
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Tensor Graph Convolutional Networks for Text Classification

Xien Liu,*1 Xinxin You,∗3,4 Xiao Zhang,1 Ji Wu,1,2 Ping Lv3,4

1Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
2Institute for Precision Medicine, Tsinghua University, Beijing 100084, China

3Tsinghua-iFLYTEK Joint Lab, iFlytek Research, Beijing 100084, China
4State Key Laboratory of Cognitive Intelligence, Hefei, Anhui 230088, China

Abstract

Compared to sequential learning models, graph-based neu-
ral networks exhibit some excellent properties, such as abil-
ity capturing global information. In this paper, we investi-
gate graph-based neural networks for text classification prob-
lem. A new framework TensorGCN (tensor graph convolu-
tional networks), is presented for this task. A text graph ten-
sor is firstly constructed to describe semantic, syntactic, and
sequential contextual information. Then, two kinds of prop-
agation learning perform on the text graph tensor. The first
is intra-graph propagation used for aggregating information
from neighborhood nodes in a single graph. The second is
inter-graph propagation used for harmonizing heterogeneous
information between graphs. Extensive experiments are con-
ducted on benchmark datasets, and the results illustrate the
effectiveness of our proposed framework. Our proposed Ten-
sorGCN presents an effective way to harmonize and integrate
heterogeneous information from different kinds of graphs.

Introduction

Text classification is one of the most fundamental tasks in
the natural language processing community. It can be simply
formulated as X → y, where X is a piece of text (such as
a sentence/document) , and y ∈ [0, 1]n is the corresponding
label vector. In this study, we only consider one label clas-
sification problem. In practice, numerous real applications
can be cast into a text classification problem, such as doc-
ument organization, news filtering, spam detection, EHR-
based disease diagnoses (Lipton et al. 2015; Che et al. 2015;
Miotto et al. 2016).

Text representation learning is the first and essential step
for the text classification problem. The study of text repre-
sentation can be summarized into two lines: 1) engineering
features and 2) learning features. In the study of engineering
features, a piece of text is represented with hand-crafted fea-
tures, such as bag-of-word features, sparse lexical features
(Wang and Manning 2012), and entity-based features (Chen-
thamarakshan et al. 2011). Recently, text features are auto-
matically extracted from the raw text with machine learn-

∗The first two authors contribute equally to this work.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ing models. According to the learning models, the manners
of feature learning can be further cast into two categories:
1) sequential-based learning models and 2) graph-based
learning models. The most used sequential-based learning
models include convolutional neural networks (Kim 2014;
Zhang, Zhao, and LeCun 2015; Conneau et al. 2016) and
recurrent neural networks (Liu, Qiu, and Huang 2016; Tai,
Socher, and Manning 2015), which promote to capture text
features from local consecutive word sequences. Recently,
graph-based learning models, such as graph neural networks
(Cai, Zheng, and Chang 2018; Battaglia et al. 2018), have at-
tracted widespread attention and been successfully applied
for solving the text classification problem (Kipf and Welling
2016; Yao, Mao, and Luo 2019).

Different from sequence learning models, graph neural
networks (GNN) can directly deal with complex structured
data, and prioritize exploiting global features. Data from
many real applications can be naturally cast into a graph
(Deac et al. 2019; Xu et al. 2019), but it does not hold for se-
quential free text. Therefore, GNN-based text learning must
include two stages: 1) construct graphs from free text, and
2) build a graph-based learning framework. A straightfor-
ward manner of graph construction is to build and connect
relationships between words/entities in the free text. Re-
cently, Yao et al. (2019) proposed a text graph-based neural
network TextGCN, which achieved state-of-the-art perfor-
mance in some benchmark datasets of text classification. In
their framework, a text graph is firstly constructed based on
the sequential contextual relationship between words. Then
a graph convolutional network (GCN) (Kipf and Welling
2016) is employed to learn on the text graph. According to
the more recently reported in (Luo, Uzuner, and Szolovits
2016; Bastings et al. 2017; Vashishth et al. 2019), more con-
textual information should be considered, such as semantic
and syntactic contextual information.

Inspired by the recent progress, we propose a new graph-
based text classification framework TensorGCN (see figure
1). Semantic-based, syntactic-based, and sequential-based
text graphs are firstly constructed to form a text graph
tensor. The graph tensor is used to capture text informa-
tion of semantic context, syntactic context, and sequential
context, respectively. As pointed out in (Vashishth et al.

8409

Class_1

Class_2hidden layers

Doc_1

Doc_2

Doc_M

W1

D1

D2

W2

W3

D3
D4

D3

W1

D1
D2

W2

W3

D4

D3

D2

W1

D1

W2
W3

D3

D4

Syntactic-based graph

Semantic-based graph

Sequential-based graph

W1

D1

D2

W2

W3

D3
D4

D3

W1

D1

D2

W2

W3

D4

D3

W1

D1
D2

W2
W3

D3D4

Pooling

Intra-graph propagation

Inter-graph propagation

D1

D3

D4

D2

Text graph tensor construction

Text Corpus

TensorGCN learning on text graph tensor Classification for text documents

Node features with
heterogeneous information

Figure 1: The whole framework of our propsoed TensorGCN for text classification.

2019), the jointly learning of multi-graphs is a very chal-
lenging task, especially when the graphs hold very hetero-
geneous information. To encode the heterogeneous infor-
mation from multi-graphs, TensorGCN simultaneously per-
forms two kinds of propagation learning. For each layer,
an intra-graph propagation is firstly performed for aggre-
gating information from neighbors of each node. Then
an inter-graph propagation is used to harmonize heteroge-
neous information between graphs. Experimental results on
some benchmark datasets illustrate the effectiveness of Ten-
sorGCN for the text classification problem. The main con-
tributions are summarized as follows:

• A text graph tensor is constructed to describe contextual
information with semantic, syntactic, and sequential con-
straints, respectively.

• A learning method TensorGCN is proposed to harmo-
nize and integrate heterogeneous information from multi-
graphs.

• Extensive experiments are conducted on several bench-
mark datasets to illustrate the effectiveness of TensorGCN
for text classification.

Related work

Recently, graph neural networks have received growing at-
tentions and successfully used in many applications (Tu
et al. 2019; Yao, Mao, and Luo 2019; Cao et al. 2019;
Vashishth et al. 2019; Bastings et al. 2017; Kipf and Welling
2016; Li, Han, and Wu 2018; Xu et al. 2019). Yao et al.
(2019) employed the standard graph convolutional networks
(Kipf and Welling 2016) for text classification. In their
work, only one text graph is used to describe the local co-
occurring constraint; non-sequential text information has not
been fully considered. More recently, Vashishth et al. (2019)
utilized graph convolutional networks to incorporate syntac-
tic/semantic information for word embedding learning. In
their work, the semantic relationship between words is es-
tablished based on additional semantic sources, which will
restrict its application. They used syntactic and semantic
information independently, without jointly learning on the
semantic and syntactic graphs. Cao et al. (2019) presented

a multi-channel graph learning framework to align enti-
ties. In their framework, two graphs are ”crudely” forced to
share the trainable parameters in the learning process. When
graphs are very different and heterogeneous, the parameter-
sharing strategy does not work.

Methods

In this study, we utilize graph convolutional networks
(GCN) as a base component for text graph tensor learning,
due to its simplicity and effectiveness in practice. In this sec-
tion, we firstly give a brief overview of GCN and present a
simple definition of graph tensor. Then, we introduce details
of how to construct a graph tensor from a text corpus. Ulti-
mately, we present the TensorGCN learning model.

Graph convolutional networks (GCN)

A GCN is a generalization version of the traditional convolu-
tional neural networks (CNN) which can operate directly on
a graph. Formally, consider a graph G = (V,E,A) where
V (|V | = n) is the set of graph nodes, E is the set of graph
edges, and A ∈ Rn×n is the graph adjacency matrix. In
GCN learning, hidden layer representations are obtained by
encoding both graph structure and features of nodes with a
kind of propagation rule

H(l+1) = f(H(l), A), (l = 0, 1, · · · , L), (1)

where H(l) ∈ Rn×dl is the feature matrix of the lth layer
(dl: number of features for each node in the lth layer) and
L is the number of layers of GCN. A commonly used layer-
wise propagation rule is

H(l+1) = f(H(l), A) = σ(ÂH(l)W (l)), (2)

where Â = D̃− 1
2 ÃD̃− 1

2 is a symmetric normalization of
the self-connections added adjacency matrix Ã = A+ I (I
: an identity matrix), D̃ is the diagonal node degree matrix
with D̃(i, i) =

∑
j Ã(i, j) , W (l) ∈ Rdl×dl+1 is a layer-

specific trainable weight matrix, where dl and dl+1 are the
number of features for each node in the lth layer and the
(l + 1) th layer, respectively. σ is a non-linear activation
function, such as ReLU or Leaky ReLU. When in the last

8410

layer σ is always set to be the softmax function, and the
number of features for each node is equal to the number
of labels. Specifically, H(0) is the initial feature matrix,
where each row represents a node’s initial input feature.

Graph tensor definition

Since we want to utilize a series of graphs to fully investigate
our interested data (e.g. text documents) and different graphs
represent different properties of the data. All of these graphs
are packed into a graph tensor. For convenience of study,
here we make a formal definition of this kind of graph tensor,
which consists of multiple graphs sharing the same nodes.

Definition 0.1. G is a graph tensor, where G =
(G1, G2, · · · , Gr) and Gi = (Vi, Ei, Ai) , if Vi = Vj

(i, j = 1, 2, · · · , r) and Ai �= Aj (when i �= j).

Where Gi is the ith graph in the graph tensor G , Vi

(|Vi| = n) is the set of the ith graph nodes, and Ei is the
set of the ith graph edges. Ai is the ith graph adjacency
matrix. Since a graph structure is mainly described with its
adjacency matrix, for convenience we also pack the adja-
cency matrices into a tensor. A = (A1, A2, · · · , Ar) ∈
Rr×n×n is a graph adjacency tensor , where Ai (i =
1, 2, · · · , r) is the adjacency matrix of the ith graph in the
graph tensor G . The graph feature matrix in the formula
(2) is generalized into a graph feature tensor H(l) =

(H
(l)
1 , H

(l)
2 , · · · , H(l)

r) ∈ Rr×n×dl , where H
(l)
i ∈ Rn×dl

(i = 1, 2, · · · , r) is the feature matrix of the ith graph in
G. When l = 0, the graph feature tensor H(0) denotes the
initialized input features.

Text graph tensor construction

In this section, we describe how to construct a meaningful
graph tensor to describe text documents at different knowl-
edge/language properties. A straightforward manner of con-
structing a graph from text is to treat words and documents
as nodes in the graph. Therefore, we need to build two kinds
of edges between nodes: word-document edges, and word-
word edges. The word-document edges are built based on
word occurrence in documents and the edge weights are
measured with the term frequency-inverse document fre-
quency (TF-IDF) method. If no otherwise specified, in all
the following graphs the word-document edges are built and
measured with TF-IDF. In this study, we build word-word
edges based on three different language properties: seman-
tic information, syntactic dependency, and local sequential
context. Based on these different kinds of word-word edges,
we construct a series of text graphs to depict text documents.
Details are presented in the following sections.

Semantic-based graph Motivated by LSTM shows po-
tential ability to capture semantic information for word rep-
resentation (Iacobacci and Navigli 2019), we propose a
LSTM-based method to construct a semantic-based graph
from text documents (see figure 2). There are three main
steps:

- Step 1: Train a LSTM on the training data of the given
task (e.g. text classification here).

- Step 2: Get semantic features/embeddings with LSTM for
all words in each document/sentence of the corpus.

- Step 3: Calculate word-word edge weights based on word
semantic embeddings over the corpus.
For every sentence/document, we obtain word semantic

features/embeddings from the outputs of the trained LSTM
and calculate cosine similarity between words. If the simi-
larity value exceeds a predefined threshold of ρsem, it means
that the two words have a semantic relationship in the cur-
rent sentence/document. We count the number of times for
each pair of words having a semantic relationship over the
whole corpus. The edge weight of each pair of words (nodes
in the semantic-based graph) can be obtained by

dsemantic(wi, wj) =
#Nsemantic(wi, wj)

#Ntotal(wi, wj)
, (3)

where dsemantic(wi, wj) denotes the edge weight between
words wi and wj , #Nsemantic(wi, wj) is the number of
times that the two words have semantic relationship over
all sentences/documents in the corpus, and #Ntotal is the
number of times that the two words exist in the same sen-
tence/document over the whole corpus.

Syntactic-based graph For each sentence/document in
the corpus, we first utilize Stanford CoreNLP parser to ex-
tract the dependency between words. Though the extracted
dependency is directed, for simplicity, we treat it as an
undirected relationship. Similar to the strategies used in the
above semantic graph, we count the number of times for
each pair of words having syntactic dependency over the
whole corpus and calculate the edge weight of each pair of
words (nodes in the syntactic-based graph) by

dsyntactic(wi, wj) =
#Nsyntactic(wi, wj)

#Ntotal(wi, wj)
, (4)

where dsyntactic(wi, wj) denotes the edge weight between
words wi and wj , #Nsyntactic(wi, wj) is the number of times
that the two words have syntactic dependency relationship
over all sentences/documents in the corpus, and #Ntotal , as
used in the formula (3), is the number of times that the two
words exist in the same sentence/document over the whole
corpus.

Sequential-based graph Sequentia context depicts the
local co-occurrence (between words) language property,
which has been widely used for text representation learn-
ing. In this study, we utilize point-wise mutual information
(PMI) to describe this kind of sequence context information
using a sliding window strategy. The edge weight of each
pair of words (nodes in the sequential based graph) is calcu-
lated by

dsequential(wi, wj) = log
p(wi, wj)

p(wi)p(wj)
, (5)

where p(wi, wj) is the probability of the word pair (wi, wj)
co-occurring in the same sliding window, which is always
estimated by #Nco-occurrence(wi,wj)

#Nwindows
, where #Nwindows is the to-

tal number of the sliding windows over the whole text corpus

8411

�������	
��
���������	����������������	������������	��������	����������

����

���	

��
�����������������������������������

�����	
���������������

���������

���������
�����

�� ����	�� ����

����

	�	����	�	

���
 ���
 ���

��	 ���	��

��	�	 ����� ��

���	����
 ����� �		��

���

Figure 2: An example to show how to build relationship between words with LSTM encoded semantic information. Take one
document for example, the semantic-based graph is constructed by collecting all semantic relationship word pairs over all the
text corpus. For details see section Text Graph Tensor Construction: Syntactic-based graph.

and #Nco-occurrence(wi, wj) is the number of times that the
word pair (wi, wj) co-occurs in the same sliding windows
over the whole text corpus. p(wi) =

#Noccurrence(wi)

#Nwindows
is the

probability that the word wi is occurring in a given window
over text corpus, where #Noccurrence(wi) is the number of
times that the word wi occurs in the sliding windows over
the whole text corpus.

Graph tensor learning

After obtaining a text graph tensor, we focus on exploiting
effective learning frameworks to perform GCN on the graph
tensor. In the following, we will first introduce a preliminary
model “Merge edges + GCN” and then propose the Ten-
sorGCN model, which can directly learn on a graph tensor
in a straightforward but effective way.

Preliminary model: merge edges + GCN A straightfor-
ward manner of dealing with this problem is to firstly re-
duce the graph tensor into a single graph and then utilize
the standard GCN learner (2) to perform the learning pro-
cess on the single graph. As we discussed in the above
definition 0.1, here we mainly focus on the kind of graph
tensor in which all the graphs share the same set of nodes,
edges are the only difference. Therefore, we only need to
merge the edges into one graph by pooling the adjacency
tensor pooling(A) = pooling(A1, A2, · · · , Ar) , such as
max pooling, or mean pooling. A series of preliminary ex-
periments illustrate that it does not work to use max pooling
or mean pooling directly, due to that the graphs in the ten-
sor are very heterogeneous and edge weights from different
graphs do not match. Therefore, we employ a simple edge-
wise attention strategy to harmonize edge weights from dif-
ferent graphs. The adjacency matrix of the merged graph is
Amerge = pooling(A) =

∑r
i=1 W

i
edge � Ai, where W i

edge
is the edge-wise attention matrix with the same size of the
adjacency matrix, and � is the matrix dot product.

TensorGCN The above preliminary model takes a “rude”
manner that treats all graphs in the same representation
space and squeezes them into one graph, to some degree de-
stroying the structure of the tensor. Different graphs main-
tain different properties to depict the given data. Therefore,
it’s necessary to release some degree of freedom to the learn-
ing of different graphs in the tensor. On the other hand, we
need to design a mechanism to harmonize heterogeneous

information and structures of different graphs during the
learning process. The underlying principle of graph neu-
ral network learning is that nodes pass message (coordinate
information with each other) and update their feature rep-
resentation by propagating information among other nodes
within the neighborhood. Motivated by this message passing
schema, we utilize a similar manner to propagate informa-
tion between different graphs and thus generalize the sin-
gle graph neural network learning formula (2) into a graph
tensor version TensorGCN, which can directly perform con-
volutional learning on a tensor graph. For each layer of Ten-
sorGCN, we perform two kinds of propagation learning: first
intra-graph propagation and then inter-graph propagation
(see figure 3). We take the lth layer of TensorGCN for ex-
ample.

H(l) fintra−→ H(l)
intra

finter−→ H(l+1), (6)

where Hl ∈ Rr×n×dl (n : number of nodes, dl: feature di-
mension in the lth layer), as defined in the section of graph
tensor definition, is the hidden feature tensor of the lth layer
in TensorGCN, and H(l)

intra is the output feature tensor after
performing intra-graph propagation. finra and finter denote
the intra-graph propagation and inter-graph propagation, re-
spectively. The learning details of the two kinds of propaga-
tion are described next.

The intra-graph propagation learning is to aggregate in-
formation from neighbors of each node within a graph (see
figure 3-(a)). Therefore, the learning schema is almost iden-
tical to formula (2); the only difference is that all graphs
have to perform GCN learning, resulting in a tensor version.
Given the graph adjacency tensor A = (A1, A2, · · · , Ar) ∈
Rr×n×n, the feature of the ith graph in the lth layer is up-
dated by the intra-graph propagation fintra as follows

H(l)
intra(i, :, :) = σ(Â(i, :, :)H(l)(i, :, :)W

(l,i)
intra), (7)

where Â ∈ Rr×n×n is the normalized symmetric graph
adjacency tensor consisting of a series of normalized sym-
metric adjacency matrix. For example, Â(i, :, :) = D̃(i, :

, :)−
1
2 Ã(i, :, :)D̃(i, :, :)−

1
2 is a symmetric normalization of

the ith graph adjacency matrix, where Ã = A + I (I is
an identity tensor consisting of r identity matrix) and D
is the node degree tensor consisting of r diagonal node de-
gree matrices (D1, D2, · · · , Dr). Unlike formula (2), here
the trainable weight matrix is designed to be layer and graph

8412

W1

D1

D2

W2

W3

D3
D4

D3

W1

D1
D2

W2

W3

D4

D3

D2

W1

D1

W2
W3

D3

D4

Syntactic-based graph

Semantic-based graph

W1

D1

D2

W2

W3

D3
D4

D3

W1

D1
D2

W2

W3

D4

D3

W1

D1
D2

W2
W3

D3

D4

Features with sequential context

Features with syntactic context

Features with semantic context

Sequential-based graph
Intra propagation

Intra propagation

Intra propagation W1

D1

D2

W2

W3

D3
D4

D3

W1

D1

D2

W2

W3

D4

D3

W1

D1
D2

W2
W3

D3

D4

vir
tu

al
 gr

ap
h

W1

D1

D2

W2

W3

D3
D4

D3

W1

D1

D2

W2

W3

D4

D3

W1

D1
D2

W2
W3

D3

D4

Inter propagation

(a) Intra-graph propagation learning (b) Inter-graph propagation learning

 Input graph tensor Node features with graph
structure information

Node features with
heterogeneous information Propagation between graphs

Figure 3: Take the text graph tensor (see Section text Graph Tensor Construction) with three word nodes and three document
nodes for example to show one of the layer in the TensorGCN learning process. (a): Intra-graph propagation learning from the
input graph tensor; (b): Inter-graph propagation learning with using the output of the intra-graph propagation as its input. Here
we just take one virtual graph as an example to show how to harmonize heterogeneous information with inter-graph propagation
learning. In practice, all virtual graphs have to perform inter-graph propagation learning.

specific. For example, W
(l,i)
intra is the weight matrix of the ith

graph at lth layer 1. σ, as defined in the formula (2), is a kind
of activation function.

The inter-graph propagation learning is to propa-
gate/exchange information between different graphs in the
tensor (see the figure 3-(b)), such that the heterogeneous in-
formation from the different graphs can be gradually fused
into an accordant one. To achieve this purpose, we construct
a series of special graphs, called virtual graphs, by connect-
ing with nodes across the graphs in the tensor. As defined in
the definition 0.1 all graphs in the tensor actually share the
same set of nodes, that is Vi = Vj (i, j = 1, 2, · · · , n).
We make the “copy nodes” Vi(1), Vi(2), · · · , Vi(r) (actu-
ally they are the same node) from different graphs connect
to each other. Ultimately, we in total obtain n virtual graphs,
resulting in a new graph adjacency tensor A+ ∈ Rr×r×n

by collecting edge weights (specially here all weights are 1)
of the n virtual graphs. The inter-graph information prop-
agation learning finter on the virtual graphs is carried out
by

H(l+1)(:, j, :) = σ(A+(:, :, j)H(l)
intra(:, j, :)W

(l,j)
inter), (8)

where Hl+1 ∈ Rr×n×dl+1 is the output of inter-graph prop-
agation, also the input feature tensor of the l + 1th layer in
TensorGCN. W

(l,j)
inter is the trainable weight in the inter-

graph propagation learning. It’s important to be noted that
here the new adjacency matrix A+(:, :, j) are used neither
doing symmetric normalization nor adding self-connections,
which is very different from the formula (2) and (7). It’s not
necessary to do renormalization to the adjacency matrix of
the virtual graphs since all nodes in a virtual graph are con-
nected to each other, and the edge weights are set to 1. The

1We experimented with the setting that all graphs share the
same trainable weights, but our preliminary experiments illustrate
that this setting does not work. It should be noticed that the train-
able weight is the only variable parameters of the GCN learner. It’s
not reasonable to roughly compel all graphs to share this only vari-
able parameters, especially when graphs are strong heterogeneous.

self-connection strategy (always used in the standard GCN)
is intentionally not used here for the purpose that heteroge-
neous information is more effectively fused together

In the last layer of TensorGCN, after completed inter-
graph propagation, we perform a mean pooling over graphs
to obtain the final representation of document nodes for clas-
sification.

Experiments and results analysis
In this section, we evaluate the performance of our proposed
TensorGCN based text classification framework, then care-
fully examine the effectiveness of our constructed text graph
tensor and the ability of our developed TensorGCN algo-
rithm for joint learning on multi-graphs.

Symbol & abbreviation

For convenience, some symbols and abbreviations are used
in the following experiments, which are listed in the table 1.

Table 1: Symbol & abbreviation
Symbol & Abbreviation Explanation

20NG The 20-Newsgroups dataset
R8 R8 Reuters dataset
R52 R52 Reuters dataset

Ohsumed Ohsumed dataset
MR Movie Review dataset

SemGraph Semantic based graph
SynGraph Syntactic based graph
SeqGraph Sequential based graph
SemEdges Edges of SemGraph
SynEdges Edges of SynGraph
SeqEdges Edges of SeqGraph

Datasets and baselines

A suite of recently widely used benchmark datasets were
used to perform experiments and analysis. The bench-

8413

Table 2: Summary statistics of datasets and the number of edges in the constructed text graph tensor.
Dataset # Doc # Train # Test # Words # Classes Avg Length #SemEdges # SynEdges # SeqEdges

20NG 18,846 11,314 7,532 42,757 20 221.26 87,431,640 13,816,858 22,413,246
R8 7,674 5,485 2,189 7,688 8 65.72 6,472,304 408,772 2,841,760
R52 9,100 6,532 2,568 8,892 52 69.82 8,204,096 553,218 3,574,162

Ohsumed 7,400 3,357 4,043 14,157 23 135.82 7,442,388 989,102 6,867,490
MR 10,662 7,108 3,554 18,764 2 20.39 1,660,038 177,294 1,504,598

Table 3: Test accuracy comparison with baselines on benchmark datasets.
Model 20NG R8 R52 Ohsumed MR

TF-IDF + LR 0.8319 ± 0.0000 0.9374 ± 0.0000 0.8695 ± 0.0000 0.5466 ± 0.0000 0.7459 ± 0.0000
CNN-rand 0.7693 ± 0.0061 0.9402 ± 0.0057 0.8537 ± 0.0047 0.4387 ± 0.0100 0.7498 ± 0.0070

CNN-non-static 0.8215 ± 0.0052 0.9571 ± 0.0052 0.8759 ± 0.0048 0.5844 ± 0.0106 0.7775 ± 0.0072
LSTM 0.6571 ± 0.0152 0.9368 ± 0.0082 0.8554 ± 0.0113 0.4113 ± 0.0117 0.7506 ± 0.0044

LSTM (pretrain) 0.7543 ± 0.0172 0.9609 ± 0.0019 0.9048 ± 0.0086 0.5110 ± 0.0150 0.7733 ± 0.0089
Bi-LSTM 0.7318 ± 0.0185 0.9631 ± 0.0033 0.9054 ± 0.0091 0.4927 ± 0.0107 0.7768 ± 0.0086

PV-DBOW 0.7436 ± 0.0018 0.8587 ± 0.0010 0.7829 ± 0.0011 0.4665 ± 0.0019 0.6109 ± 0.0010
PV-DM 0.5114 ± 0.0022 0.5207 ± 0.0004 0.4492 ± 0.0005 0.2950 ± 0.0007 0.5947 ± 0.0038
fastText 0.1138 ± 0.0118 0.8604 ± 0.0024 0.7155 ± 0.0042 0.1459 ± 0.0000 0.7217 ± 0.0130

fastText (bigrams) 0.0734 ± 0.0068 0.8295 ± 0.0003 0.6819 ± 0.0004 0.1459 ± 0.0000 0.6761 ± 0.0279
SWEM 0.8516 ± 0.0029 0.9532 ± 0.0026 0.9294 ± 0.0024 0.6312 ± 0.0055 0.7665 ± 0.0063
LEAM 0.8191 ± 0.0024 0.9331 ± 0.0024 0.9184 ± 0.0023 0.5858 ± 0.0079 0.7695 ± 0.0045

Graph-CNN-C 0.8142 ± 0.0032 0.9699 ± 0.0012 0.9275 ± 0.0022 0.6386 ± 0.0053 0.7722 ± 0.0027
Graph-CNN-S − 0.9680 ± 0.0020 0.9274 ± 0.0024 0.6282 ± 0.0037 0.7699 ± 0.0014
Graph-CNN-F − 0.9689 ± 0.0006 0.9320 ± 0.0004 0.6304 ± 0.0077 0.7674 ± 0.0021

Text GCN 0.8634 ± 0.0009 0.9707 ± 0.0010 0.9356 ± 0.0018 0.6836 ± 0.0056 0.7674 ± 0.0020
TensorGCN 0.8774 ± 0.0005 0.9804 ± 0.0008 0.9505 ± 0.0011 0.7011 ± 0.0024 0.7791 ± 0.0007

mark corpora consist of five text classification datasets: 20-
Newsgroups dataset, Ohsumed dataset, R52 Reuters dataset,
R8 Reuters dataset, and Movie Review dataset. These
datasets involve many life genres, such as movie reviews,
medical literature, and news document, etc. The Movie
Review dataset is designed for binary sentiment classifi-
cation. The 20-Newsgroups dataset, R52 Reuters dataset,
R8 Reuters dataset are news classification. The Ohsumed
dataset is medical literature. A summary statistics of the
benchmark datasets is presented in table 2.

The baselines can be categorized into four categories: 1)
powerful traditional models, such as TF-IDF + LR ; 2) word
embedding based models, mainly including PV-DBOW (Le
and Mikolov 2014), PV-DM (Le and Mikolov 2014), fast-
Text (Joulin et al. 2016), and some recent state-of-the-art
methods such as SWEM (Shen et al. 2018) and LEAM
(Wang et al. 2018); 3) sequence deep learning models which
use CNN (Kim 2014), LSTM (Liu, Qiu, and Huang 2016)
or Bi-LSTM as feature extractor; 3) graph based represen-
tation learning models, such as Graph-CNN-C (Defferrard,
Bresson, and Vandergheynst 2016), Graph-CNN-S (Bruna et
al. 2013), Graph-CNN-F (Henaff, Bruna, and LeCun 2015),
and text GCN (Yao, Mao, and Luo 2019). More detail de-
scriptions about baselines and datasets can be found in (Yao,
Mao, and Luo 2019). To conduct a fair comparison study, we
utilize the results of baselines reported in (Yao, Mao, and
Luo 2019), and use the same datasets with the same settings
to test our model.

Experiment settings

In the construction of the sequential-based graph, the win-
dow size is 20 as used in (Yao, Mao, and Luo 2019), and
in the semantic-based graph construction, the initial word
embeddings are pre-trained with Glove, and the dimension
is 300, the dimension of LSTM is also set to 300. As sug-
gested and used in (Yao, Mao, and Luo 2019), in this study,
we also take a two-layers TensorGCN and dimension of the
node embedding in the first layer is 200, and the dimension
of the node embedding in the second layer is equal to the
number of the labels. In the training process, the dropout rate
is 0.5, and L2 loss weight is 5e-6. As used in (Yao, Mao,
and Luo 2019), we randomly selected 10% of the training
set as the validation set, which labels are not be used for
training. A maximum of 1000 epochs and Adam optimizer
with a learning rate of 0.002 are used, and early stopping
is performed when validation loss does not decrease for ten
consecutive epochs.

All results reported in this study are the mean values of
ten independent runs. Due to space limitations, the standard
deviation values are given only in the table 3.

Results analysis

Performance A comprehensive experiment is conducted
on the benchmark datasets. The results presented in the table
3 show that our proposed TensorGCN significantly outper-
forms all baselines (including some state-of-the-art embed-
ding learning and graph-based models). It should be noted

8414

���������

������������	

��	���

����������

����������

���

���

	���

	
�����������������������������������
��

���!�"����	
����
�#����
��������!�"	

����"������
���!���
�����
�	

��#�����
��!�"�
���	�$!��

����������"��
!���������	���

���!�"����	
����
�#����
��������!�"	

����"������
���!���
�����
�	

��#�����
��!�"�
���	�$!��

�!���������
�
��
��

	
�����������������������������������
�����������

��	�
��
����

��		
������
�������
���	�
��
����
������

	�������
������

�������������

���

���

	���

Figure 4: An example from the MR dataset to show how the important syntactic dependency information has been used by
TensorGCN to enhance sentiment classification performance.

that the strong baseline Text GCN is equivalent to Ten-
sorGCN with only using the sequential-based graph.

Table 4: Analysis of the effectiveness of SeqGraph, Syn-
Graph, and SemGraph. In the upper half table, the first three
rows are the results of only using a single graph, while the
lower half table is the results of ablation experiments. For
example, SemGraph(w/o) means TensorGCN without using
SemGraph. Graph tensor means three graphs are used.

Model 20NG R8 R52 Ohsumed MR

SeqGraph 0.8634 0.9707 0.9356 0.6836 0.7674
SynGraph 0.8478 0.9534 0.9299 0.6658 0.7496
SemGraph 0.8517 0.9520 0.9245 0.6626 0.7620

SemGraph(w/o) 0.8688 0.9776 0.9334 0.6917 0.7763
SynGraph(w/o) 0.8707 0.9753 0.9529 0.6854 0.7710
SeqGraph(w/o) 0.8699 0.9753 0.9486 0.6921 0.7746
Graph tensor 0.8774 0.9804 0.9505 0.7011 0.7791

Analysis of text graph tensor We also examine and per-
form an analysis of the effectiveness of our constructed text
graph tensor. The results of a single text graph, pairs of every
two graphs, and all three graphs (graph tensor) are presented
in the table 4. We notice that graph tensor has the best per-
formance, and each pair of graphs always show better per-
formance than any single graph. The phenomenons illustrate
that the proposed three kinds of text graphs are complemen-
tary to each other. We also observed that different text graphs
play different roles in different datasets. For example, in the
ablation experiments, there are worse accuracy results on the
Ohsumed dataset and MR dataset without using SynGraph.
It means that syntactic dependency plays an important role
in those two datasets. An example from the MR dataset has
been presented in figure 4 to show how syntactic dependency
information enhances the classification performance.

Analysis to TensorGCN learning Finally, we examine
the effectiveness of TensorGCN learning. We developed two
baselines that can deal with the multi-graphs learning prob-
lem. The first is the “Merge edges” method, which is our
proposed preliminary model in the section of Graph Tensor
Learning. The second baseline is TensorGCN(intra), which
is TensorGCN but without using an inter-graph propagation
strategy. Cao et al. (2019) also presented a method to deal

Table 5: Analysis of the effectiveness TensorGCN learning.
“Merge edges” is our proposed preliminary model which re-
duce multi-graphs into a single one with an edge-wise atten-
tion strategy (details see the section of Graph Tensor Learn-
ing). TensorGCN(intra) means TensorGCN without using
inter-graph propagation, only intra-graph propagation used.

Model 20NG R8 R52 Ohsumed MR

Merge edges 0.8721 0.9749 0.9463 0.6951 0.7532
TensorGCN(intra) 0.8701 0.9808 0.9498 0.6723 0.7656

TensorGCN 0.8774 0.9804 0.9505 0.7011 0.7791

with multiple graphs. Still, as we discussed above, it does
not work (Our preliminary experiments show the perfor-
mance is even worse than using a single graph) when graphs
are very different and heterogeneous.

The comparison results presented in table 5 illustrates that
TensorGCN has the best performance for jointly learning on
multi-graphs. Compared to TensorGCN(intra), TensorGCN
has better performance in almost all test datasets. There-
fore the inter-graph propagation strategy (used for harmo-
nizing information from different graphs) is very important
for graph tensor learning.

Conclusions

In this study, we propose a text graph tensor to capture fea-
tures from semantic, syntactic, and sequential contextual in-
formation. Experimental results illustrate that these different
context constraints are complementary and very important
for text representation learning. Furthermore, we general-
ize the graph convolutional networks into a tensor version
TensorGCN which can effectively harmonize and integrate
heterogeneous information from multi-graphs by the intra-
graph and inter-graph propagation simultaneously learning
strategy.

Acknowledgments

We thank the anonymous reviewers for their valu-
able comments. This work is supported by the Na-
tional Key Research and Development Program of China
(No.2018YFC0116800).

8415

References

Bastings, J.; Titov, I.; Aziz, W.; Marcheggiani, D.; and
Sima’an, K. 2017. Graph convolutional encoders for syntax-
aware neural machine translation.
Battaglia, P. W.; Hamrick, J. B.; Bapst, V.; Sanchez-
Gonzalez, A.; Zambaldi, V.; Malinowski, M.; Tacchetti, A.;
Raposo, D.; Santoro, A.; Faulkner, R.; et al. 2018. Rela-
tional inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261.
Bruna, J.; Zaremba, W.; Szlam, A.; and LeCun, Y. 2013.
Spectral networks and locally connected networks on
graphs.
Cai, H.; Zheng, V. W.; and Chang, K. C.-C. 2018. A compre-
hensive survey of graph embedding: Problems, techniques,
and applications. IEEE Transactions on Knowledge and
Data Engineering 30(9):1616–1637.
Cao, Y.; Liu, Z.; Li, C.; Li, J.; and Chua, T.-S. 2019. Multi-
channel graph neural network for entity alignment. arXiv
preprint arXiv:1908.09898.
Che, Z.; Kale, D.; Li, W.; Bahadori, M. T.; and Liu, Y.
2015. Deep computational phenotyping. In Proceedings of
the 21th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 507–516. ACM.
Chenthamarakshan, V.; Melville, P.; Sindhwani, V.; and
Lawrence, R. D. 2011. Concept labeling: Building text clas-
sifiers with minimal supervision. In Twenty-Second Interna-
tional Joint Conference on Artificial Intelligence.
Conneau, A.; Schwenk, H.; Barrault, L.; and Lecun, Y. 2016.
Very deep convolutional networks for text classification.
Deac, A.; Huang, Y.-H.; Veličković, P.; Liò, P.; and Tang,
J. 2019. Drug-drug adverse effect prediction with graph
co-attention. arXiv preprint arXiv:1905.00534.
Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. In Advances in neural information pro-
cessing systems, 3844–3852.
Henaff, M.; Bruna, J.; and LeCun, Y. 2015. Deep convo-
lutional networks on graph-structured data. arXiv preprint
arXiv:1506.05163.
Iacobacci, I., and Navigli, R. 2019. Lstmembed: Learn-
ing word and sense representations from a large semanti-
cally annotated corpus with long short-term memories. In
Proceedings of the 57th Conference of the Association for
Computational Linguistics, 1685–1695.
Joulin, A.; Grave, E.; Bojanowski, P.; and Mikolov, T. 2016.
Bag of tricks for efficient text classification. arXiv preprint
arXiv:1607.01759.
Kim, Y. 2014. Convolutional neural networks for sentence
classification.
Kipf, T. N., and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks.
Le, Q., and Mikolov, T. 2014. Distributed representations
of sentences and documents. In International conference on
machine learning, 1188–1196.

Li, Q.; Han, Z.; and Wu, X.-M. 2018. Deeper insights into
graph convolutional networks for semi-supervised learning.
In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence.
Lipton, Z. C.; Kale, D. C.; Elkan, C.; and Wetzel, R. 2015.
Learning to diagnose with lstm recurrent neural networks.
arXiv preprint arXiv:1511.03677.
Liu, P.; Qiu, X.; and Huang, X. 2016. Recurrent neural net-
work for text classification with multi-task learning. 2873–
2879.
Luo, Y.; Uzuner, Ö.; and Szolovits, P. 2016. Bridging se-
mantics and syntax with graph algorithms–state-of-the-art of
extracting biomedical relations. Briefings in bioinformatics
18(1):160–178.
Miotto, R.; Li, L.; Kidd, B. A.; and Dudley, J. T. 2016. Deep
patient: an unsupervised representation to predict the future
of patients from the electronic health records. Scientific re-
ports 6:26094.
Shen, D.; Wang, G.; Wang, W.; Min, M. R.; Su, Q.; Zhang,
Y.; Li, C.; Henao, R.; and Carin, L. 2018. Baseline needs
more love: On simple word-embedding-based models and
associated pooling mechanisms.
Tai, K. S.; Socher, R.; and Manning, C. D. 2015. Im-
proved semantic representations from tree-structured long
short-term memory networks.
Tu, M.; Wang, G.; Huang, J.; Tang, Y.; He, X.; and Zhou,
B. 2019. Multi-hop reading comprehension across multiple
documents by reasoning over heterogeneous graphs. arXiv
preprint arXiv:1905.07374.
Vashishth, S.; Bhandari, M.; Yadav, P.; Rai, P.; Bhat-
tacharyya, C.; and Talukdar, P. 2019. Incorporating syn-
tactic and semantic information in word embeddings using
graph convolutional networks. In Proceedings of the 57th
Conference of the Association for Computational Linguis-
tics, 3308–3318.
Wang, S., and Manning, C. D. 2012. Baselines and bigrams:
Simple, good sentiment and topic classification. In Proceed-
ings of the 50th annual meeting of the association for com-
putational linguistics: Short papers-volume 2, 90–94. Asso-
ciation for Computational Linguistics.
Wang, G.; Li, C.; Wang, W.; Zhang, Y.; Shen, D.; Zhang, X.;
Henao, R.; and Carin, L. 2018. Joint embedding of words
and labels for text classification. 2321–2331.
Xu, N.; Wang, P.; Chen, L.; Tao, J.; and Zhao, J. 2019.
Mr-gnn: Multi-resolution and dual graph neural network
for predicting structured entity interactions. arXiv preprint
arXiv:1905.09558.
Yao, L.; Mao, C.; and Luo, Y. 2019. Graph convolu-
tional networks for text classification. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33,
7370–7377.
Zhang, X.; Zhao, J.; and LeCun, Y. 2015. Character-level
convolutional networks for text classification. In Advances
in neural information processing systems, 649–657.

8416

