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Abstract

Existing analysis work in machine reading comprehension
(MRC) is largely concerned with evaluating the capabilities
of systems. However, the capabilities of datasets are not as-
sessed for benchmarking language understanding precisely.
We propose a semi-automated, ablation-based methodology
for this challenge; By checking whether questions can be
solved even after removing features associated with a skill
requisite for language understanding, we evaluate to what de-
gree the questions do not require the skill. Experiments on 10
datasets (e.g., CoQA, SQuAD v2.0, and RACE) with a strong
baseline model show that, for example, the relative scores
of the baseline model provided with content words only and
with shuffled sentence words in the context are on average
89.2% and 78.5% of the original scores, respectively. These
results suggest that most of the questions already answered
correctly by the model do not necessarily require grammati-
cal and complex reasoning. For precise benchmarking, MRC
datasets will need to take extra care in their design to ensure
that questions can correctly evaluate the intended skills.

1 Introduction

Machine reading comprehension (MRC) is a testbed for
evaluating natural language understanding (NLU), by letting
machines answer questions about given texts (Hirschman et
al. 1999). Although MRC could be the most suitable task
for evaluating NLU (Chen 2018) and the performance of
systems is comparable to humans on some existing datasets
Devlin et al. (2019), it has been found that the quality of
existing datasets might be insufficient for requiring precise
understanding (Jia and Liang 2017). Whereas these analyses
are useful to investigate the performance of systems, how-
ever, it is still necessary to verify the fine-grained capabili-
ties of datasets for benchmarking NLU.

In the design of MRC datasets, it is implicitly assumed
that questions test a cognitive process of language under-
standing (Sutcliffe et al. 2013). As various aspects of such a
process, we can use requisite skills for answering questions
such as coreference resolution and commonsense reasoning
(Sugawara et al. 2017). Considering skills as metrics would
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be useful for analyzing datasets. However, for most datasets,
the skills required to answer existing questions are not iden-
tified, or significant human annotation is needed.

In this study, we propose a semi-automated, ablation-
based methodology to analyze the capabilities of MRC
datasets to benchmark NLU. Our motivation is to investi-
gate to what extent a dataset allows unintended solutions
that do not need requisite skills. This leads to the following
intuition: if a question is correctly answered (or solvable)
even after removing features associated with a given skill,
the question does not require the skill. We show an example
of our ablation method in Figure 1. Suppose we wish to an-
alyze a dataset’s capacity to evaluate understanding of texts
beyond the information of part-of-speech (POS) tags. To this
end, we replace context and question words with POS tags
and ID numbers. If a model can still correctly answer this
modified question, the question does not necessarily require
deep understanding of texts but matching word patterns only.
Questions of this kind might be insufficient for developing
a model that understands texts deeply as they may reduce
models to recognizing superficial word overlaps.

Our methodology uses a set of requisite skills and corre-
sponding ablation methods. Inspired by the computational
model of reading comprehension (Kintsch 1988), we exem-
plify 12 skills on two classes: reading and reasoning (Sec-
tion 3). Then, we present a large-scale analysis over 10 ex-
isting datasets using a strong baseline model (Section 4). In
Section 5, we perform a complementary inspection of ques-
tions with our ablation methods in terms of the solvability
of questions and the reconstructability of ablated features.
Finally we discuss, in Section 6, two requirements for de-
veloping MRC to benchmark NLU: the control of question
solvability and the comprehensiveness of requisite skills.

Our contributions are as follows:
• We propose a semi-automated methodology to analyze

the benchmarking capacity of MRC datasets in terms of
requisite skills for answering questions.

• With an example set of 12 skills and corresponding input-
ablation methods, we use our methodology and examine
10 existing datasets with two answering styles.

• Our analysis shows that the relative performance on ques-
tions with content words only, shuffled sentence words,
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Original context

Immediately behind the basilica is the Grotto, a Marian
place of prayer and reflection. It is a replica of the grotto
at Lourdes, France where the Virgin Mary reputedly ap-
peared to Saint Bernadette Soubirous in 1858. At the end
of the main drive (and in a direct line that connects through
3 statues and the Gold Dome), is a simple, modern stone
statue of Mary.

Anonymized context

@adv1 @prep5 @other0 @noun17 @verb2 @other0
@noun20 @punct0 @other1 @adj3 @noun21
@prep1 @noun22 @other2 @noun23 @period0
@other3 @verb2 @other1 @noun24 @prep1 @other0
@noun20 @prep6 @noun25 @punct0 @noun26 @wh0
@other0 @noun7 @noun8 @adv3 @verb4 @prep4
@noun27 @noun28 @noun29 @prep2 @num0 @period0
@prep6 @other0 @noun30 @prep1 @other0 @adj4
@noun31 @punct3 @other2 @prep2 @other1 @adj5
@noun32 @wh1 @verb5 @prep7 @num1 @noun6
@other2 @other0 @noun4 @noun5 @punct4 @punct0
@verb2 @other1 @adj6 @punct0 @adj7 @noun33
@noun6 @prep1 @noun8 @period0

Question

To whom did the Virgin Mary allegedly appear in 1858 in
Lourdes France?

Anonymized question

@prep4 @wh2 @verb6 @other0 @noun7 @noun8 @adv4
@verb4 @prep2 @num0 @prep2 @noun25 @noun26
@period1

Baseline model’s prediction before / after anonymization

Saint Bernadette Soubirous / noun27 @noun28 @noun29

Figure 1: Example of an ablation test that anonymizes con-
text and question words, applied to a question from SQuAD
v1.1 (Rajpurkar et al. 2016) with the correct answer in un-
derscored. We found that the baseline model can achieve
61.2% F1 on SQuAD v1.1 even after the anonymization.

and shuffled sentence order averaged 89.2%, 78.5%, and
95.4% of the original performance, indicating that the
questions might be inadequate for evaluating grammati-
cal and complex reasoning.
These results suggest that most of the questions currently

solved in MRC may be insufficient for evaluating various
skills. A limitation of our method is that it can not draw
conclusions regarding questions that remain unsolved, and
thus we need to assume a reasonable level of performance
for existing models on the dataset to be analysed. Given our
findings, we posit that MRC datasets should be carefully de-
signed, e.g., by filtering questions using methods such as the
ones we propose, so that their questions correctly benchmark
the intended NLU skills.

2 Related Work

We briefly survey existing interpretation methods and skill-
based analyses for NLU tasks.

Interpretation methods. A challenge with the MRC task
is that we do not know the extent to which a successful

model precisely understands natural language. To analyze
a model’s behavior, existing studies mainly proposed mod-
ification of the input. For example, Jia and Liang (2017)
showed that the performance of existing models on SQuAD
(Rajpurkar et al. 2016) significantly degrades when man-
ually verified distracting sentences are added to the given
context. In addition, Feng et al. (2018) demonstrated that
MRC models do not necessarily change their predictions
even when most question tokens are dropped. Likewise, for
the natural language inference task, Gururangan et al. (2018)
proposed to hide the premise and to evaluate a model using
only the hypothesis. These kinds of analyses are helpful for
detecting biases that are unintentionally included in datasets.
Nonetheless, to assure that a dataset can evaluate various as-
pects of NLU, more fine-grained detail is needed than what
is allowed by inspection using existing methods.

Skills as units of interpretation. In the topic of inter-
pretable machine learning, Doshi-Velez and Kim (2018) de-
fined the concept of cognitive chunks as the basic units of ex-
planation. In the MRC task, we consider that requisite skills
to answer questions are appropriate as such units. A skill-
based analysis was conducted by Boratko et al. (2018), who
proposed classifications of knowledge and reasoning. Prior
to this, Sugawara et al. (2017) also defined a set of 13 req-
uisite skills. However, there are two main issues with these
approaches: (i) the human annotation does not necessarily
reveal unintended biases that machines can make use of, and
(ii) it requires costly annotation efforts. Therefore, we posit
that a machine-based analysis is needed and that it should be
performed in an automated manner.

3 Dataset Diagnosis by Input Ablation

3.1 Formulation

Our methodology uses a set of requisite skills and corre-
sponding ablation methods. By checking the solvability of
questions after applying the ablation methods, we can quan-
tify to what degree the questions allow unintended solutions
that do not require the requisite skills. Users can define an
arbitrary set of skills to suit their purposes.

We develop a method σi that ablates features necessary
for the corresponding skill si in a set of requisite skills S.
For (x, y) ∈ X × Y , whenever f(x) = y, if f(σi(x)) =
y, we recognize that x is solvable without si. Here, X is
the input, Y is the gold labels, (x, y) is a pair consisting
of an input instance and its gold-standard answer, and f is
a model. When the performance gap between the original
and the modified dataset is small, we can infer that most of
the questions already solved are solvable without si. On the
other hand, if the gap is large, a sizable proportion of the
solved questions may require si.

We note that we cannot draw general conclusions for in-
stances given by conditions other than the abovementioned
one. Consider the case where f(x) = y and f(σi(x)) �= y,
for example. This only means that f cannot solve x without
the features ablated by σi. We cannot conclude that x re-
quires si in every model because there might exist a model
that can solve x without si. However, if there is at least one
model f that solves x without si, this may indicate an un-
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Comprehension skill si Ablation method σi
R

ea
di

ng
-c

la
ss

1.Recognizing question words excluding in-
terrogatives

Drop all words except interrogatives (wh- words and how) in a question.

2.Recognizing content words Drop content words in the context.
3.Recognizing function words Drop function words in the context.
4.Recognizing vocabulary Anonymize context and question words with their part-of-speech tag.
5.Attending the whole context other than

similar sentences
Keep the sentences that are the most similar to the question in terms of
unigram overlap and drop the other sentences.

6.Recognizing the word order Randomly shuffle all words in the context.

R
ea

so
ni

ng
-c

la
ss

7.Grasping sentence-level compositionality Randomly shuffle the words in all the sentences except the last token.
8.Understanding of discourse relations Randomly shuffle the order of the sentences in the context.
9.Performing basic arithmetic operations Replace numerical expressions (CD tag) with random numbers.

10.Explicit logical reasoning Drop logical terms such as not, every, and if.
11.Resolving pronoun coreferences Drop personal and possessive pronouns (PRP and PRP$ tags).
12.Reasoning about explicit causality Drop causal terms/clauses such as because and therefore.

Table 1: Example set of requisite skills {si} and corresponding ablation methods {σi}. f is a model and (x, y) is a pair
consisting of an input instance and its gold-standard answer. We interpret that for x s.t. f(x) = y, if f(σi(x)) = y, then x is
solvable without si.

intended way to solve x while ignoring si. Therefore our
methodology only requires a single baseline model. Users
can choose an arbitrary model for their purposes.

3.2 Example Set of Requisite Skills

In this section, we exemplify a skill set that consists of 12
skills along with two classes; reading and reasoning (Ta-
ble 1). In psychology, there is a tradition of theoretical re-
search on human text comprehension. The construction–
integration model (Kintsch 1988) is one of the most ac-
knowledged theories. This model assumes that human text
comprehension consists of two processes: (i) construction,
in which a reader elaborates concepts and propositions in
the text and (ii) integration, in which the reader associates
the propositions to understand them consistently. We asso-
ciate this two-step process with our two classes.

Reading skills. This class deals with six skills of observ-
ing and recognizing word appearances, which are performed
before reasoning. In MRC, it has been shown that some ex-
isting questions can be solved by reading a limited number
of words in the question and the context (e.g., by simply
attending to context tokens that are similar to those of the
questions (Sugawara et al. 2018)). Our goal of this class is,
therefore, to ensure that the questions require the reading of
the whole question and context uniformly.

Reasoning skills. This class comprises six skills of rela-
tional reasoning among described entities and events such as
pronoun coreference resolution and logical reasoning. Al-
though these skills are essential for sophisticated NLU, it
is difficult to precisely determine whether these types of
reasoning are genuinely required in answering a question.
Therefore, in this class, we define reasoning-related skills
that are performed using the explicit information contained
in the context (e.g., s9 explicit logical reasoning and s12 rea-
soning about explicit causality).

In the following, we highlight some of the defined skills.
Skill s1 is inspired by Feng et al. (2018) and Sugawara et
al. (2018). Although their studies proposed dropping ques-
tion tokens based on their model-based importance or the
question length, we instead drop tokens other than interrog-
atives as interpretable features. Our vocabulary anonymiza-
tion (s4) is mainly inspired by Hermann et al. (2015) where
they anonymized named entities to make their MRC task
independent of prior knowledge. Our shuffle-based meth-
ods (s6 to s8) are inspired by existing analyses for other
tasks (Khandelwal et al. 2018; Nie, Wang, and Bansal 2019;
Sankar et al. 2019). Among them, our purpose for s7 is to
analyze whether a question requires precise reasoning per-
formed over syntactic and grammatical aspects in each sen-
tence. The remaining skills are described in Appendix A.

Although our proposed definitions can be extended, they
are sufficient for the purpose of demonstrating and evaluat-
ing our approach. In Section 6, we discuss further directions
to develop purpose-oriented skill sets.

4 Experiments and Further Analyses

4.1 Experimental Settings

Datasets. We use 10 datasets. For answer extraction datasets
in which a reader chooses a text span in a given context,
we use (1) CoQA (Reddy, Chen, and Manning 2019), (2)
DuoRC (Saha et al. 2018), (3) HotpotQA (distractor) (Yang
et al. 2018), (4) SQuAD v1.1 (Rajpurkar et al. 2016), and (5)
SQuAD v2.0 (Rajpurkar, Jia, and Liang 2018). For multiple
choice datasets in which a reader chooses a correct option
from multiple options, we use (6) ARC (Challenge) (Clark
et al. 2018), (7) MCTest (Richardson, Burges, and Renshaw
2013), (8) MultiRC (Khashabi et al. 2018), (9) RACE (Lai
et al. 2017), and (10) SWAG (Zellers et al. 2018). For the
main analysis, we applied our ablation methods to develop-
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ment sets. We included SWAG because its formulation can
be viewed as a multiple-choice MRC task and we would like
to analyze the reasons for the high performance reported for
the baseline model on this dataset (Devlin et al. 2019). For
preprocessing the datasets, we use CoreNLP (Manning et al.
2014). We specify further details in Appendix B.

Models. As the baseline model, we used BERT-large (De-
vlin et al. 2019).1 We fine-tuned it on the original training set
of each dataset and evaluated it on a modified development
set. For σ4 vocabulary anonymization, we train the model af-
ter the anonymization. For ARC, MCTest, and MultiRC, we
fine-tuned a model that had already been trained on RACE
to see the performance gained by transfer learning (Sun et
al. 2019). We report the hyperparameters of our models in
Appendix C. Although we trained the baseline model on the
original training set, it is assumed that the upper-bound per-
formance can be achieved by a model trained on the modi-
fied training set. Therefore, in Section 4.3, we also see the
extent to which the performance improves when the model
is trained on the modified training set.

Ablation methods. σ2 and σ3: we use a set of stopwords
from NLTK (Loper and Bird 2002) as function words. All
other words are regarded as content words. We do not drop
punctuation. When a token is dropped, it is replaced with an
[UNK] token to preserve the correct answer span. σ4: we use
the same ID for the same word in a single given context but
different IDs for different contexts. For inflectional words,
we anonymize them using their lemma. For example, are
would be replaced with @verb2 (= is) if it appeared in Fig-
ure 1. In addition, to retain the information of the POS tags,
we append its POS tag after each inflectional anonymized
word (e.g., is is replaced with @verb{ID} [VBZ]). σ6: be-
cause it is necessary to maintain the correct answer span in
the answer extraction datasets, we split the context into seg-
ments that have the same length as the gold answer span and
shuffle them. σ7: as with σ6, we split each sentence into seg-
ments and shuffle them within each sentence. For σ6 to σ8,
we averaged the scores over five runs with different seeds
and report their variances in Appendix D.

4.2 Results of Reading and Reasoning Skills

We report the results for the skills in Table 2.2 In the fol-
lowing, % indicates a relative change from the original
F1/accuracy unless specified otherwise. In this section, we
describe the notable findings for several skills. The observa-
tions for all other skills are explained in Appendix F.
s2 and s3: recognizing content words and function

words. On all datasets, the relative changes for s2 were
greater than those for s3. However, it is remarkable that even
with function words alone, the model could achieve 53.0%
and 17.4% F1 on CoQA and SQuAD v1.1, respectively.3
On ARC, RACE, and SWAG, the model showed more than

1Although our methodology only necessitates a single baseline
model, note that we need to assume a reasonable level of perfor-
mance as we mentioned in Section 1.

2In Appendix E, we report dataset statistics and the average
number of tokens dropped in each drop-based method.

319.8% of the questions in CoQA are yes/no questions.

40% accuracy (>25% of random choice). As for content
words only, on all answer extraction datasets, the perfor-
mance was greater than 78.7% that of the original. On all
multiple-choice datasets, it was more than 90.2%. These re-
sults imply that most of the questions already solved do not
necessarily require grammatical and syntactic reasoning, in
which function words are used.
s4: recognizing vocabulary beyond POS tags. Surpris-

ingly, for SQuAD v1.1, the baseline model achieved 61.2%
F1. It only uses 248 tokens as the vocabulary with the
anonymization tags and no other actual tokens. For the other
answer extraction datasets, the largest drop (73.6% relative)
is by HotpotQA; it has longer context documents than the
other datasets, which seemingly makes its questions more
difficult. To verify the effect of its longer documents, we also
evaluated the baseline model on HotpotQA without distract-
ing paragraphs. We found that the model’s performance was
56.4% F1 (the original performance was 76.3% F1 and its
relative drop was 26.1%) which is much higher than that on
the context with distracting paragraphs (16.8% F1). This in-
dicates that adding longer distracting documents contributes
to encouraging machines to understand a given context be-
yond matching word patterns.

On the other hand, the performance on the multiple choice
datasets was significantly worse; if multiple choices do not
have sufficient word overlap with the given context, there is
no way to infer the correct answer option. Therefore, this
result shows that multiple choice datasets might have a ca-
pacity for requiring more complex understanding beyond
matching patterns between the question and the context than
the answer extraction datasets.
s6: recognizing the context word order (context words

shuffle). We found that for the answer extraction datasets,
the relative performance decreased by 55.6% on average. A
moderate number of questions are solvable even with the
context words shuffled. We also found that, surprisingly, the
average decrease was 21.3% for the multiple choice datasets.
The drop on MCTest is more prominent than that on the
others. We posit that this is because its limited vocabulary
makes questions more context dependent. ARC, in contrast,
uses factoid texts, and appears less context dependent.
s7: grasping sentence-level compositionality (sentence

words shuffle). The performance with sentence words shuf-
fled was greater than 60% and 80% those of the origi-
nal dataset on the answer extraction and multiple-choice
datasets, respectively. This result means that most of the
solved questions are solvable even with the sentence words
shuffled. However, we should not say that all questions must
require this skill; a question can require the performance of
some complex reasoning (e.g., logical and multi-hop rea-
soning) and merely need to identify the sentence that gives
the correct answer without precisely understanding that sen-
tence. Nevertheless, if the question is not intended to require
such reasoning, we should care whether it can be solved
with only a (sentence-level) bag of words. In order to ensure
that a model can understand the precise meaning of a de-
scribed event, we may need to include questions to evaluate
the grammatical and syntactic understanding into a dataset.
s8: discourse relation understanding (sentence order
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Ablation method \ Dataset CoQA DuoRC Hotpot-
QA

SQuAD
v1.1

SQuAD
v2.0 ARC MCTest Multi-

RC RACE SWAG Rel.
avg.

Answering style answer extraction (F1) multiple choice (accuracy)

Original dataset 77.4 0.0 58.4 0.0 63.6 0.0 91.5 0.0 81.9 0.0 52.7 0.0 87.8 0.0 78.0 0.0 68.8 0.0 85.4 0.0 0.0

1. Q interrogatives only 20.1-74.0 14.2-75.8 15.0-76.4 15.2-83.4 50.1-38.9 35.6-32.5 64.1-27.0 52.6-32.6 56.7-17.5 77.1 -9.7 -46.8
2. Function words only 53.0-31.5 5.8-90.1 7.8-87.8 17.4-81.0 50.2-38.7 44.0-16.6 32.2-63.3 61.9-20.6 43.2-37.3 68.9-19.4 -48.6
3. Content words only 60.9-21.3 47.9-18.0 56.2-11.6 80.7-11.8 73.5-10.3 48.0 -8.9 80.3 -8.5 74.5 -4.5 62.0 -9.8 82.6 -3.3 -10.8
4. Vocab. anonymization 39.0-49.6 18.6-68.2 16.8-73.6 61.2-33.1 59.4-27.0 29.2-44.6 25.3-71.2 57.2-26.7 26.1-62.1 25.5-70.1 -52.6
5. Most sim. sent. only 32.6-57.9 35.8-38.7 16.9-73.4 68.5-25.1 72.8-11.2 43.6-17.2 50.3-42.7 67.9-12.9 52.1-24.3 85.4 -0.1 -30.4
6. Context words shuff. 29.8-61.5 25.4-56.6 23.6-62.9 35.9-60.7 52.4-36.1 47.4 -9.9 47.2-46.3 64.3-17.6 51.7-24.9 78.6 -8.0 -38.4
7. Sentence words shuff. 53.0-31.6 35.9-38.6 43.1-32.2 62.1-32.1 64.4-21.4 46.4-11.8 70.6-19.6 71.4 -8.5 59.7-13.3 80.3 -6.0 -21.5
8. Sentence order shuff. 72.2 -6.8 56.1 -4.0 53.7-15.6 90.3 -1.3 80.7 -1.5 50.3 -4.5 82.5 -6.0 75.6 -3.0 66.8 -2.9 85.4 -0.0 -4.6
9. Dummy numerics 75.9 -1.9 57.8 -1.0 60.0 -5.6 89.5 -2.2 78.7 -3.9 49.7 -5.7 85.0 -3.2 76.2 -2.3 67.8 -1.5 85.3 -0.1 -2.8

10. Logical words dropped 76.7 -0.9 58.0 -0.7 62.1 -2.3 91.0 -0.5 80.6 -1.6 52.0 -1.3 85.3 -2.8 77.3 -1.0 67.7 -1.5 85.4 0.0 -1.3
11. Pronoun words dropped 76.5 -1.2 57.0 -2.5 63.4 -0.3 91.2 -0.2 81.8 -0.2 52.0 -1.3 86.6 -1.4 77.4 -0.8 68.3 -0.7 84.8 -0.8 -0.9
12. Causal words dropped 77.3 -0.1 58.3 -0.3 63.3 -0.5 91.2 -0.3 81.8 -0.2 52.0 -1.3 87.5 -0.4 77.6 -0.6 68.2 -0.8 85.5 0.0 -0.4

Table 2: The performances (%) of the baseline model with the ablation tests on the development set. Values in smaller font are
changes (%) relative to the original baseline performance, and the rightmost column (“Rel. avg.”) shows their averages.

shuffle). The smallest drop, excluding SWAG, which has
one context sentence, was −1.3%, on SQuAD v1.1.4 Ex-
cept for HotpotQA, the datasets show small drops (less than
10%), which indicates that most solved questions do not re-
quire understanding of adjacent discourse relations and are
solvable even if the sentences appear in an unnatural order.

For SQuAD v2.0, we observed that the model recall in-
creases for the no-answer questions. Because F1 score is
computed between the has- and no-answer question subsets,
the scores tend to be higher than those for SQuAD v1.1.5

4.3 Further Analyses

To complement the observations in Section 4.2, we per-
formed further experiments as follows.

The whole question and/or context ablation. To cor-
rectly interpret the result for s1, we should know the perfor-
mance on the empty questions. Likewise, for multiple-choice
questions, the performance on the empty context should be
investigated to reveal biases contained in the answer options.
Therefore, we report the baseline results on the whole ques-
tion and/or context ablations.6

Our results are reported in Table 3. Although the perfor-
mance on SQuAD v2.0 was relatively high, we found that
the model predicted no answer for all of the questions (in
this dataset, almost half of the questions are no answer).
The other answer extraction datasets showed a relative drop
of 80–90%. This result is not surprising since this setting
forces the model to choose an answer span arbitrarily. On
the multiple-choice datasets, on the other hand, the accura-
cies were higher than those of random choice (50% for Mul-

4Min et al. (2018) also reported that more than 90% of questions
on SQuAD v1.1 necessitate only a single sentence to answer them.

5See Appendix G for detailed numbers.
6This approach was already investigated by Kaushik and Lip-

ton (2018). However, there is no overlap in datasets between ours
and those they analyzed other than SQuAD v1.1.

tiRC and 25% for the others), which implies that some bias
exists in the context and/or the options.

Training and evaluating on the modified context. A
question that was raised during the main analysis is what
would happen if the model was trained on the modified in-
put. For example, given that the performance with the con-
tent words only is high, we would like to know the upper
bound performance when the model is forced to ignore func-
tion words also during training. Hence we trained the model
with the ablations for the following skills: s3 content words
only; s6 context word shuffle; and s7 sentence word shuffle.

The results are reported in the bottom rows of Table 3.
On almost all datasets, the baseline model trained on the ab-
lation training set (s′3, s′6, and s′7) displayed higher scores
than that on the original training set (s3, s6, and s7). On
CoQA, for instance, the relative change from the original
score was only −8.3% when the model was trained on s3
content words only. Although s′3 and s′7 with RACE were
exceptions, their learning did not converge within the spec-
ified number of epochs. We observed that for all datasets
the relative upper bounds of performance were on average
92.5%, 80.1%, and 91.8% for s3, s6, and s7, respectively.
These results support our observations in Section 4.2, that
is, the questions allow solutions that do not necessarily re-
quire these skills, and thus fall short of testing precise NLU.
Even without tuning on the ablation training set, however,
our methods can make an optimistic estimation of questions
that are possibly dubious for evaluating intended skills.

Data leakage in BERT for SWAG. BERT’s perfor-
mance on SWAG is close to the performance by humans
(88.0%). However, the questions and corresponding options
for SWAG are generated by a language model trained on the
BookCorpus (Zhu et al. 2015), on which BERT’s language
model is also pretrained. We therefore suspect that there is
severe data leakage in BERT’s language model as reported
in Zellers et al. (2019). To confirm this issue, we trained a
model without the context (i.e., the first given sentence). The
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Ablation method \ Dataset CoQA DuoRC Hotpot-
QA

SQuAD
v1.1

SQuAD
v2.0 ARC MCTest MultiRC RACE SWAG Rel.

avg.

Original dataset 77.4 0.0 58.4 0.0 63.6 0.0 91.5 0.0 81.9 0.0 52.7 0.0 87.8 0.0 78.0 0.0 68.8 0.0 85.4 0.0 0.0

Drop all Q words 6.7-91.3 10.8-81.6 10.0-84.2 12.0-86.9 50.1-38.9 36.6-30.6 61.6-29.9 53.2-31.8 55.4-19.5 76.9-10.0 -50.5
Drop all C words - - - - - 40.3-23.6 32.5-63.0 61.7-20.9 41.0-40.4 71.7-16.0 -32.8
Drop all C&Q words - - - - - 29.9-43.3 35.3-59.8 57.2-26.7 34.9-49.3 62.1-27.3 -41.3

Trained & evaluated on
3′. Content words only 71.0 -8.3 51.1-12.6 61.7 -3.0 85.4 -6.6 74.8 -8.7 49.0 -7.0 80.6 -8.2 74.5 -4.4 58.4-15.2 84.3 -1.4 -7.5
6′. Context word shuff. 52.9-31.7 40.2-31.2 46.1-27.4 68.0-25.7 80.6 -1.7 46.6-11.5 55.3-37.0 70.1-10.2 54.7-20.5 83.6 -2.1 -19.9
7′. Sentence word shuff. 68.3-11.8 47.7-18.4 66.8 5.0 82.4 -9.9 80.3 -2.0 47.7 -9.6 75.0-14.6 73.6 -5.6 59.2-14.0 84.0 -1.6 -8.2

Table 3: Results of further analyses: the performance (%) after dropping all question (“Q”) and/or context (“C”) words, and that
of the baseline model both trained and evaluated on the modified inputs.

Method \ Dataset SQuAD v1.1 RACE

Human Baseline Human Baseline

3. Content words only 100.0 86.7 95.0 90.0
4. Vocab. anonymization 70.0 77.6 10.0 25.0
6. Context words shuff. 40.0 53.3 30.0 75.0
7. Sentence words shuff. 70.0 70.5 75.0 85.0

Table 4: Comparison of the human solvability and the base-
line model’s performance (%) on questions that are sampled
from the ablation tests.

accuracy on the development set, which was also without the
context, was 74.9% (a relative decrease of 12.2%). This re-
sult suggests that we need to pay more attention to the rela-
tions of corpora on which a model is trained and evaluated,
but leave further analysis for future work.

5 Qualitative Evaluation

In this section, we qualitatively investigate our ablation
methods in terms of the human solvability of questions and
the reconstructability of ablated features.

We analyze questions of SQuAD v1.1 and RACE which
cover both answering styles and are influential in the com-
munity. We randomly sampled 20 questions from each
dataset that are correctly solved (100% F1 and accuracy)
by the baseline model on the original datasets. Our analy-
sis covers four ablation methods (σ3 content words only (in-
volving σ10,11,12), σ4 vocabulary anonymization, σ6 context
word shuffle, and σ7 sentence word shuffle) which provided
specific insights in Section 4.

5.1 Human Solvability after the Ablation

Motivation. In Section 4, we observed that the baseline
model exhibits remarkably high performance on some ab-
lation tests. To interpret this result, we investigate if a ques-
tion is solvable by humans and the model. Concretely, the
question after the ablation can be (A) solvable by both hu-
mans and the model, (B) solvable by humans but unsolvable
by the model, (C) unsolvable by humans but solvable by the
model, or (D) unsolvable by both humans and the model.
For Case A, the question is easy and does not require com-
plex language understanding. For Cases B and C, the model
may use unintended solutions because (B) it does not use the

same solution as humans or (C) it cleverly uses biases that
humans cannot recognize. For Case D, the question may re-
quire the skill intended by the ablation method. Although
Cases A to C are undesirable for evaluating the systems’
skills, it seems to be useful to distinguish them for further
improvement of the dataset creation. We therefore perform
the annotation of questions with human solvability; We de-
fine that a question is solvable if a reasonable rationale for
answering the question can be found in the context.

Results. Table 4 shows the human solvability along with
the baseline model’s performance on the sampled questions.
The model’s performance is taken from the model trained on
the original datasets except for the vocabulary anonymiza-
tion method. For the content words only on both datasets, the
human solvability is higher than the baseline performance.
Although these gaps are not significant, we might be able to
infer that the baseline model relies on content words more
than humans (Case B). Given that the high performance of
both humans and the baseline model, most of the questions
fall into Case A, i.e., they are easy and do not necessarily
require complex reasoning involving the understanding of
function words.

For the other three methods, the human solvability is
lower than the baseline performance. This result indicates
that the questions correctly solved only by the baseline
model may contain unintended biases (Case C). For exam-
ple, the gap in the context word shuffle of RACE is signifi-
cant (30.0% vs. 75.0%). Figure 2 shows a question that is
unsolvable for humans but can be solved by the baseline
model. We conjecture that while humans cannot detect bi-
ases easily, the model can exploit biases contained in the
answer options and their relations to the given context.

5.2 Reconstructability of Ablated Features

Motivation. We also seek to investigate the reconstructabil-
ity of ablated features. Even if a question falls under Case A
in the previous section, it might require the skill intended
by the ablation; If a reader is able to guess the dropped in-
formation and uses it to solve the question, we cannot say
that the question does not require the corresponding skill.
For example, even after dropping function words (σ3), we
might be able to guess which function word to fill in a
cloze based on grammaticality and lexical knowledge. Such
reconstructable features possibly exist for some ablation
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Original context

[...] By now you have probably heard about Chris Ul-
mer, the 26-year-old teacher in Jacksonville, Florida,
who starts his special education class by calling up each
student individually to give them much admiration and
a high-five. I couldn’t help but be reminded of Syona’s
teacher and how she supports each kid in a very similar
way. Ulmer recently shared a video of his teaching expe-
rience. All I could think was: how lucky these students
are to have such inspirational teachers. [...]

Context with shuffled context words

[...] their with and to kids combined , t always of ( has
) mean problems the palsy five cerebral that communi-
cation , her standard ” assess ( . teacher a a now gesture
Florida admiration and , much calling Ulmer to individ-
ually ( of class his heard Jacksonville year special you
up Chris greeting five ) congratulation by give education
who , them or about probably the in by each - student
high , old - - have starts 26 . I s she similar reminded be
’ each t and in help ’ kid teacher [...]

Question

What can we learn about Chris Ulmer?
Options (the answer is in bold)

(A) He praises his students one by one. (B) He is
Syona’s favorite teacher. (C) He use videos to teach his
students. (D) He asks his students to help each other.

Figure 2: Example of questions with shuffled context words
from RACE. Although the question appears unsolvable for
humans, the baseline model predicts the correct answer.

methods. However, they are not critical if they are unnec-
essary for answering questions. We can list the following
cases: ablated features are (α) unreconstructable and un-
necessary, (β) unreconstructable and necessary, (γ) recon-
structable and unnecessary, and (δ) reconstructable and nec-
essary. To verify that ablation methods work, we need to
confirm that there are few questions of Case δ. The other
cases are not critical to our observations in the main experi-
ment. We therefore perform the annotation with the follow-
ing queries: (i) are ablated features reconstructable? and (ii)
are reconstructable features really necessary for answering?
When the answers for both queries are yes, a question is in
Case δ. In the annotation, we define that features in a ques-
tion are reconstructable if the features existing around the
rationale for answering the question are guessable. We also
require that these features are necessary to decide the answer
if the correct answer becomes undecidable without them.

Results. For both datasets, the annotation shows that,
not surprisingly, almost all features are unreconstructable
in the shuffled sentence/context words and the vocabulary
anonymization (except for one example in RACE). When
these questions are solvable / unsolvable by humans, we
can say that features are unnecessary (Case α) / necessary
(Case β) for answering the questions. In contrast, the anno-

tators could guess function words for some questions even
if these words are dropped (SQuAD: 55.0% and RACE:
15.0%). The annotation of the necessity also shows that,
however, reconstructable features (function words in this
case) for all the questions are not necessary to answer them
(i.e., Case γ). Therefore, we could not find any question in
Case δ. We report the annotation results in Appendix H. It is
not easy for the annotator to completely ignore the informa-
tion of reconstructed features. We leave designing a solid,
scalable annotation scheme for future work.

In summary, we found that almost all ablated features are
unreconstructable. Although for some questions ablated fea-
tures are reconstructable for the content words only, these
words are not necessarily required for answering the ques-
tions. Overall, this result supports our observations in Sec-
tion 4, i.e., questions already solved in existing datasets do
not necessarily require complex language understanding.

6 Discussion

In this section, we discuss two requirements for developing
the MRC task as an NLU benchmark.

The control of question solvability. Not to allow the
model to focus on unintended objectives, we need to ensure
that each question is unsolvable without its intended requi-
site skill. Therefore, when benchmarking, we first need to
identify necessary features whose presence determines the
question’s solvability. To identify them, we might need to
perform ablation testing with humans. Further, we need to
evaluate a model in both regular and ablation settings. This
is because a model may detect some biases that enable it
to solve the question; such biases can actually be false for
humans and may be acquired by the model through overfit-
ting to datasets. Nonetheless, there is a case in which, even
if we can identify necessary features, the model can have
prior, true knowledge (e.g., world knowledge) of the correct
answer. In this case, the model can answer the question with-
out the context. To avoid this circumvention, we may need
to evaluate the model on fictional texts.

Comprehensiveness of requisite skills. Another aspect
of NLU benchmarking is the comprehensiveness of skills.
Our proposed approach can be expanded in two further di-
rections: (i) inner-sentence and (ii) multiple-sentence levels.
For (i), we can focus on understanding of specific linguistic
phenomena. This includes logical and semantic understand-
ing such as in FraCaS (Cooper et al. 1994) and SuperGLUE
(Wang et al. 2019). To investigate particular syntactic phe-
nomena, we might be able to use existing analysis methods
(Marvin and Linzen 2018). For (ii), our skills can include
complex/implicit reasoning, e.g., spatial reasoning (Weston
et al. 2015) and lexically dependent causal reasoning (Sap
et al. 2019). Although we do not need to include all of these
skills in a single dataset, we need to consider the generaliza-
tion of models across them.

7 Conclusion

Existing analysis work in MRC is largely concerned with
evaluating the capabilities of systems. By contrast, in this
work, we proposed an analysis methodology for the bench-
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marking capacity of datasets. Our methodology consists of
input-ablation tests, in which each ablation method is associ-
ated with a skill requisite for MRC. We exemplified 12 skills
and analyzed 10 datasets. The experimental results suggest
that for benchmarking sophisticated NLU, datasets should
be more carefully designed to ensure that questions correctly
evaluate the intended skills. In future work, we will develop
a skill-oriented method for crowdsourcing questions.
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A Our Defined Requisite Skills

Reading skills. As s2 and s3, we propose limiting the in-
formation available in the context by dropping content and
function words respectively, which is intended to ascertain
the extent to which a question depends on the given word
type (e.g., a preposition in before a time-related expression
for a when question). Skill s5 provides a heuristic of the rel-
ative levels of attention between a question and the context.
Skill s6 is used to ensure that a model can extract the infor-
mation conditioned on the word order.

Reasoning skills. Skill s8 is for the understanding of
discourse relations between adjacent sentences, which re-
lies on information given by the sentence order in the con-
text. When we shuffle the sentence order, various relations,
such as causality and temporality, are expected to be bro-
ken. Skills s9 to s12 are defined more specifically; we drop
tokens that explicitly emphasize important roles in specific
skills such as if and not in logical reasoning.

B Experimental Details

In this section, we provide details of the specifications used
in our experiments.

Datasets. For CoQA, since this dataset allows for
yes/no/unknown questions, we appended these words to
the end of the context. These special words were not al-
lowed to be dropped. Additionally, we appended the pre-
vious question-answer pair prior to the current question so
that the model can consider the history of the QA conver-
sation. To compute the performance on SQuAD v2.0, we
used the best F1 value that was derived from the predictions
with a no-answer threshold of 0.0. For DuoRC, we used the
ParaRC dataset (the official preprocessed version provided
by the authors). When training a model on DuoRC and Hot-
potQA, we used the first answer span; i.e., the document
spans that have no answer span were not used in training. For
MCTest and RACE, we computed accuracy by combining
MC160 with MC500 and Middle with High, respectively.
For MultiRC, which is allowed to have multiple correct op-
tions for a question, we cast a pair consisting of a question
and one option as a two-option multiple choice (i.e., whether
its option is true or false) and computed the micro-averaged

Anonymization tag POS tag or tokens

@noun{ID} NN, NNS, NNP, NNPS
@verb{ID} VB, VBD, VBG, VBN,

VBP, VBZ
@adj{ID} JJ, JJR, JJS
@adv{ID} RB, RBR, RBS
@number{ID} CD
@wh{ID} WDT, WP, WP$, WRB
@prep{ID} IN, TO
@punct{ID} (punctuation except for

the period tokens below)
@period{ID} . ! ?

Table 5: Examples of anonymization tags and correspond-
ing POS tags (OntoNotes 5 version of Penn Treebank tag
set). We use @noun, @verb, @adj, @adv, and @number
for content words.

Dataset d b lr ep

CoQA 512 24 3 × 10−5 2
DuoRC 512 24 3 × 10−5 2
HotpotQA 512 24 3 × 10−5 2
SQuAD v1.1 384 24 3 × 10−5 2
SQuAD v2.0 384 24 3 × 10−5 2
ARC 384 24 1 × 10−5 4
MCTest 512 16 2 × 10−6 4
MultiRC 512 24 2 × 10−5 4
RACE 512 32 1 × 10−5 4
SWAG 128 32 1 × 10−5 4

Table 6: Hyperparameters used in the experiments, where
d is the size of the token sequence fed into the model, b is
the training batch size, lr is the learning rate, and ep is the
number of training epochs. We set the learning rate warmup
in RACE to 0.05 and 0.1 for the other datasets. We used
stride = 128 for documents longer than d tokens.

accuracy for the evaluation. The SWAG dataset is a multiple-
choice task of predicting which event is most likely to occur
next to a given sentence and the subject (noun phrase) of a
subsequent event. We cast the first sentence as the context
and the subject of the second sentence as the question. To
compute F1 scores for the answer extraction datasets, we
used the official evaluation scripts provided for the answer
extraction datasets.

Ablation methods. For σ4 vocabulary anonymization, we
used the tags as shown in Table 5 and @other tags for the
other POS tags. For σ10 logical words dropped, as logic-
related terms, we used the following: all, any, each, every,
few, if, more, most, no, nor, not, other, same, some, and than.
For σ12 causal words dropped, as causality-related terms, we
used the following: as, because, cause, since, therefore, and
why. For σ′

3 training with content words only, we dropped
function words as well as punctuation marks so that the
model would see only content words.
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Ablation method CoQA DuoRC HotpotQA SQuAD1.1 SQuAD2.0

6. Context w. shuff. 29.8 (0.3) 25.4 (0.4) 23.6 (0.3) 35.9 (0.3) 52.4 (0.2)
7. Sent. w. shuff. 53.0 (0.2) 35.9 (0.3) 43.1 (0.3) 62.1 (0.3) 64.4 (0.3)
8. Sent. ord. shuff. 72.2 (0.2) 56.1 (0.4) 53.7 (0.3) 90.3 (0.1) 80.7 (0.1)

Ablation method ARC MCTest MultiRC RACE SWAG

6. Context w. shuff. 47.4 (1.9) 47.2 (1.3) 64.3 (0.2) 51.7 (0.4) 78.6 (0.2)
7. Sent. w. shuff. 46.4 (2.0) 70.6 (1.6) 71.4 (0.3) 59.7 (0.1) 80.3 (0.1)
8. Sent. ord. shuff. 50.3 (0.9) 82.5 (1.4) 75.6 (0.4) 66.8 (0.3) 85.4 (0.0)

Table 7: Ablation results with variances in parentheses for
shuffle-related skills (s6, s7, and s8) for five different runs.

Dataset CoQA DuoRC HotpotQA SQuAD1.1 SQuAD2.0
Text genre various movie Wikipedia
Avg. # Q tokens 6.6 8.7 18.0 11.7 11.4
Avg. # C tokens 344.0 691.3 1206.5 147.6 151.6
Avg. # sentences in C 18.8 25.3 47.8 5.7 6.1
Avg. # dropped tokens
1. Q interrogatives only 5.8 100.0 7.7 100.0 16.8 100.0 10.7 100.0 10.4 100.0
2. Function words only 151.0 100.0 357.1 100.0 606.4 100.0 76.6 100.0 78.5 100.0
3. Content words only 131.6 100.0 305.6 100.0 366.3 100.0 50.8 100.0 52.7 100.0
5. Most sim. sent. only 300.0 99.8 623.6 97.8 1139.0 100.0 105.0 97.8 109.8 98.5
9. Dummy numerics 6.3 93.2 5.4 85.9 60.7 100.0 5.7 86.3 5.3 83.4

10. Logical words drop. 6.7 100.0 8.0 91.1 8.6 100.0 2.1 75.7 2.5 78.8
11. Pronoun words drop. 19.7 98.6 49.4 99.4 22.3 99.9 2.3 72.6 1.9 70.8
12. Causal words drop. 2.4 84.4 5.5 88.4 9.8 99.0 1.4 66.5 1.5 69.5

Dataset ARC MCTest MultiRC RACE SWAG
Text genre science story story various video
Avg. # Q tokens 25.5 9.2 17.6 11.1 3.0
Avg. # C tokens 131.4 247.7 339.9 326.8 13.3
Avg. # sentences in C 8.6 20.1 15.9 19.8 1.0
Avg. # dropped tokens
1. Q interrogatives only 24.4 100.0 8.1 100.0 16.5 100.0 10.6 100.0 2.9 100.0
2. Function words only 67.8 100.0 106.5 100.0 168.7 100.0 146.5 100.0 6.4 100.0
3. Content words only 46.5 100.0 106.7 100.0 113.6 100.0 132.6 100.0 5.4 99.8
5. Most sim. sent. only 89.3 98.3 217.6 99.7 299.4 100.0 288.0 99.8 0.0 0.1
9. Dummy numerics 2.2 53.0 1.5 67.5 20.1 100.0 6.2 90.0 0.1 8.0

10. Logical words drop. 2.8 73.2 4.6 97.5 4.7 95.7 7.6 97.2 0.1 7.3
11. Pronoun words drop. 1.8 65.8 22.0 100.0 13.5 99.2 19.4 99.1 0.8 54.1
12. Causal words drop. 1.3 56.7 1.2 51.2 2.2 87.3 2.3 78.2 0.1 9.2

Table 8: Statistics of the datasets examined and average
numbers of tokens dropped by our ablation methods σi

(i = 1, 2, 3, 5, 9, ..., 12). The tokens are counted after tok-
enization of the punctuation. Values in smaller font denote
the proportion (%) of questions that contain dropped tokens.

C Hyperparameters of the Baseline Model

Hyperparameters used in the baseline model are shown in
Table 6.

D Performance Variances in Shuffle Methods

We report the variance for shuffling methods s6 context
words shuffle, s7 sentence words shuffle, and s8 sentence
order shuffle in Table 7.

E Statistics of the Examined MRC Datasets

Table 8 shows the statistics for the examined MRC datasets.

F Full Observations of the Main Results

In this appendix, we describe the results for the reading and
reasoning skills not mentioned in Section 4.2.
s1: recognizing question words. For the first four

answer-extraction datasets, the performance decreased by
more than 70%. For the multiple-choice datasets, the per-
formance decreased by an average of 23.9%.
s5: attending to the whole context other than similar

sentences. Even with only the most similar sentences, the
baseline models achieved a performance level greater than

Ablation method \Subset Has-ans
5928

No-ans
5945

Total
11873

Original dataset 82.6 0.0 79.9 0.0 81.9 0.0
1. Interrogatives in Q 8.6-89.6 47.3-40.8 50.1-38.9
2. Function words only 0.4-99.5 99.6 24.7 50.1-38.8
3. Content words only 65.6-20.5 81.2 1.6 73.5-10.3
4. Vocab. anonymization 41.9-49.3 76.9 -3.8 59.4-27.5
5. Most sim. sent. only 69.2-16.2 83.2 4.1 72.8-11.1
6. Context words shuff. 9.1-89.0 95.5 19.5 52.4-36.1
7. Sentence words shuff. 38.8-53.0 90.2 12.9 64.6-21.2
8. Sentence order shuff. 78.4 -5.1 81.9 2.5 80.3 -2.0
9. Dummy numerics 74.7 -9.6 82.0 2.6 78.7 -3.9

10. Logical words dropped 80.4 -2.6 80.0 0.1 80.6 -1.6
11. Dummy pronoun res. 82.0 -0.7 80.6 0.8 81.8 -0.2
12. Causal words dropped 82.1 -0.5 79.9 0.0 81.8 -0.2

All Q words dropped 10.8-86.9 17.7-77.9 50.1-38.9

Table 9: Results on the dev set of SQuAD v2.0 for subsets
with normal (Has-ans) and no-answer (No-ans) questions.

Method \ Dataset SQuAD v1.1 RACE
α β γ δ α β γ δ

3. Content words only .45 .00 .55 .00 .80 .05 .15 .00
4. Vocab. anonymization .70 .30 .00 .00 .10 .90 .00 .00
6. Context words shuff. .40 .60 .00 .00 .30 .70 .00 .00
7. Sentence words shuff. .70 .30 .00 .00 .70 .25 .05 .00

Table 10: Frequency of questions for Cases α to δ for
SQuAD v1.1 and RACE. Ablated features are (α) unrecon-
structable and unnecessary, (β) unreconstructable and nec-
essary, (γ) reconstructable and unnecessary, and (δ) recon-
structable and necessary. Questions for Case δ are problem-
atic for interpreting our main observations.

half their original performances in 8 out of 10 datasets. In
contrast, HotpotQA showed the largest decrease in perfor-
mance. This result reflects the fact that this dataset contains
questions requiring multi-hop reasoning across multiple sen-
tences.
s9–s12: various types of reasoning. For these skills, we

can see that the performance drops were small; given that
the drop for s3 recognizing content words alone was under
20%, we can infer that specific types of reasoning might
not be critical for answering the questions. Some types of
reasoning, however, might play an essential role for some
datasets: s9 numerical reasoning in HotpotQA (whose ques-
tions sometimes require answers with numbers) and s11 pro-
noun coreference resolution in DuoRC (consisting of movie
scripts).

G Detailed Results of SQuAD v2.0

We report the ablation results for has-answer and no-answer
questions in SQuAD v2.0 in Table 9.

H The Annotation Results

Table 10 shows the frequency of questions for Cases α to δ
for SQuAD v1.1 and RACE. See Section 5.2 for details.
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