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Abstract

In this paper, we propose Latent Relation Language Models
(LRLMs), a class of language models that parameterizes the
joint distribution over the words in a document and the en-
tities that occur therein via knowledge graph relations. This
model has a number of attractive properties: it not only im-
proves language modeling performance, but is also able to
annotate the posterior probability of entity spans for a given
text through relations. Experiments demonstrate empirical
improvements over both word-based language models and
a previous approach that incorporates knowledge graph in-
formation. Qualitative analysis further demonstrates the pro-
posed model’s ability to learn to predict appropriate relations
in context.

1 Introduction

Language models (LMs) calculate the probability P(X) of
textual data X, and are a core model class of interest to NLP.
LMs are used as testbeds for evaluation of generative models
of text, and have applications such as rescoring of upstream
language generation inputs (Sundermeyer, Schliiter, and Ney
2012), grammatical error correction (Felice et al. 2014), or
pre-training of sentence representations (Peters et al. 2018).
Neural networks are used to model this probability in state-
of-the-art LMs (Bengio et al. 2003; Mikolov et al. 2010;
Merity et al. 2017).

Textual data X comprise a wide variety of words to
be modeled, from closed-class function words, to common
nouns or verbs, to named entities and numbers (Zipf 1949).
Notably, words on the rarer end of this spectrum are often
more semantically or topically important, as evidenced by
the success of heuristics such as TF-IDF (Salton and McGill
1986), which up-weight words with low frequency. Previ-
ous work has noted that while neural LMs greatly outper-
form alternatives such as n-gram models on frequent words,
they often under-perform on these rare words due to their
limited parameter budget, which puts them at a disadvan-
tage compared to non-parametric models like count-based
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Topic: Barack Obama

Article  Barack Hussein Obama II (...; born August 4, 1961) is an

American|pationality] ~attorney[occupation] and  polit-
ician[occupation] Who served as the 44th president of the

United States[position held] from 2009 to 2017. ...
Knowledge Graph

<occupation> politician
lawyer
(“attorney”, ...)

<occupation>

<nationality> American

president of the United States

Figure 1: Overview of our task of language modeling condi-
tioned on a knowledge graph. For a given topic, we want to
learn a language model that leverages the knowledge graph
through relations when modeling the text.

n-grams (Neubig and Dyer 2016).

Methods to mitigate this bottleneck have been proposed
in the context of conditional LMs, which instead model the
conditional probability P(X |C), where C' is some con-
text given to the model. For instance, in sequence transduc-
tion tasks, there are mechanisms to copy from the source
sequence (Gu et al. 2016) or use word or phrase dictio-
naries (Arthur, Neubig, and Nakamura 2016) to improve
modeling of low-frequency words. Perhaps more interest-
ing from an LM perspective are methods conditioned on
information from structured knowledge sources such as
knowledge graphs (Ahn et al. 2016; Parvez et al. 2018;
Logan et al. 2019), tables (Lebret, Grangier, and Auli 2016),
or grammars (Konstas and Lapata 2013). These methods are
analogous to human language production, where the under-
lying knowledge is converted into linguistic realizations.

In this work, we propose Latent Relation Language Mod-
els (LRLMs), a class of conditional LMs that take relational
information between entities in a knowledge graph as con-
text. Specifically, our model is able to generate either words
from a fixed word vocabulary, or a span of words defined
according to their relations with a topic entity of interest, as
shown in Figure 1. The choices of which method of gener-
ation to use is defined as a latent variable sequence Z. We



use Latent Predictor Networks (LPNs; Ling et al. (2016))
to jointly learn P(X,Z|C), thus tractably marginalizing
over all the possible spans. Compared to other word-by-
word generation methods that condition LMs on knowledge
graphs (KGs; Ahn et al. (2016); Wang et al. (2018)), the
span-based generation from the KGs alleviates problems of
malformed or incomplete mentions. Moreover, the posterior
probabilities of Z can be considered as entity links, which
are of interest in their own right in the information extraction
field (Ceccarelli et al. 2013; Ganea and Hofmann 2017).

We apply the model on articles from Wikipedia (X),
with the help of relational information (C') such as Wiki-
data (Vrandeci¢ and Krotzsch 2014) or Freebase (Bollacker
et al. 2008) regarding each article topic. Empirical results
on open vocabulary language modeling show that the pro-
posed model outperforms previous approaches on the same
task, demonstrating that LRLMs provide an effective way to
condition on this context. We also demonstrate the merit of
explicitly modeling latent relations by examining the poste-
rior probabilities over the chosen relations Z, which are in
concert with human intuitions about how relations are being
expressed in the text.

2 Language Modeling Conditioned on
Structured Knowledge

In this section, we define the task of open-vocabulary lan-
guage modeling conditioned on structured data.

Task Definition

Knowledge graphs (KGs) can be represented as a directed
labeled graph G = (V, E) consisting of a set of nodes
V. = {v1,...,vy|} and a set of relation edges F
{ei :(si,wi,0i) | 8i,0; €V, w; € R}. Relation e; contains
si, w;, and o; as the subject, relation type, and object. R
is the set of all relation types. Each node v; € V rep-
resents either an entity or an attribute!, and is associated
with a set of surface forms (also called aliases) A(v;) =
{@i1,...,0;)40,} that can be used to refer to v;. For
instance in Figure 1, the subject “Barack Obama” is con-
nected to both “politician” and “lawyer” with the rela-
tion <occupation>, and the object entity “politician”
has “political figure” and “polit.” as additional
aliases. Notably surface forms of many objects in the KG
can be multiple words, and thus it is necessary to have ma-
chinery to deal with this fact.

Given this KG, we further define a topic entity s about
which we would like to generate a piece of text. Our con-
ditional language modeling problem is then defined as the
problem of modeling the conditional probability of text X:
P(X |G, s). In particular, we consider a subgraph G’
(V', E') of the original KG G by extracting nodes and edges
directly related to the topic entity s:

V' {s}U{o; | (s,*,0;) € E},
E' :{ei:(s,wi,0;) | (s,wi,0;) € ENo; € V'}.

'A value specified with a relation from an entity (e.g., dates).
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We consider an open-vocabulary setting where all word
types within X are incorporated. Perplexity under this set-
ting provides a more realistic measure than under closed-
vocabulary setting by taking into account words that rarely
or never appear in the training set, which, as previously
noted, are particularly important for conveying the main
content of the text.

Why Condition on Knowledge Graphs?

KGs provide two important benefits for neural LMs. First,
the high coverage of rarer words due to entities being often
infrequent addresses lack of textual supervision for predict-
ing these words. More importantly, KGs have the potential
to help LMs generate factually consistent text by providing
consistent associations between entities. Normal LMs would
have to rely on supervision purely from textual data, which
may not provide a learning signal strong enough to accu-
rately generate these facts. For instance, results from Rad-
ford et al. (2019) show that even with a very large model
trained on massive amounts of data, samples can be factu-
ally incorrect, although being fluent and coherent.

3 Latent Relation Language Models

In this setion, we describe our proposed framework of Latent
Relation Language Models (LRLMs).

Definition

Knowledge from the KG subgraph G’ can be incorporated
into generation by copying aliases from related entities into
the generated text. For instance in Figure 2, to generate
Obama’s birth date, the model can of course pick words from
its vocabulary. But it is more straightforward to copy from
the <birth date> relation of the topic entity “Barack
Obama”, which gives the correct birth date.

However, it is insufficient to model probabilities for such
choices conditioning only on G’ and s, because it is un-
known to us which text spans are matched to which rela-
tions. Naive solutions like simple text matching algorithms
would yield many false positives. For example, “New York
City” has an alias “New York”, which matches “New York”
(state) and parts of “New York City Council”.

To circumvent this lack of relation annotation, we treat
relations corresponding to such text spans as latent variables.
Formally, let X = {z;}}¥ , be the sequence of N tokens, and
Z = {(o4,m, pt) }1—; a sequence of latent variable triplets
describing text span matches:

e The span variable o, = (¢;,r;) specifies a token subse-
quence 75, = {x;};', .

e The source variable m; € {REL, WORD} denotes the gen-
eration source of the span ..

e The relation variable p; == (e, a;) describes the match-
ing relation and surface form of the span x,,, and is only
used when 7; = REL.

For Z to be a valid sequence of latent variables, the fol-
lowing conditions must be satisfied:

e Span variables {o;}]_; form a segmentation of X, i.e.,
by =ry—1+1fort =2,...,T. This also implies T" < N.
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Figure 2: While generating, our model switches between the two sources: “Relation” and “Word”. Circles represent hidden
states up to each token, and edges represent possible span matches. Here we show one valid derivation with solid lines, and
other options as dashed lines. We also show an “annotation” of the generated tokens by the spans and sources we choose.

e If m; = WORD, then ¢; = 7.

e If m; = REL, then p; = (e, a;) where e; = (s,wy, 0¢)
should satisfy e; € E', a; € A(ot), and o, = ay, i.e., pt
must correspond to a valid surface form of an object that
is related to the topic entity s and matches the text span.
Let Z be the set of all valid latent variable sequences. We

can now model the probability by marginalizing over Z:

P(X|G,s)= > P(X,Z|G,5s).
ZEZ

For sake of brevity, unless noted otherwise, we drop G’ and
s from the conditions in the following sections.

ey

Training
Given the latent variable sequence Z, we follow Ling et
al. (2016) in factoring the joint probability:
T
P(Xa Z) = H P(Uhﬂ-ta Pty Lo, ‘ x<ft)

t=1

T
= HP(TQ |$<ft)P(Uta:EUt7pt ‘ 7Tt7x<€t)7
t=1

here x; is the sequence of first ¢« — 1 tokens in X . Figure 2
shows an example of generation according to this factoriza-
tion, and Algorithm 1 precisely defines the process of gen-
erating at time step t.

We marginalize over Z according to Eq 1 and optimize for
the marginal likelihood. Since the probability at time step ¢ is
independent of previous latent variables, the marginalization
is tractable using the forward-backward algorithm (Baum
et al. 1970). The forward probability «; is defined as the
marginal probability of the sequence up to the i-th token
(specifically, cg = 1), computed as follows:

>

(o:(L,r),m,p)ET;
where 7; is defined as the set of valid latent variable tuples
(o : (¢,7),m, p) such that r = i, i.e., all valid spans ending
at the ¢-th token. The marginal probability we optimize for
is then ay. The backward probability (; which is required
for gradient computation can be similarly calculated.

Q; = ae—lp(ga TP Lo |I<€)7
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Parameterization

We use neural networks to parameterize all probability dis-
tributions mentioned above. Decisions for time step ¢ are
based on a D-dimensional hidden state hy, . This hidden state
can be generated by any neural sequence model, and we ex-
periment with multiple models to demonstrate the generality
of our approach.

Source Selection Source selection is done using a simple
linear model followed by a softmax function applied to the
latest word-level hidden state hy, :

P(my | x<p,) = softmax(W hy, +b,),

where W, € R?2*P b, € R? are trainable parameters.

Word Generation Like conventional word-level neural
language models, we have the option to generate the next
token from a fixed vocabulary. This option is used to gener-
ate any word that isn’t part of an object entity participating
in a relation. The probability is:

P(xzyq, | x<p,) = softmax(Linear,, (hy, )),

where Linear(h) is a linear transform with a bottleneck of
dimension K into a vector over vocabulary size L:

Linear(h) =W, (Wgh + bg) + by,

where W, € RLXK, b; € RL, W, € RKXD, by € RP
are trainable parameters. Empirically we found this low-rank
version to outperform a full linear transform.

Unknown Word Generation Since our task is language
modeling under an open-vocabulary setting, we must be able
to generate words even if they are out of vocabulary. Fol-
lowing Luong and Manning (2016), we do so by having a
character-level LM “spell-out” any unknown words. If the
unknown word is x = ¢; ... ¢|¢| With |c| characters:

P(x|z<p,) = P(SUNK> |24, ) P(c1 - . - €lcf; Ochar),

where 0.y, are the parameters of the character LM. We pre-
train this model on the set of all unique words in the training
set and fix its parameters while training LRLM.



Algorithm 1 Generative Process of LRLM

Input previous span o+—1 = (¢+—1,7+—1), previously generated tokens z<r, .

Output span ¢ = ({4, 7), source 7, relation p;

1: by 11 +1

2: /7Ft ~ P(Tl’z |$<zt)

3: if T, = WORD then

4: P(ot, %oy, pr | T8 = WORD, Z<y, ) = P(z¢, | x<t,)
5: e~ Plag, |v<e,)

6: if T, = <UNK> then

7: i?gt ~ P(Cl c Clels echar)

8: else if 7,, = <EOS> then

9: End generation.
10: end if

11: elseif 7; = REL then
12: P(0t,%o,, pt| T = REL,T<y, ) = Pley | T<p, ) Plas | er, T, )
13: er ~ P(et|x<e,)
14: Et Np(at|€t,l’<gt)

15: fo't < ?it
16: end if

(et, at), and token subsequence x, .

> Update the beginning of span. :

> Choose whether to generate a word or relation. :
> Generating a word. :

> Simplify the probability. :

> Choose a word from model vocabulary. :

(O I NI S

RN

> Generate a word using a character model. :

11
112
13
.14
15

> Generating a relation.

> Factor the probability.

> Choose a relation.

> Choose a surface form from the selected relation.
> Generate a phrase.

Table 1: Training set statistics: number of training docu-
ments, vocabulary size, relations per head entity, tokens per
document, and entity mentions per document.

Dataset Doc  Vocab Rel/Ent Tok/Doc  Ment/Doc
WikiFacts 7856  40.0k 82.71 157.25 16.04
WikiText-S 27685  71.1k 11.38 295.75 11.20
WikiText-F 27685 264k 11.38 355991 73.01

Relation Generation The goal of relation generation is to
find the most suitable span that can be copied into the text.
As Line 12 of Algorithm 1 depicts, this is factorized into two
steps: relation selection and surface form selection.

o Relation selection. We utilize pre-trained KG embed-
dings from OpenKE (Han et al. 2018) for entities and re-
lation types. For a relation e; : (s, w;, 0;), we concatenate
KG embeddings for w; and o, to obtain the relation em-
bedding e;.> We then compute the probability of selecting
each relation as:

P(e;|x<s,) = softmax(e; Linear, (hy,)).

e Surface form selection. We featurize surface forms via
fastText embeddings (Bojanowski et al. 2017) pre-trained
on the training corpus, and calculate probability of surface
form ay, as:

P(ay | e;,7<¢,) = softmax(f, (Wohy, +b,)),
where f,, is the fastText embedding for a; and W, b,

are trainable parameters.

4 Datasets

We use two datasets with different characteristics for exper-
iments; statistics are shown in Table 1.

2We train embeddings for each relation type not covered by pre-
trained embeddings, and an UNK embedding for attributes and en-
tities not covered by pre-trained embeddings.
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WikiFacts

WikiFacts (Ahn et al. 2016) is a collection of Wikipedia ar-
ticles restricted to /£i1lm/actor domain entities in Free-
base (Bollacker et al. 2008).> Each example consists of the
first section of the original article. Since official splits for
evaluation are not provided, we follow previous work and
performed a random split of 80/10/10%.

This dataset assumes a single alias for each entity (i.e.,
Yo € V';]A(0)] = 1). Hence, the surface form selection
module acts as oracle, where it always assigns a probability
of 1 to the correct surface form.

WikiText

While WikiFacts has been used in previous work on LMs
using structured data (Ahn et al. 2016), the domain is lim-
ited. To investigate the capability of knowledge-infused LMs
in an open-domain setting with a wide variety of relations,
we build a large-scale open-domain dataset from the exist-
ing WikiText-103 dataset (Merity et al. 2017) by associating
articles with entities in Wikidata (Vrandeci¢ and Krotzsch
2014). We employ the same data splits from the original
dataset. Bridging KGs and the articles from WikiText-103
involves two steps (more details in Appendix A).

e Constructing subgraphs for articles. As discussed in
Section 2, we take the original KG and extract a relevant
subgraph G’ for each article. While there are many op-
tions on how to extract this subgraph, we choose the sub-
graph G consisting of direct neighbors of the topic entity
for each article. This forms a star-shaped subgraph, with
the topic entity as the central node, connected by the re-
lated entities and attributes. We found on average 11.38
neighbors and 3.1 surface forms for each neighbor.

3The original WikiFacts also includes topic entities from other
articles linked to the page to be generated. However, these (gold)
entities are inaccessible when actually attempting to generate new
articles. We experiment without them, but also report results with
them in Appendix C.



Table 2: Perplexity values of different models on open vocabulary language modeling, lower is better. Best results are in bold.
Asterisk symbols represent statistical significance according to Wilcoxon signed-rank test (Dror et al. 2018) against the best

baseline model, with p < 0.05 (*) and p < 0.01 (**), respectively.

Dev Test
Base model Dataset
VanillaLM AliasLM NKLM LRLM VanillaLM AliasLM NKLM LRLM
WikiFacts 231.03 213.34 96.77  93.55 225.40 207.57 93.18  88.37*
LSTM WikiText-S 68.37 70.07 46.16  45.84 86.12 87.75 5598 55.38
WikiText-F 45.13 46.18 4446  42.18* 49.47 50.88 48.54  45.70*
WikiFacts 172.27 158.54 99.46  84.76** 167.91 154.27 9436  79.35**
Transformer-XL ~ WikiText-S 42.63 39.65 43.05  37.75** 52.96 50.60 52.51 44.98**
WikiText-F 30.14 31.20 32.19  29.56** 33.01 34.37 3527  32.20%*
¢ Linking mentions with the KG. For each object entity in Baselines

G’, we search for occurrences of all surface forms in the
article while allowing token overlaps among them. Note
that, similarly to distant supervision for relation extrac-
tion (Mintz et al. 2009), this string-matching process can
produce false positive mentions. We rely on our model’s
ability to handle such noisy mentions by learning to as-
sign high probabilities only on the correct mentions.

We name the dataset obtained through this process as
WikiText-F (Full). We also create WikiText-S (Short) by
only using the first sections of WikiText-F documents.

S Experimental Settings

In this section, we explain the evaluation metric, configura-
tions, and baseline models compared against LRLM.

Evaluation Measure

We report token-level perplexity under the open-vocabulary
setting. We use pre-trained character-level LMs from Sec-
tion 3 for each dataset to discount the probability of out-of-
vocabulary words based on its spelling.* This is done for all
tested models, both proposed and baselines.

Model Configuration

For WikiFacts, we use a fixed word vocabulary size of
40,000 following Ahn et al. (2016). For WikiText-derived
datasets, we include all words with frequencies no less than
3 in our dataset following Merity et al. (2017). We use adap-
tive embeddings (Baevski and Auli 2019) and adaptive soft-
max (Grave et al. 2017) to handle large vocabulary.

To calculate the hidden state h,, _,, we test two varieties of
neural sequence models: standard LSTMs (Hochreiter and
Schmidhuber 1997), and the state-of-the-art Transformer-
XL (Dai et al. 2019). We implement all models in Py-
Torch (Paszke et al. 2017). Training details and hyperparam-
eters are summarized in Appendix B.

“This contrasts to UPP (Ueberla 1994), which adjusts likeli-
hood of OOV words based on a uniform probability equivalent to
the size of the vocabulary, which does not actually measure the
ability to generate words outside of training data. Results using
closed vocabulary setting or UPP can be found in Appendix C and
E, respectively.
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We compare LRLM against three baselines that utilizes in-
formation from KGs to various degrees.

Vanilla language model (Vanilla LM) This is a stan-
dard language model baseline that does not condition on
KGs, such as LSTM (Merity, Keskar, and Socher 2017) or
Transformer-XL (Dai et al. 2019).

Alias-prepended language model (Alias LM) The same
model as above, but prepending to the text the concatenated
aliases of all entities in G’ which appear in the article.’ This
gives a simple baseline LM conditioned on the KG.

Neural Knowledge Language Model (NKLM) Similarly
to LRLM, the Neural Knowledge Language Model (NKLM;
Ahn et al. (2016)) also has the ability to copy from a given
set of KG triples, but differs from LRLM in several ways:

1. LRLM allows generation of multi-word entities at once,
while NKLM predicts one word at a time and the model
needs to repeatedly predict the right relation until copying

of an object is done.

LRLM marginalizes over all derivations of a sequence,
which allows processing of overlapped tokens among
spans, while NKLM makes all decisions in a hard fash-
ion and cannot handle such overlapped tokens.®

The original NKLM does not differentiate between sur-
face forms, so we incorporate the same surface form selec-
tion module as LRLM for fair comparison.

6 Results and Analysis

In this section, we summarize the main results and perform
analyses of the learned model.

Main Results

Perplexities over the datasets are shown in Table 2. We ob-
serve that for both sequence models, LRLM outperforms the
baselines on all datasets and improvements are more signif-
icant on the stronger sequence model. Particularly on the

5This simulates the table-to-text generation setting, where all
input entities should be mentioned in the generated sentence.

Due to this limitation, we perform additional data preprocess-
ing on WikiText for NKLM, detailed in Appendix D.



Warm-up: <s> = Sonic the Hedgehog ( 1991 video game ) =

Sonic the Hedgehog (1991 video game)

s =

Vanilla Sonic the Hedgehog is an action action - adventure video game published by Sonic of programmers for the
LM: 1999 Nintendo GameCube 's SNES video game Sonic the Hedgehog 2 . It was released for the Nintendo DS
on September 16, 1994 in North America and Europe in the latter part of the original Halo 2 . It was played (@, 0) = {

in a post - apocalyptic fantasy fantasy universe , by Nintendo Computer Entertainment on March 6 , 1999

under the ...

(<TITLE>, Sonic the Hedgehog (1991 video game)),

Alias is the twelfth video game developed and published by EA Sports . It is the sequel to the 1992 Sonic - 6

LM: gameSonic the Hedgehog for the Nintendo Genesis , created by Sonic system creator Pinball Ka . Doctor the
Hedgehog has since gone on a hiatus in choosing an estimated global community when it quickly becomes a
launch member . The game puts Princess unlock from a mansion , which once everything is devastated by a

broand] ...

(<instance of>, video game),
(<CERO rating>, A),

NKLM: Sonic the Hedgehog 11T E] Sonic the Hedgehog| 111 ] Sonic the HedgehogTiTLE] ( Jordon VS . 2 b
\)— b7 7 4 # —, Picardi Sutorito Faita Jobs Sutorito Faita ) is A[CERO rating] platform video

gamefinstance of] developed by Sonic Teamdeyeloper] and published by Segarpublisher] - In 2008 , the
gamefingtance of] Was released for Segaplatform] 3[platform] and 1320 platforms in March 2009 ,
replacing the original gamefinstance of] SOHY[platform] Dﬁve[platfonn] counterpart Sonic the
Hedgehog[characters] for the Android[platform] GameCube(p]atform] - It was re - released on March 12,

2010, in ...

(<developer>,  Sonic Team),
(<publisher>,  Sega),

(<platform>, Sega Mega Drive),
(<platform>, Wii),

(<platform>, Nintendo GameCube),
(<platform>, Xbox 360),
(<platform>, Playstation 3),
(<platform>, Android),
(<characters>, Sonic the Hedgehog),
(<series>,

Sonic the Hedgehog (video game series)),

LRLM: Sonic the Hedgehog[TITLE] ( also known as Sonic the Hedgehog 3 and Sonic[series] the Hedgehog 2 ) is a
1986 role - playing video game developed by Sonic Team[developer] and published by Sony Computer }

Entertainment ( SEGA[publisher] ) for the PlayStation 3[platf0rm] ( Xbox 360[p1atf0rm] ). It was

developed and published by Segajpuplisher] in 1997 for the Wii , and was ported as a third installment in

the Sonic the Hedgehogrseries] series and released in Japan in 1996 . On the

Figure 3: Samples from the models for the topic entity “Sonic the Hedgehog (1991 video game)” with the corresponding
subgraph on the right. Square brackets denote the relation type of copied objects. Highlighted spans in light green are full
mentions, and those in dark red are partial mentions. Underlined tokens are unknown words sampled from the character model.

two WikiText-derived datasets, our model outperformed the
simpler Vanilla LM and Alias LM baselines, while NKLM
had difficulty utilizing the KGs and in some cases results
in worse perplexities than these baselines. Alias LM under-
performed Vanilla LM in some cases, demonstrating that this
simpler and more indirect method of conditioning on the lin-
earized KG is not sufficient to achieve stable improvements.

Generated Samples

To illustrate behaviors of the learned models, we take the
models using Transformer-XL trained on WikiText-S, draw
10 samples while conditioning on G’ and s = “Sonic the
Hedgehog”, and show the sample with lowest perplexity in
Figure 3. We highlight tokens generated by the relation pre-
dictor and use different colors to represent full and partial
mentions. A full mention is an identical copy of an entity
surface form, while a partial mention is an incomplete sub-
phrase of an entity surface form. A perfect model should not
generate partial mentions as it leads to possibly corrupted
phrases, and should generate the same set of full mentions
as the gold article.

Although NKLM generates more mentions, it suffers
from generating partial mentions because it 1) is unaware of
the length of surface forms, and 2) requires making copy de-
cisions as many times as the surface form lengths. As shown
in Figure 3, we often observe NKLM repeating the same en-
tity, or switching entities halfway through (e.g., “Sega 37).
In contrast, LRLM, by design, only generates full mentions.

We quantitatively show this in Table 3 by counting the
average number of partial and full mentions in samples. We
took 10 samples from 10 random topic entities in the devel-
opment set, and manually annotated “valid” full mentions,
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Table 3: Average number of partially generated, fully gen-
erated, and valid and invalid full mentions over 100 samples
from the development set or gold human-generated article.

| Partial ~ Full | Valid Invalid
NKLM 16.9 7381 6.37 1.44
LRLM - 632 5.63 0.69
Gold — 9.00 9.00 0.00

which we deemed as semantically correct based on the sen-
tential context. NKLLM generates more invalid mentions than
LRLM, most of which are false positives and repetitions
of the same mention. LRLM has almost no repetitions, but
sometimes incorrectly predicts the “theme” of the topic en-
tity, e.g., generating an article about a TV episode for a topic
entity of a song.

Posterior Probability of Spans

One of the advantages of our model is its capability to calcu-
late the posterior probability of a span being generated as a
relation in existing text. We calculate the joint probability of
aspan (o0 = (¢,7)) and the surrounding text’ by marginaliz-
ing over the latent variable Z for both sides of context, and
normalize over all possible spans:

P(X,Z) = apr - P(Z|w<r) - Bria,

P(Z|X)=P(X,Z)/ > P(X,Z),
zZezZ

"We consider the text segment in the batch where the span ap-
pears as the surrounding text.



Table 4: Posterior probability of spans (underlined) in con-
texts. word represents word-based generation. The second
relation in the last example means generation of “the” us-
ing word, followed by relation-based generation of “United
States” using the <origin> relation.

Title: Sorry (Madonna Song)

... song by American singer Madonna from her tenth ...

<performer> 0.9697
Relations: <lyrics by> 0.0289
word 0.0014

... written and produced by Madonna and Stuart Price , ...
<performer> 0.1545
Relations: <lyrics by> 0.7693
word 0.0762

... continuation from the “ Hung Up ” music video . ...
Relations: <follows> 1.0000
’ word 0.0000
... . However , in the United States , the song did ...

<origin> 0.0000
Relations: word — <origin> 0.0003
word 0.9997

where a; and 3; are the forward and backward probabili-
ties computed following Section 3. Table 4 shows spans with
posterior probabilities of various relation types from an arti-
cle about “Sorry (Madonna song)”. The model demonstrates
the ability to relate the entity “Madonna” to the topic with
appropriate relation types based on context. We also observe
that the model tends to generate multi-word spans through
relations rather than word-by-word from vocabulary. How-
ever, our model often favors word-based generation for com-
mon phrases even if related entities exist.

Effect of Subgraph Size

Finally, we measure the performance of models with re-
spect to the richness of resources available for condition-
ing. We group WikiFacts articles into 10 bins by the num-
ber of relations available, and plot binned word-average log-
probabilities in Figure 4. While all models have slightly
higher log-probabilities as the number of relations increase,
LRLM achieves the largest gain.

7 Related Work

A variety of entity-aware LMs exist, conditioning on in-
formation sources such as coreference annotations (Ji et
al. 2017), entity annotations (Logan et al. 2019), or key-
words (Kiddon, Zettlemoyer, and Choi 2016; Parvez et al.
2018). Among them, NKLM (Ahn et al. 2016) uses rela-
tional information and is the most relevant. Our proposed
LRLM formulation is more successful at lowering perplex-
ity and allows calculating posterior probabilities of relations.

Incorporating KGs for natural language generation (NLG)
has a long history (Goldberg, Driedger, and Kittredge 1994;
Reiter et al. 2005; Chen and Mooney 2008). With the
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Figure 4: Word-average log-probabilities on development
set of WikiFacts grouped by the average number of relations.
LRLM shows a larger gain over the baselines as the number
of relations increases.

recent advancement of neural sequence modeling, preva-
lent approaches for language generation from KGs employ
sequence-to-sequence models with special attention mecha-
nisms tailored for input structures such as graphs (Wang et
al. 2018) or tables (Liu et al. 2018). Unlike our focus, how-
ever, this class of research focuses on learning discriminative
models that do not explicitly generate the referent entity as
latent variables, like we do in Section 6.

While not directly related to our core task, there have been
a number of other methods for incorporating latent variables
into NLG problems. Latent structure has included predict-
ing latent sequences of topics (Wiseman, Shieber, and Rush
2018), chunking of word sequences into n-grams (Buckman
and Neubig 2018), deciding between input sources (Gu et al.
2016), or generating compressed summary tokens (Miao and
Blunsom 2016). Our model borrows its underlying structure
from Ling et al. (2016), who focused on an entirely differ-
ent task of source code generation. We use a similar method
for selecting latent sources for Wikipedia article language
modeling with a repository of KG triples.

8 Conclusion

In this work, we propose Latent Relation Language Models,
aclass of conditional LMs on knowledge graphs which mod-
els text as a latent sequence of spans matching related enti-
ties in the KG. The generative framework allows the model
to not only outperform previous work, but also score spans
with their posterior relation probability, which can be used
for downstream tasks.
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