.6167 0.6409 0.7343

lstm-dae 0.5670 0.5103 0.4053 0.6131 0.6332 0.7284
Ours 0.6797● 0.6203● 0.5162● 0.7203● 0.7249● 0.8032●

Impr. 19.87% 21.55% 27.36% 16.79% 13.11% 9.38%

Table 5: Precision and NDCG of Equation-Based Retrieval

Transfer Learning: We now consider the generalizability
of our embedding method, across different datasets. The
MAWPS dataset (Koncel-Kedziorski et al. 2016) is a large
dataset of word problems with no schema information, but
with equation information across its 2373 word problems
that are associated with single equations. Since it is an
amalgam of many existing datasets, it has good variability.
Having trained our model over the SingleOp dataset, we pass
each of the MAWPS word problems in one forward pass to
get an embedding for each of them. We then evaluate the
equation-homogeneity in retrieval, much like in the previous
experiment. The results, outlined in Table 6, indicate that
the learnings over SingleOp transfer well to the MAWPS
dataset, with our method consistently performing better
than the baselines. We observed eq/schema correlations,
though far from a one-to-one correspondence, given that
equations and schemas are different concepts. For example,
the template ‘n1-n2’ is split across ‘change’ and ‘compare’
schemas. The Cramér’s V correlation (Cramir 1946) was
found to 0.59 indicating a moderate correlation towards the
higher side of the [0,1] range. There is a significant drop in
both precision and NDCG from Table 5, which is expected
given that the evaluation was performed over a different
dataset; however, our method remains consistently better
than the baselines.

Conclusions and Future Work

Developing embedding methods for text has been a subject
of high interest within the NLP community in recent years.
The nuances of arithmetic word problems require them to be
treated differently from text documents, making embedding

Precision NDCG

k→ 3 5 10 3 5 10
lstm-ae 0.4432 0.3766 0.2500 0.5478 0.5634 0.6063

lstm-dae 0.4438 0.3764 0.2498 0.5437 0.5653 0.6121
Ours 0.4862● 0.4211● 0.3015● 0.5712● 0.5854● 0.6335●

Impr. 9.55% 11.82% 20.60% 4.27% 3.55% 3.49%

Table 6: Precision and NDCG Results for Equation-based
Retrieval on MAWPS dataset

methods for general text documents inadequate over them.
In this paper, we addressed this task and developed a
framework for representation learning for arithmetic word
problems that correlates well with the learning task involved.
We proposed to represent the domain knowledge of the
realm of word problems into a set of operators that
can transform word problems in a schema-preserving or
schema-agnostic manner; these, we illustrated, can be used
to create an augmented training set for representation
learning. We then devised a Siamese-inspired neural
network that uses LSTMs and GCNs to use word problems
and their operator-transformed versions in order to learn
embeddings for word problems. Through an evaluation over
a public dataset, we illustrated the consistent improvements
that are achieved by our method over contemporary generic
representation learners. To our best knowledge, our work
presents the first approach for specialized representation
learning for arithmetic word problems.

Future Work

Having established an operator-driven framework for
representation learning, the natural next step would be
to devise sophisticated operators that can help improve
on the retrieval accuracy further. On an application
front, we are quantifying the gains obtained by using
these embeddings within the retrieval component of an
instructional scaffolding framework for formative learning.
We expect our method to generalize, with appropriate simple
modifications to operators, for tasks such as kinematics
word problem solving and associated scenarios within
other topics in the vast e-learning space. Generalizability
to argumentation and entailment would be an interesting
direction to explore, though we suspect those may call for
non-trivial adaptations.
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