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Abstract

Many mobile applications and virtual conversational agents
now aim to recognize and adapt to emotions. To enable this,
data are transmitted from users’ devices and stored on cen-
tral servers. Yet, these data contain sensitive information that
could be used by mobile applications without user’s consent
or, maliciously, by an eavesdropping adversary. In this work,
we show how multimodal representations trained for a pri-
mary task, here emotion recognition, can unintentionally leak
demographic information, which could override a selected
opt-out option by the user. We analyze how this leakage dif-
fers in representations obtained from textual, acoustic, and
multimodal data. We use an adversarial learning paradigm
to unlearn the private information present in a representation
and investigate the effect of varying the strength of the adver-
sarial component on the primary task and on the privacy met-
ric, defined here as the inability of an attacker to predict spe-
cific demographic information. We evaluate this paradigm on
multiple datasets and show that we can improve the privacy
metric while not significantly impacting the performance on
the primary task. To the best of our knowledge, this is the first
work to analyze how the privacy metric differs across modal-
ities and how multiple privacy concerns can be tackled while
still maintaining performance on emotion recognition.

1 Introduction

Virtual conversational agents strive to emulate human-
like interaction to have more naturally flowing conversa-
tion (Metcalf et al. 2019). These agents often employ mod-
els that classify aspects of communication, including the
classification of the emotional content of speech. (Huang
et al. 2018). The resulting predictions can then be used to
bias response generation. Emotion classification is also used
in mobile and web applications to identify heightened risk
of suicidal ideation or mood fluctuations (Khorram et al. ;
Matton, McInnis, and Provost 2019; Gideon et al. 2019), for
the purpose of tracking or intervention. Data are sent from
users’ devices, including mobile applications (Khorram et
al. ) and Alexa or Google home devices (Piersol and Bed-
dingfield 2019), and are stored on central servers for analy-
sis.
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However, data transmitted from users’ devices are vulner-
able to data hacking and re-identification (Barbaro, Zeller,
and Hansell 2006). Eavesdroppers can use these data for
identification of an individual and to gain access to sensitive
information. A way to counter this issue in data collected
by mobile or smart home applications is to generate a data
representation on the device and then to transfer that repre-
sentation to the server for additional processing. The benefit
is that these representations can increase privacy by partially
obfuscating the actual content of the conversation (Bengio,
Courville, and Vincent 2013). However, they still contain
sensitive demographic information.

The implications of sensitive information leakage is pro-
found: research has shown that discrimination occurs across
variables of age, race, and gender in hiring, policing and
credit ratings (Hajian and Domingo-Ferrer ). (Abadi et al.
) showed how adding random noise to aggregated dataset
or individual samples can ensure defense against privacy at-
tacks. But, previous research has shown that privacy induced
using additional noise can often be exploited if the adversary
has access to the network used to generate anonymity (Kifer
and Machanavajjhala 2011). Therefore to ensure robustness,
we consider a scenario of the attacker having access to the
same embedding sub-network to generate the representa-
tions that will be used to train its attack network.

In this work, we focus on privacy in the context of emo-
tion recognition. Emotion recognition provides an impor-
tant test case because emotion production varies signif-
icantly across gender and race. As a result, the outputs
of emotion recognition models are often highly correlated
with these secondary demographic signals (Chaplin 2015;
Soto and Levenson 2009). We design approaches to first
measure leakage and then to counteract this leakage. We
measure privacy in two ways: 1) using a privacy metric,
which we define as the incapability of an attacker to re-
cover demographic information from representations, and
2) by determining an adversary’s ability to perform mem-
bership identification (Li et al. ), defined as the ability to
determine if a given user was in a dataset from which the
emotion recognition models were trained (this can be harm-
ful if the training data are collected in a sensitive context,
such as counselling or therapy). We ask the following seven
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questions:

1. Does demographic leakage differ in umimodal and mul-
timodal emotion recognition models?

2. How does the privacy metric change when a network is
trained to preserve privacy?

3. How does emotion recognition performance change
when networks are trained to preserve privacy?

4. How does the adversarial component’s strength impact
emotion recognition performance and the privacy metric?

5. Focusing on gender, how does the performance of emo-
tion recognition change when a network is trained to pre-
serve privacy?

6. Does the location of the adversarial component within a
network affect the privacy metric and emotion recogni-
tion performance?

7. Does the privacy preserving paradigm help defend
against other attacks such as membership identification?

Our results show that representations obtained for emo-
tion recognition can be exploited by an adversary to predict
sensitive variables given unimodal information (either audio
or lexical). We further show that multimodal models con-
tain even more sensitive information, as lexical and audio
each encode different aspects of demographic information.
We show that we can increase the defense against this at-
tack by adversarially training representations to be invariant
to gender. The novelty of this work is two fold: (1) we ana-
lyze how the demographic privacy of a representation differs
across modalities and how it can be increased using adver-
sarial paradigm; and, (2) we obtain privacy enhanced repre-
sentations that defend against multiple privacy attacks while
still maintaining performance on emotion recognition.

2 Related Work

Previous research has investigated methods to improve pri-
vacy in data collection. Early work focused on rule-based
systems, which would identify patterns in text and re-
place them with random word tokens (Gomez-Hidalgo et al.
2010). Other methods included the addition of background
noise or randomizing the order of sentences (Evfimievski
2002). These systems, though easy to interpret, are harder
to scale to larger or varying distributions of datasets for they
might necessitate an increase in the number of rules required
and require expert input.

Recent research has examined privacy preservation in the
context of neural networks. These efforts have primarily fo-
cused on ensuring that the input data are not memorized
and cannot be retrieved given a deployed model. (Carlini et
al. 2019) showed attackers could extract unique and secret
sequences such as credit card numbers given models that
are trained without accounting for unintended memoriza-
tion. (Abadi et al. ) proposed adding random noise to either
the aggregated dataset or to individual datapoints to defend
against membership query attacks. This method though, is
usually either used for structured data or images and often
incurs a cost in terms of a reduction in task performance.

Another line of work concentrates on fair algorithmic rep-
resentation. Though the end goal isn’t privacy, the method-
ology is similar. The aim is to create networks that are in-

variant to particular attributes, usually demographic infor-
mation to obtain debiased word embeddings (Bolukbasi et
al. 2016), ensure fairness pairities (Corbett-Davies and Goel
2018), and train fair hate speech classification (Davidson,
Bhattacharya, and Weber 2019).

Previous research has looked at task-specific privacy
preservation for a particular attribute in a dataset. For ex-
ample, (Elazar and Goldberg 2018) investigated text-based
privacy preservation for sentiment. (Zhao et al. 2019) looked
at minmax modelling of the utility-privacy tradeoff by clas-
sifying gender as a primary task, while masking ethnicity
and age. (Coavoux, Narayan, and Cohen 2018) looked into
modelling privacy by declustering representations that fall
under the same sensitive attribute subgroup.

Given most of the previous work on privacy preserving
representations concentrates on just lexical information, we
tackle the questions that arise from desiring privacy preser-
vation in multimodal representations for emotion recogni-
tion. While the primary goal of most previous works has
been to avoid unintentional inference by the application it-
self, we concentrate on minimizing the potency of an at-
tacker to deliberately recover sensitive attributes from an in-
variant representation.

3 Datasets and Features

3.1 Datasets

We use four common emotion recognition datasets: MSP-
Improv (Busso et al. 2017), MSP-Podcast (Lotfian and
Busso 2017), Interactive Emotional Dyadic MOtion Capture
(IEMOCAP) dataset (Busso et al. 2008), and Multimodal
Stressed Emotion (MuSE) dataset (Jaiswal et al. 2019).

MuSE. The MuSE dataset was collected to understand the
interplay between stress and emotion in natural spoken com-
munication. It contains audio, video, thermal, physiological
data and associated manual transcriptions. The dataset con-
sists of 55 recordings from 28 participants, for a total of
2,648 utterances. For these recordings, emotion in the partic-
ipant was induced via emotionally evocative monologue top-
ics (Aron et al. 1997). Data selection was performed to re-
duce the dataset to include only utterances of length [3, 25],
inline with previous emotion datasets (Khorram et al. ).

IEMOCAP. The IEMOCAP dataset was created to ex-
plore the relationship between emotion, gestures, and
speech. Pairs of actors, one male and one female (five males
and five females in total), were recorded over five sessions
(either scripted or improvised) The data were segmented by
speaker turn, resulting in a total of 10,039 utterances (5,255
scripted turns and 4,784 improvised turns). It contains audio,
video, and associated manual transcriptions.

MSP-Improv. The MSP-Improv dataset was collected to
capture naturalistic emotions from improvised scenarios
while partially controlling for lexical content. The data of
8,438 sentences were divided into 652 target sentences,
4,381 improvised turns (the remainder of the improvised
scenario, excluding the target sentence), 2,785 natural inter-
actions (interactions between recordings of the scenarios),

7986



and 620 read sentences (emotional readings of the target sen-
tences). It contains audio, video, and transcriptions derived
from automatic speech recognition (ASR).

MSP-Podcast. The MSP-Podcast dataset was collected to
build a naturlisitic emotionally balanced speech corpus by
retrieving emotional speech from existing podcast record-
ings. This was done using machine learning algorithms,
which along with a cost-effective annotation process using
crowdsourcing, led to a vast and balanced dataset. We use
a pre-split part of the dataset which has been identified for
gender of the speakers which comprises of 13,555 utter-
ances. The dataset as a whole contains audio recordings.

3.2 Labels

Emotion Labels. Utterances in each of the four datasets
were labeled using the dimensional descriptions of acti-
vation (calm vs. excited) and valence (positive vs. nega-
tive). Each utterance in the MuSE dataset was labeled on
a nine-point Likert scale by eight crowd-sourced annota-
tors (Jaiswal et al. 2019), who observed the data in random
order across subjects. We average the annotations to obtain
a mean score for each utterance, and then bin the mean score
into one of three classes, defined as, {“low”: [min, 4.5],
“mid”: (4.5, 5.5], “high”: (5.5, max]} valence and activa-
tion. Utterances in IEMOCAP and MSP-Improv were anno-
tated on a five-point Likert scale. The activation and valence
values for were averaged over all annotations for an utter-
ance and binned as: {“low”: [1, 2.75], “mid”: (2.75, 3.25],
“high”: (3.25, max]}. The labels for MSP-Podcast were an-
notated on a seven point Likert scale and averaged over all
annotations for an utterance and binned as: {“low”: [1, 3.75],
“mid”: (3.75, 4.25], “high”: (4.25, max]}.

3.3 Features

Acoustic. We use Mel Filterbank (MFB) features, which are
frequently used in speech processing applications, including
speech recognition, speaker recognition, and emotion
recognition. We extract the 40-dimensional MFB features
using a 25-millisecond Hamming window with a step-size
of 10-milliseconds. Each utterance is represented as a
40-dimensional time series. We z-normalize the obtained
acoustic features by speaker.

Lexical. We use the word2vec representation (Mikolov et
al. 2013) based on the transcriptions for MuSE and IEMO-
CAP, which has shown success in sentiment and emotion
analysis tasks. We do not use MSP-Improv due to errors
in ASR transcription or MSP-Podcast due to the lack of
transcripts. We represent each word in the input as a 300-
dimensional vector using a pre-trained word2vec model, re-
placing out-of-vocab words with the 〈unk〉 token. Each ut-
terance is represented as a sequence of 300-dimensional fea-
ture vectors.

4 Experimental Setup

In this section, we describe the network architecture, the
training recipe, and the metrics in consideration.

Figure 1: Privacy preserving network architecture.

4.1 Architecture

The objective of this system is to maximize the performance
of the emotion classifier while minimizing the performance
of the gender classifier (see Figure 1). The main network
consists of three components: (1) embedding sub-network,
Model(θ); (2) emotion classifier, θc and output yi; and (3)
gender classifier, Di(θ

d
i ), with output, bi. We then disucss

how an attacker network could maliciously use this infor-
mation to obtain sensitive demographic information.

Main Network. The embedding sub-network uses a
state-of-the-art multimodal approach in emotion recogni-
tion (Aldeneh et al. 2017) in which the acoustic and lexi-
cal information are processed separately and then joined af-
ter the application of modality-specific global mean pooling.
The acoustic input stream (xi(a)), where i represents an in-
put frame (40-dimensional) and a represents acoustic, is pro-
cessed using a set of convolution layers and Gated Recurrent
Units (GRU), which are fed through a mean pooling layer to
produce an acoustic representation (ha). The lexical input
(xi(l)), where i represents an input word (300-dimensional)
and l represents lexical, is passed through GRUs and pooled
to obtain a lexical representation (hl). For the multimodal
setup, these two representations, (ha) and (hl), are con-
catenated (h). The representations (h, ha, hl) are of fixed-
length given acoustic and lexical inputs. The emotion clas-
sifier takes in the representation (h, ha, or hl) as input and
estimates valence or activation using a set of dense layers.
The gender classifier estimates the gender label (i.e., male
or female) using a set of dense layers.

Gender-Leakage. The main network is trained to un-
learn gender. To achieve this goal, we use a Gradient Re-
versal Layer (GRL) (Ganin and Lempitsky 2014). GRLs
are a common multi-task approach to train networks such
that they are invariant to specific properties (Meng et al. ;
Jaiswal, Aldeneh, and Mower Provost 2019). During the
backward pass of the training phase, the GRL multiplies
the backpropogated gradients by −λ (i.e., the strength of the
adversarial component). During the forward pass, the GRL
acts as an identity function. To make the network invairant to
gender, we place the GRL function between the embedding
sub-network and the gender classifier. We obtain gender-
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invariant representations using the following loss function:

θ̂ = min
θM

max
{θDi}N

i=1

χ(ŷ(x; θM ), y)−
N∑
i=1

(λi.χ(̂b(x; θDi), bi))

where N is the number of targeted sensitive variables (here
N=1). The loss function ensures that while the output com-
ponents are trained to be good predictors, the representation
is trained to be maximally good for the primary task (emo-
tion) and maximally poor for the secondary task (gender).

Attacker Network. We assume that the attacker has ac-
cess to a held-out dataset (either a different dataset or a sec-
tion of the original dataset) with known gender labels. The
attacker generates representations for this dataset using the
previously described embedding sub-network. The network
then learns to predict gender labels from the generated repre-
sentations using a set of dense layers. Since the parameters
used to construct the representation are fixed, the attacker
only acts upon its own parameters to optimize the gender
prediction linear loss. The purpose of the attacker’s network
is to recover gender information from representations whose
labels are unknown. Though testing using a singular network
isn’t a guarantee of robustness of the representation to pri-
vacy attacks, for the scope of this paper, we use a feed for-
ward network, one of the powerful learning methods on a
fixed size static representation.

Model Variations. We use 12 variants of the network
shown in Figure 1. We train combinations of the follow-
ing setups: {general-classification-model (Gen), privacy-
preserving-classification-model (Priv)} × {activation, va-
lence} × {uni-lexical, uni-acoustic, multimodal}.

The general classification setup makes use of the embed-
ding sub-network with text, speech, or both as input streams
and the emotion classifier. The privacy preserving classifica-
tion setup adds the gender classifier to the general setup.

Training. We implement models using the Keras library.
(Chollet 2015). We use a weighted cross-entropy loss func-
tion for each task and learn the model parameters using the
RMSProp optimizer. (Tieleman and Hinton 2012). We train
our networks for a maximum of 50 epochs and monitor the
validation loss for the emotion classifier after each epoch,
stopping the training if the validation loss does not improve
for five consecutive epochs. Once the training ends, we re-
vert the network’s weights to those that achieved the lowest
validation loss on the emotion classification task. For the pri-
vacy preserving classification model, we ensure that the cho-
sen model yields a chance unweighted average recall (UAR)
for the gender classification task on the validation set. Fi-
nally, we train each setup three times with different random
seeds and average the predictions over these runs to reduce
variations due to random initialization.

We use validation samples for hyper-parameter selection
and early stopping. The hyper-parameters that we use for
the main network include: number of convolutional layers
{3, 4}, width of the convolutional layers {2, 3}, number of
convolutional kernels {32, 64, 128}, number of GRU layers
{2, 3}, GRU layers width {32}, number of dense layers {1,
2}, dense layers width {32, 64}, GRL λ {0.3, 0.5, 0.75, 1}.
For the adversarial emotion classification setups, we use the

hyper-parameters that maximize the validation emotion clas-
sification performance while minimizing the validation gen-
der classification performance. For the attacker’s model, we
use the following hyper-parameters: number of dense layers
{2, 3, 4}, dense layers width {32, 64}. We report the UAR
performance of our models, given the imbalanced nature of
our data. (Rosenberg 2012).

4.2 Metrics

Performance. We define performance for emotion recogni-
tion as the ability of the model to correctly classify either
activation or valence into 3 categories: low, medium, and
high. We measure performance using UAR (chance is 0.33).

Demographic Leakage. Leakage is defined as the ability
of a trained gender classifier to predict gender from the
representations which are obtained when the network is
simultaneously trained to perform the primary task.

Demographic Privacy Metric. We define the privacy
metric as the inability of an attacker to be able to recover
gender from the representations trained on a primary task.
To test this, we use four phases of training.

1. We train the main network on a dataset (D1), represented
by the pair (xD1, yD1), where x is the data input while
y is the gender label. We obtain representations for this
dataset (h(xD1)).

2. We consider that the attacker has access to another dataset
or unused subset of the same dataset (D2) represented by
the pair (xD2, yD2). We generate representations h(xD2)
for the pairs in this dataset using the embedding sub-
network of the main network.

3. We train a model (Matt) to predict gender labels us-
ing the representations obtained in step 2, represented as
Matt((h(xD2), yD2)).

4. Using the model obtained previously (Matt), we choose
h(xD1) as inputs, and measure the gender prediction ca-
pability of the attacker UAR(Matt((h(xD1), yD1)). The
Demographic Privacy Metric of an attacker is then quan-
titatively defined as 1− UAR(Matt).

The range of the privacy metric goes from 0 (the attacker is
always correct) to 0.5 (the attacker has a chance UAR).

Membership Identification. Membership identification
is the possibility of an attacker being able to recognize if
a speaker belongs to the training set. We assume that the ad-
versary can obtain samples from a speaker from the same
distribution as that for the training set. Consider that the
adversary knows some speakers for whom representations
definitely exist in the training set and some for whom they
definitely don’t. We test the possibility of membership iden-
tification using four steps:

1. We simulate the above using cross-validation. Given five
speaker independent folds, we use three for the training
set. From the remaining two folds, we add some samples
of the selected speakers to the training set.
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2. We consider that the attacker knows both, the speakers
selected and not selected for training from set four (s4),
but has no information about this split for set five (s5).
The objective of the attacker is to predict whether speak-
ers were selected for inclusion in the training set from
(s5).

3. The attacker trains a binary classification model
comprised of dense layers (Matt−mi) using the
representations obtained from dataset D1 as
Matt−mi(h(xD1), ‘Y es′). It obtains representations
of the samples not used in training for the the se-
lected speakers included in the training set and
trains its model as Matt−mi(h(xs4selected), ‘Y es′)
and for the speakers not included in training as
Matt−mi(h(xs4selected), ‘No′). A speaker is saved from
each label for validation.

4. We then define the UAR of the performance of
Matt−mi(h(xs5)) as membership identification.

5 Analysis

In all the tables, U is the unweighted average recall (UAR),
and U(M) and U(F) represent the performance of the model
for emotion recognition when gender is male and female
respectively. Leakage in the model is represented by L,
the lower the better, where chance leakage is 0.5. Pri-
vacy metric, represented by P, ranges from [0, 0.5], and
is the incapability of an attacker to obtain demographic
information from the representation, the higher the bet-
ter. Membership identification represented by MI, ranges
from [0.5 (chance UAR),1], and is the capability of an at-
tacker to identify if the subject belongs in the training set,
for which the lower the value, the better. We code iden-
tify the datasets as follows: Imp-MSP-Improv; Pod-MSP-
Podcast; Iem-IEMOCAP; and MuS-MuSE. All significance
tests are paired t-test, with significance established (shown
in bold) when Benjamini-Hochberg adjusted (FDR = 5%)
p-value< 0.05.

5.1 Question 1

Q: Does demographic leakage differ in umimodal and mul-
timodal emotion recognition models?
HYPOTHESIS: Multimodal representations leak more gen-
der information than unimodal representations.
Previous research has shown that different modalities have
varying capabilities of capturing demographic information,
such as age or gender (Levitan, Mishra, and Bangalore 2016)
information.The authors showed that audio, as compared to
lexical, is used more successfully to predict gender. Hence,
we hypothesize that a combination of these modalities leads
to an increase in the leakage of the sensitive variable.

We train the six setups separately for each dataset de-
scribed in Section 4.1 for activation and valence. We re-
port the average across five-fold speaker-independent cross-
validation in Table 1a and Table 1b. We find that:
• A network trained to only recognize emotion is generally

discriminative for gender as well. For instance we obtain a
leakage of 0.73 when training a multi-modal network for
activation and of 0.64 when trained for valence on MuSE.

• In unimodal systems, leakage is higher when systems are
trained using only audio streams compared to lexical.

• Leakage of gender in learned representation is higher for
multimodal systems than that for the unimodal systems
for both, MuSE and IEMOCAP (the two datasets with
both audio and lexical information).
Our results suggest that models that aren’t explicitly

trained for gender recognition, or, that don’t use gender as
an input feature, still learn representations that are discrim-
inative to identify gender. This leakage is more prominent
when the input stream is audio as compared to lexical, but
the leakage compounds in multimodal systems.

5.2 Question 2

Q: How does the privacy metric change when a network is
trained to preserve privacy?
HYPOTHESIS: Representations that are gender-invariant
are less prone to leakage when attacked by an adversary,
leading to better privacy preservation.
Previous research has shown that obtaining a representation
from a model trained to be invariant to gender, age, or lo-
cation leads to better protection from an attacker who tries
to recover this information (Coavoux, Narayan, and Cohen
2018). Previous research (Elazar and Goldberg 2018) has
also shown that while the representations might be trained
such that leakage of sensitive variable is reduced to chance,
the attacker might still be able to recover this information.
Hence, we concentrate on using this incapability as our pri-
mary metric. To test our hypothesis, we train the adversarial
variants of the six models as mentioned above, while making
sure that the leakage in the models is reduced to chance per-
formance and compare our results to those in Table 1a and
Table 1b. We train the multimodal models only for MuSE
and IEMOCAP. Our results in Table 1a and Table 1b show
that:
• The privacy metric is always higher when the representa-

tions are trained adversarially, compared to generally.
• Even when leakage is adversarially reduced to chance, the

attacker is still able to recover information about gender.
• The privacy metric is in general always lower for audio

than for lexical based unimodal systems.
• Multimodal systems often have the lowest privacy metric.
Our results suggest that, though the privacy of the learned
representation is improved by reducing leakage while train-
ing, the attacker can still recover that information. This
effect is especially compounded for multimodal systems.
While previous work has concentrated on text (Section 2),
our work shows how audio is the major culprit and that mod-
els involving audio as input are easier to exploit, even when
trained adversarially for privacy preservation.

5.3 Question 3

Q: How does emotion recognition performance change
when networks are trained to preserve privacy?
HYPOTHESIS: There is a minor drop in emotion recognition
performance when models are trained to preserve privacy.
Previous research has shown that training a model invariant
to a dataset variable might lead to drop in performance on
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Table 1: Results using general (left) and privacy preserving models (right) for activation and valence prediction. U-UAR,
U(M/F)-UAR for male/female, L-leakage, P-privacy metric, MI-membership identification. Bold-Italic shows significant im-
provement in metrics as compared to general classification model and Italic shows significant difference in metrics as compared
to the privacy preserving model. Significance is established using paired t-test at adjusted p-value< 0.05.

(a) Prediction of activation using general (left) and privacy preserving classification (right)

General Classification Privacy Preserving Classification
L U(M) U(F) U P MI U(M) U(F) U P MI

Audio

Imp 0.69 0.65 0.62 0.63 0.35 0.71 0.64 0.57 0.60 0.44 0.68
Pod 0.71 0.69 0.70 0.70 0.32 0.73 0.68 0.69 0.69 0.44 0.68
Iem 0.73 0.66 0.69 0.67 0.30 0.72 0.68 0.70 0.69 0.43 0.67
MuS 0.72 0.61 0.64 0.63 0.33 0.75 0.58 0.61 0.60 0.45 0.69

Lexical Iem 0.62 0.51 0.52 0.52 0.39 0.59 0.55 0.56 0.56 0.48 0.55
MuS 0.64 0.54 0.56 0.55 0.38 0.60 0.58 0.57 0.58 0.47 0.58

Multimodal Iem 0.74 0.66 0.70 0.68 0.30 0.74 0.66 0.69 0.68 0.41 0.67
MuS 0.73 0.65 0.66 0.66 0.31 0.76 0.65 0.64 0.65 0.43 0.69

(b) Prediction of valence using general (left) and privacy preserving classification (right)

General Classification Privacy Preserving Classification
L U(M) U(F) U P MI U(M) U(F) U P MI

Audio

Imp 0.56 0.53 0.49 0.51 0.44 0.70 0.51 0.49 0.48 0.48 0.68
Pod 0.60 0.56 0.57 0.56 0.42 0.71 0.55 0.56 0.56 0.47 0.70
Iem 0.62 0.60 0.61 0.60 0.39 0.70 0.60 0.62 0.61 0.45 0.68
MuS 0.58 0.50 0.47 0.48 0.42 0.72 0.48 0.47 0.47 0.46 0.71

Lexical Iem 0.61 0.64 0.65 0.65 0.41 0.62 0.67 0.68 0.67 0.46 0.62
MuS 0.57 0.68 0.69 0.68 0.45 0.63 0.70 0.71 0.70 0.47 0.62

Multimodal Iem 0.68 0.67 0.71 0.69 0.32 0.70 0.68 0.70 0.69 0.45 0.68
MuS 0.64 0.67 0.66 0.67 0.38 0.71 0.64 0.65 0.65 0.46 0.71

the primary task, especially when there exists known corre-
lations or biases in the datasets between the target label for
the primary task and the secondary task (Meng et al. )

We compare the performance for predicting activation and
valence of the models trained just to predict emotion (Act:
Table 1a, Val: Table 1b) versus the model trained to enhance
privacy while still predicting emotion in (Act: Table 1a, Val:
Table 1b). Our results suggest that, in general there is no
significant effect on the performance on the primary task
when we train privacy preserving networks. We find that
the performance is either maintained, e.g., Act: multimodal-
MuSE; Val: multimodal-IEMOCAP, or there is a slight de-
crease in performance for some setups, e.g., Act: unimodal-
acoustic-MuSE; Val: multimodal-MuSE. In multiple cases,
such as Act/Val:unimodal-lexical-MuSE/IEMOCAP, con-
trary to some previous work, we also see a significant in-
crease in performance, implying that making the model in-
variant to gender increases its robustness by not learning
replicable associations between gender and emotion label.

5.4 Question 4

Q: How does the adversarial component’s strength impact
emotion recognition performance and the privacy metric?
HYPOTHESIS: As the strength of the adversarial component
increase, the privacy metric increases and the performance
on the pimary task is unchanged.
Our results in Section 5.2 suggest that while the leakage of
the model was reduced to chance performance, the attacker
is still capable of recovering this information. We analyze

the effect of the strength of the adversarial component on
the performance of the primary task and the privacy metric.

We find that the emotion recognition performance is gen-
erally unaffected with a change in λ, as expected from the
results in Section 5.3. We observe that the the attacker is
usually less capable of inferring gender from learned repre-
sentations when λ = 0.50 as compared to when λ = 0.75.
For example, the privacy metric for the unimodal audio sys-
tem trained on MuSE increases from 0.39 to 0.45. But con-
trary to our expectation, we often see a decrease in the pri-
vacy metric when we move from λ = 0.75 to λ = 1.00 for
both activation and valence. For example, the privacy metric
for the unimodal audio system trained on MuSE decreases
from 0.45 to 0.41. The decrease in the privacy metric as
λ → 1 could be attributed to overfitting of data (Schmidt
et al. 2018) when being trained for invariance to the sensi-
tive variable which the attacker network is able exploit. This
suggests that an increase in the strength of the adversarial
component doesn’t necessarily correlate to an increase in the
privacy metric.

5.5 Question 5

Q: Focusing on gender, how does the performance of emo-
tion recognition change when a network is trained to pre-
serve privacy?
HYPOTHESIS: Learning representations invariant to gender
will affect performance on the primary task in an imbal-
anced manner across subgroups.
Previous research (Bagdasaryan and Shmatikov 2019) has
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shown that training models invariant to race or gender can
harm performance for one group more than others. This may
be worrying when the prediction is used for sensitive appli-
cation such as intervention or policing. Hence, we analyze
if the performance on emotion recognition is affected in an
imbalanced way for the models trained to enhance privacy.

We compare the performance for predicting activation and
valence of the models trained just to predict emotion (Act:
Table 1a, Val: Table 1b) versus the model trained to en-
hance privacy while still predicting emotion in (Act: Ta-
ble 1a, Val: Table 1b). We find that while the performance is
affected differently for the subgroups, the effect is not con-
sistent across multiple setups and datasets. For example, the
unimodal-acoustic system trained on MSP-Improv for ac-
tivation classification decreases in performance for both the
male and female groups, but the effect on the female group is
greater. But the pattern isn’t consistent across other datasets
for the same model setup. Our takeaway from this analysis
is cautionary, that though the privacy metric increases when
a model is adversarially trained to enhance privacy, we need
to ensure that the performance of the model on that dataset
doesn’t harm one subgroup more than the other.

5.6 Question 6

Q: Does the location of the adversarial component within
a network affect the privacy metric and emotion recognition
performance?
HYPOTHESIS: Unlearning the demographic variable in sep-
arate pooled streams will improve the privacy metric.
Previous work has shown that curtailing a variable on inter-
mediate layers often leads to a difference in the performance
of the classifier (Chabanne et al. 2017). As seen in Sec-
tion 5.1, audio is more prone to leakage than lexical infor-
mation, hence, a multimodal system’s privacy metric might
benefit from curtailing audio separately. Our initial multi-
modal model (Fig 1) only allows for the same strength and
parameters of the adversarial component to be applied for
both audio and lexical streams. To test our hypothesis, we
place the same adversarial component after the mean pool-
ing layer of both input streams, allowing us separate control
of gender invariance for both modalities, before concatena-
tion of representation.

We show our results in Table 2. We find that, using adver-
sarial component separately for each input stream improves
privacy metric for emotion recognition models trained on
both datasets, as compared to using one adversarial compo-
nent. This suggests that a granular control of invariance over
modalities leads to better defense of representations against
gender identification.

5.7 Question 7

Q: Does the privacy preserving paradigm help defend
against other attacks such as membership identification?
HYPOTHESIS: Membership identification will decrease
when models are trained to be invariant to speaker.
Membership identification is defined as an attack that tries
to identify if samples from a speaker ‘x’ were present in the
training set (Li et al. ). (Papernot 2018) showed that remov-
ing identifying factors from learned representations reduces

Table 2: Results for activation (Act) and valence (Val) pre-
diction using multimodal input, when adversarially unlearn-
ing gender in each input (Priv-E) [left] stream separately. U-
UAR, U(M/F)-UAR for male/female, P-privacy metric, MI-
membership identification. Bold-Italic shows significant
improvement in the privacy metric as compared to model
trained to preserve privacy by maximizing loss on the con-
catenated representation (Priv-C) [right]. Significance is es-
tablished using paired t-test, adjusted p-value< 0.05.

Priv-E Priv-C
U P MI U P MI

Act Iem 0.66 0.43 0.73 0.68 0.41 0.67
MuS 0.65 0.44 0.74 0.65 0.43 0.69

Val Iem 0.67 0.46 0.70 0.69 0.45 0.68
MuS 0.66 0.47 0.74 0.65 0.46 0.71

the probability of membership leakage. For this analysis,
we ask two questions: (a) can we defend against member-
ship identification using a proxy task and, (b) can we defend
against both, gender and membership identification?

We train an attack model for membership identification
as specified in Section 4.2. We find that while adversarial re-
moval of gender in the learned representation (Act: Table 1a
and Val: Table 1b) does lead to reduced membership identi-
fication, as compared to a model trained solely for emotion
recognition (Act: Table 1a and Val: Table 1b), the member-
ship identification is still far higher than chance.

Our goal is to be unable to identify whether samples from
speaker ‘x’ exist in the training set. This is different from
the usual membership defense that prevents prediction of
presence of a data-point pair (inputx, outputx) is in the
training set. As a result, we require a proxy task, because
our model cannot use samples from the speakers not in
the training set even to induce invariance. We hypothesize
that given randomly chosen speakers from the population,
speaker-invariant training leads to representations that are
less likely to encode speaker-specific information. This will
make it harder for the attacker to identify membership of a
particular speaker in the training set. We train the emotion
recognition models specified in Section 4.1 and replace the
gender invariance sub-network with speaker invariance and
use the same membership attack network.

We show our results in Table 3. We find that models
trained to be invariant to speaker identity have significantly
lower UAR for membership identification than those trained
solely to recognize emotion, or trained invariant to gender,
which matches our hypothesis.

Extension towards multi-attribute invariance. We train
our emotion recognition model using both the adversarial
components (speaker id and gender) and the primary clas-
sification task i.e., emotion recognition. This ensures that
the model can defend against both, gender and member-
ship identification attacks. We report our results in Table 3.
We find that we can successfully train models that are safer
against both, gender and membership identification attacks,
while still maintaining similar performance on the primary
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Table 3: Results for activation and valence prediction, for general classification (General), and, when adversarially unlearning
subject identity (Priv-SubjectID) and both subject identity and gender (priv-Multiple). U-UAR, U(M/F)-UAR for male/female,
P-privacy metric, MI-membership identification. Bold-Italic shows significant improvement in metrics as compared to general
classification model and Italic shows significant difference in metrics as compared to the privacy preserving models. Signifi-
cance is established using paired t-test at adjusted p-value< 0.05.

General Priv-SpeakerID Privacy-Multiple
U P MI U P MI U P MI

Activation

Audio

Imp 0.63 0.35 0.71 0.59 0.40 0.58 0.59 0.45 0.58
Pod 0.70 0.32 0.73 0.67 0.37 0.60 0.69 0.46 0.59
Iem 0.67 0.30 0.72 0.66 0.35 0.58 0.67 0.43 0.57
MuS 0.63 0.33 0.75 0.61 0.36 0.62 0.59 0.44 0.60

Lexical Iem 0.52 0.39 0.59 0.51 0.40 0.52 0.53 0.48 0.52
MuS 0.55 0.38 0.60 0.52 0.39 0.53 0.54 0.47 0.52

Multimodal Iem 0.68 0.30 0.74 0.67 0.33 0.58 0.66 0.40 0.57
MuS 0.66 0.31 0.76 0.65 0.33 0.60 0.65 0.40 0.58

Valence

Audio

Imp 0.51 0.44 0.70 0.47 0.45 0.54 0.47 0.48 0.53
Pod 0.56 0.42 0.71 0.55 0.43 0.56 0.54 0.48 0.56
Iem 0.60 0.39 0.70 0.61 0.41 0.59 0.60 0.47 0.57
MuS 0.48 0.42 0.72 0.45 0.42 0.60 0.46 0.46 0.58

Lexical Iem 0.65 0.41 0.62 0.67 0.41 0.52 0.66 0.47 0.53
MuS 0.68 0.45 0.63 0.68 0.44 0.53 0.68 0.46 0.53

Multimodal Iem 0.69 0.32 0.70 0.69 0.34 0.57 0.65 0.43 0.56
MuS 0.67 0.38 0.71 0.64 0.37 0.58 0.62 0.44 0.58

task, as an evidence towards multi-attribute invariance.

6 Conclusion

In this work, we show how privacy preserving networks
trained for emotion recognition can be used to protect
against gender and membership identification. This provides
a compelling case for separating the process of data process-
ing on user devices and of task-specific training on central
servers, thus increasing the privacy of the user. While in this
paper we concentrate on a single primary task i.e., emotion
recognition, this method can be extended to maximize util-
ity on multiple primary tasks that are loosely related to each
other and are benefited from a multi-task setup as shown
for dialogue act and turn detection, and sentiment and topic
classification (Ruder 2017).

For future work, we aim to explore how privacy enhanced
representations can be learned for multiple primary tasks
such as speaker verification and emotion recognition that
may not be related to each other. This would enable us to
deploy a generalized privacy model in form of SaaS which
all developers could use the to obtain privacy enhanced rep-
resentations that are then stored on the central server.
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