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Abstract

Recognizing implicit discourse relation is a challenging task
in discourse analysis, which aims to understand and in-
fer the latent relations between two discourse arguments,
such as temporal, comparison. Most of the present models
largely focus on learning-based methods that utilize only
intra-sentence textual information to identify discourse re-
lations, ignoring the wider contexts beyond the discourse.
Moreover, people comprehend the meanings and the relations
of discourses, heavily relying on their interconnected work-
ing memories (e.g., instant memory, long-term memory). In-
spired by this, we propose a Knowledge-Enhanced Attentive
Neural Network (KANN) framework to address these issues.
Specifically, it establishes a mutual attention matrix to capture
the reciprocal information between two arguments, as instant
memory. While implicitly stated knowledge in the arguments
is retrieved from external knowledge source and encoded as
inter-words semantic connection embeddings to further con-
struct knowledge matrix, as long-term memory. We devise a
novel paradigm with two ways by the collaboration of the
memories to enrich the argument representation: 1) integrat-
ing the knowledge matrix into the mutual attention matrix,
which implicitly maps knowledge into the process of cap-
turing asymmetric interactions between two discourse argu-
ments; 2) directly concatenating the argument representations
and the semantic connection embeddings, which explicitly
supplements knowledge to help discourse understanding. The
experimental results on the PDTB also show that our KANN
model is effective.

Introduction

Discourse relation describes how two adjacent text units
(e.g. clauses, sentences, and larger sentence groups), called
arguments, named Arg1 and Arg2, are connected seman-
tically to one another. Implicit discourse relation recogni-
tion without explicit connectives (Pitler, Louis, and Nenkova
2009), which normally needs to be inferred from the spe-
cific context, is still a bottleneck of discourse analysis. It is
also beneficial to many downstream NLP applications, such
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as machine translation, text summarization, information ex-
traction and conversation system.

Previous studies mainly include 1) conventional discrete
feature-based and 2) neural network-based models. The for-
mer adopt the artificially designed linguistic features and
the complicated rules (Pitler, Louis, and Nenkova 2009;
Rutherford and Xue 2014). However, implicit discourse re-
lations are rooted in the semantics, which are difficult to
be recognized from the surface features. Although neural
network-based models obtain better argument representa-
tions and more precisely predict discourse relations (Zhang
et al. 2015; Liu et al. 2016), they encode two discourse argu-
ments without the interactive clues. The further approaches
adopt different complicated neural networks (Lei et al. 2017;
Guo et al. 2018) with attention mechanism (Liu and Li 2016;
Cai and Zhao 2017), gate mechanism (Chen et al. 2016) or
memory mechanism (Zhang, Xiong, and Su 2016) to mine
the interactive information of argument pairs. However, they
only focus on the intra-sentence textual information, ne-
glecting the wider contexts beyond the discourse or relevant
implicit clues.

In addition, the researchers in cognitive psychology ar-
gue that the ability of humans to remember and understand
something depends not only on the different types of work-
ing memory (e.g., instant memory, long term memory), but
also on the interconnections between them (Baddeley 2003),
just as shown in Figure 1.

Working memory
( Intuition, Inference )

Duration:< 30 sec

Instant memory
( Multi-channel perception )

Duration:< 5 sec

Long-term memory
( Prior, knowledge, etc. )

Duration:< 1 sec - lifelong

Atte
ntio

n Interaction

Figure 1: Working memory.

Intuitively, when annotating the meaning and the relations
of discourse, people usually tend to capture the focused in-
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formation as instant memory; meanwhile, the brain automat-
ically wakes up the long-term memory, e.g., the relevant
external knowledge. These two memories collaboratively
promote to further comprehend the semantics of discourse.
In fact, the existing methods encode knowledge in vector
space, and directly concatenate the knowledge vectors to
enhance the lexical or contextual representations of words
in many tasks(Chen et al. 2018; Mihaylov and Frank 2018;
Silva, Freitas, and Handschuh 2019), such as natural lan-
guage inference, dialog generation and story completion.
However, this paradigm does not fully fuse the text and its
corresponding knowledge. Nowadays, there are many open
knowledge bases (KBs)1, such as WordNet(Miller 1995)
storing semantic knowledge, ConceptNet (Speer, Chin, and
Havasi 2017) storing commonsense knowledge and DBpe-
dia(Lehmann et al. 2015) storing generic knowledge. In or-
der to sufficiently comprehending the semantics of discourse
relation, we choose the WordNet as our external knowledge.

Therefore, we propose Knowledge-Enhanced Attentive
Neural Network (KANN), a novel framework that is to imi-
tate such human-like working memory for implicit discourse
relation recognition. Especially, we capture the reciprocal
information by mutual attention mechanism based on basic
argument representation, for modeling the instant memory.
Retrieved from an external source (i.e., WordNet), the rele-
vant knowledge is harnessed to enrich the semantic under-
standing of discourse arguments, which explores a knowl-
edge enhancement paradigm with implicit and explicit as-
pects. Finally, we integrate the argument and knowledge rep-
resentations to improve the performance of this task.

In general, our main contributions are as follows:

• Propose a knowledge-enhanced attentive neural network
for promoting comprehension of discourse arguments
from the perspective of cognitive psychology;

• Imitate human-like working memory strategy: 1) exploit
mutual attention mechanism to capture the interactive and
significant information, as instant memory; 2) retrieve re-
lated knowledge from external source, as long-term mem-
ory;

• Devise a novel paradigm of knowledge enhancement with
two ways: 1) mapping the knowledge matrix into atten-
tion matrix, an implicit way; 2) directly combining the
inter-words semantic connection embeddings to obtain fi-
nal representations, an explicit way;

• Experimental results on the PDTB show that our KANN
model is effective, and the external knowledge is more
significant when the size of data is restricted.

The Proposed Model

Implicit discourse relation recognition can be understood
as a classification problem. However, not explicitly stated
knowledge in discourse brings the difficulty of inferring dis-
course relation. The standard classifier with standard NLP
techniques is not sufficient. In this section, we will explain

1In this paper,we argue that Knowledge Base and Knowledge
Graph can be interchanged in broad sense.

how we integrate the external knowledge to make a final pre-
diction. The proposed framework is shown in Figure 2.

Instant Memory via Mutual Attention

Embedding Layer For the original representations of dis-
course arguments, we first associate each word w in the vo-
cabulary with a vector representation xw ∈ R

d through an
embedding lookup function, where d is the dimension of the
embeddings. Since each argument is viewed as a sequence
of word vectors, the arguments are expressed as:

Arg1 : [x1
1,x

1
2, ...,x

1
n1
], Arg2 : [x2

1,x
2
2, ...,x

2
n2
].

where Arg1 has n1 words and Arg2 has n2 words.

Basic Argument Representation To represent the word
in its context, we utilize a bidirectional LSTM (BiLSTM)
(Hochreiter and Schmidhuber 1997) to obtain a context-
dependent hidden state at each position t of the sequence
as:

ht = BiLSTM(xt,ht−1). (1)

where ht = [
−→
ht,
←−
ht], and

−→
ht,
←−
ht are the hidden states of

the forward and backward layers which preserve the histor-
ical and future information. Therefore, Arg1 and Arg2 are
encoded as h1

i = [
−→
h1
i ,
←−
h1
i ] and h2

j = [
−→
h2
j ,
←−
h2
j ], which are

the intermediate states of i-th word in Arg1 and j-th word in
Arg2 respectively, where h1

i ,h
2
j ∈ R

2d.
Separately encoding arguments by the basic BiLSTMs

could not deeply reflect the asymmetric interactions between
two arguments in a discourse relation. Here, the asymmetric
interactions refer that different reading order of two argu-
ments may lead to different focused information and relation
decisions. Thus the interactions between two arguments are
asymmetrical (Guo et al. 2018).

Mutual Attention Mutual attention (Santos et al. 2016) is
aware of the input pair, in a way that semantic information
from one argument can directly influence the other argument
representation, and vice versa. The main idea is to automat-
ically learn a similarity measure over the intermediate states
in the argument pairs and use the similarity scores to com-
pute attention vectors.

After obtaining the intermediate states of two arguments
produced by BiLSTMs, we can obtain the matrices R1 ∈
R

d×n1 and R2 ∈ R
d×n2 . And then we compute the matrix

G ∈ R
n1×n2 as follows:

G = tanh(R1TG0R
2). (2)

where G0 ∈ R
d×d is a matrix to be learned by the neural

network and we employ tanh as activation function. And the
element Gi,j ∈ G is the pair-wise score of alignment be-
tween the hidden vectors of a word pair in two arguments.
We call that the asymmetric interactions with lexical infor-
mation reflecting the process of human-like instant memory
to some extent.
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Figure 2: The overall architecture of our KANN model.

Long-Term Memory via External Knowledge

External Knowledge Retrieval Most open external
knowledge sources are in the form of graphs. A knowledge
graph is defined as a set of concepts connected by relations.
In general, a fact of knowledge graph is represented as a
triple fi=(subject, relation, object), such as “Barack Obama
is the spouse of Michelle Obama” is represented as “Barack
Obama, spouse, Michelle Obama”, where “Barack Obama”
and “Michelle Obama” are the subject and object, respec-
tively, and “spouse” is their relation. Here, we utilize Word-
Net, a lexical database grouping nouns, verbs, adjectives and
adverbs into sets of cognitive synonyms (synsets), to capture
the inter-words semantic connection embeddings2 based on
original discourse.

Given an instance (Arg1, Arg2), we traverse the two argu-
ments to extract all word pairs in the arguments3. We obtain
entity sets E1, E2 from Arg1 and Arg2, respectively. And
then e1i ⊂ E1, e2j ⊂ E2 are combined as entity pairs
(e1i, e2j), which can be retrieved by looking up from Word-
Net.

2To distinguish discourse “relation”, entity relation embedding
is called semantic connection embedding.

3Here, entity pair below refers to word pair.

Knowledge Embedding & Knowledge Matrix TransE
(Bordes et al. 2013) achieves good results in knowledge rep-
resentation, which models entity relations by interpreting
them as translations in the low-dimensional space. We adopt
TransE to capture semantic connection embedding between
entity pairs in (E1, E2). Specially, we exploit it to obtain the
corresponding knowledge, which are trained on WordNet by
the objective function r ≈ h − t, where r denotes the se-
mantic connection embedding, h and t are the head and tail
entity embeddings, respectively. If the i-th entity pair has
multiple relations, the final semantic connection embedding
is obtained by calculating an average for a weighted sum of
these embeddings (pre-trained vectors) as Eq.(3), also called
knowledge embedding.

ri =
1

m

m∑
k=1

μk · rk. (3)

where the weight μk is computed by:

μk =
exp(rk)∑m
j=1 exp(rj)

. (4)

where m denotes the number of semantic connections in an
entity pair.

Given the semantic connections between the entity pairs
derived from the external knowledge, a knowledge matrix
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K ∈ R
n1×n2 is established, filled with the indicative func-

tion I(eij) as its elements.

I(eij) =

{
ri, if(e1i, e2j)has a relation;
0, if(e1i, e2j)has no relation.

(5)

where the eij indicates the pair (e1i, e2j). And then we can
obtain the relevant knowledge attention K ′ = f(K), where
the function f is a non-linear function, such as relu, tanh.

This part reflects the process of human-like long-term
memory to some extent. However, how they work together
to promote the comprehension of discourse, we will explain
it in detail.

A Novel Knowledge Enhancement Paradigm

Implicit Enhancement of Knowledge The entity pairs in
two discourse arguments may benefit from external knowl-
edge by mining their semantic connections. Given the mu-
tual attention and the knowledge matrix, we map the knowl-
edge matrix into attention matrix, which implicitly supple-
ments the relevant knowledge into the process of capturing
asymmetric interactions between arguments.

Q = G+K ′. (6)

where G reflects the interactions between two arguments,
and K ′ reflects the semantic connections between entity
pairs in the arguments. Thus Q ∈ R

n1×n2 is an intra-
sentence relation matrix integrated with the relevant knowl-
edge.

We apply column-wise and row-wise pooling operations
to generate the importance vectors. Since mean-pooling per-
forms better than max-pooling in our experiments. Thus, we
adopt mean-pooling operation by Eq.(7):

qR
1

i = mean(Qi,1,Qi,2, ...,Qi,n2
),

qR
2

j = mean(Q1,j ,Q2,j , ...,Qn1,j).
(7)

where qR
1

i represents an importance score for the context
around the i-th word with external knowledge in Arg1 with
regard to Arg2. Likewise, qR

2

j represents an importance
score for the context around the j-th word with external
knowledge in Arg2 with regard to Arg1. So we can obtain
the importance vectors of R1 and R2 as follows:

qR1

= [qR1
1 , qR1

2 , ..., qR1
n1

]T ,

qR2

= [qR2
1 , qR2

2 , ..., qR2
n2

]T .
(8)

Next, we utilize softmax function to transform these vec-
tors qR1 and qR2 to obtain the knowledge-enhanced atten-
tion vectors α and β shown in Eq.(9).

αi =
exp(qR1

i )∑n1

j=1 exp(qR1
j )

, βi =
exp(qR2

i )∑n2

j=1 exp(qR2
j )

. (9)

Finally, the argument representations (RArg1 and RArg2)
integrating the relevant deeper knowledge clues are calcu-
lated by Eq.(10), which not only captures the interactions
between the arguments, but also reflects the construction of
the long-term memory to some extent.

RArg1 = R1α, RArg2 = R2β. (10)

Explicit Enhancement of Knowledge The inter-words
semantic connection embedding calculated by Eq.(3) is ex-
plicitly representing knowledge. It is directly concatenated
to the argument representations, which is shown as Eq.(11).

Knowledge-Enriched Combination Representation

Although the representations computed by Eq.(10) incor-
porate the relevant knowledge implicitly, they do not ade-
quately reflect the knowledge clues due to the lack of knowl-
edge in intra-sentence as a whole (if only concatenating two
arguments “[Arg1, Arg2]”). We exploit a composition layer
to capture the context of whole discourse with semantic con-
nection embeddings as follows:

Rtotal = [RArg1,RArg2,

l∑
i=1

νiri]. (11)

where νi is a soft-alignment weight which is similar to
Eq.(9), l is the number of existing entity pairs in the ar-
guments, and ri is the semantic connection embedding in
Eq.(3). Our model feeds the final representations into a clas-
sifier to determine the discourse relation. Here, we use the
multilayer perceptron (MLP) classifier, which has one hid-
den layer with tanh activation and softmax output layer.

Discourse Relation Prediction

Given a training corpus which contains n instances
{(x,y)}nr=1, (x,y) denotes an argument pair and its rela-
tion label. We employ the cross-entropy loss to assess how
well the predicted relation represents the real relation, de-
fined as:

L(ŷ,y) = −
C∑

j=1

yj log(Pr(ŷj)). (12)

where Pr(ŷj) is the predicted probability of the j-th label,
C is the number of relation class. To minimize the objective,
we use stochastic gradient descent with the diagonal variant
of AdaGrad with mini-batches.

Experiments

Data Preparation

Corpus We use the Penn Discourse TreeBank (PDTB)
(Prasad et al. 2008), which is the largest hand-annotated
discourse relation corpus annotated on 2,312 Wall Street
Journal (WSJ) articles. Experiments are conducted on the
four top-level classes as previous work (Rutherford and Xue
2014; Chen et al. 2016), namely, Comparison (Comp.), Con-
tingency (Cont.), Expansion (Exp.) and Temporal (Temp.).
Following the conventional data splitting, we use Section 2-
20 as training set, Section 21-22 as test set, and Section 0-1
as development set. The relevant statistics of the four PDTB
discourse relations are shown in Table 1.

Experimental Settings The 50-dimensional pre-trained
word embeddings are provided by GloVe (Pennington,
Socher, and Manning 2014), which are fixed during our
model training. If there are words that are not in Glove, they
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Relation Train Dev. Test

Comparison 1842 393 144
Contingency 3139 610 266
Expansion 6658 1231 537
Temporal 579 83 55

Table 1: The statistics of implicit discourse relations in the
PDTB.

are randomly generated in [−1, 1]. All the discourse argu-
ments are padded to the same length of 50. Here, we do not
present the details of tuning the hyper-parameters and only
give their final settings as shown in Table 2.

Description Value

The length of hidden states 50
Knowledge embedding size 300
Initial learning rate 0.001
Minibatch size 32
Dropout rate 0.5

Table 2: Hyper-parameters for our KANN model.

To evaluate our model, we adopt two kinds of experiment
settings:1) the four-way classification to observe the overall
performance; 2) the binary classification to solve the prob-
lem of unbalanced data in the training data, where one class
is against the other three. We use an equal number of posi-
tive and negative instances in the training set in each class.
The test set and development set retain the natural state.

Comparison Methods

We choose several competitive models as our baselines, in-
cluding three aspects: argument representation, interaction
and relevant knowledge.

1) Discourse Argument Representation

• Liu2016: (Liu and Li 2016) designed Neural Networks
with Multi-level Attention to select the important words.

• Rönnqvist2017: (Rönnqvist and Chiarcos 2017) pro-
posed an attention-based BiLSTM to model the argu-
ments as a joint sequence.

2) Argument Pair Interaction

• Chen2016: (Chen et al. 2016) utilized a Gated Relevance
Network (GRN) and incorporated both the linear and non-
linear interactions between word pairs.

• Lei2017: (Lei et al. 2017) adopted word-weighted aver-
aging to encode argument representation, which could be
incorporated with word pair information efficiently.

3) Relevant Knowledge

• Lan2017: (Lan et al. 2017) presented i) an attention-based
neural network, which conducted the representation with
interactions; and ii) a multi-task learning, which lever-
aged knowledge from auxiliary task to enhance the per-
formance.

Model Comp. Cont. Exp. Temp.

Liu2016(2-level) 36.70 54.48 70.43 38.84
Liu2016(3-level) 39.86 53.69 69.71 37.61
Chen2016 40.17 54.76 - 31.32
Chen2016† 38.05 53.43 67.01 30.86
Lei2017 40.47 55.36 69.50 35.34
Lan2017 40.73 58.96 72.47 38.50
Lei2018 43.24 57.82 72.88 29.10
Our KANN 43.92 57.67 73.45 36.33

Table 3: Comparisons with the state-of-the-art models (%)
on binary classification. “†” indicates that the experiment of
model is replicated and the others are cited.

• Lei2018: (Lei et al. 2018) found semantic characteristics
of each relation type and predicted the results by the spe-
cific properties4.
In addition, we also use the three ablation models to com-

pare with our KANN model.
• LSTM: we encode two discourse arguments by LSTMs,

then concatenate them and feed to a MLP to predict the
discourse relations.
• BiLSTM: on the basis of LSTM, we consider the bidi-

rectional contextual information, and utilize BiLSTMs to
encode two discourse arguments.
• BiLSTM+Mutual Attention: further, we construct the

pair-wise matrix as mutual attention dynamically, and
then integrate them to obtain the new argument represen-
tations (named BMAN).

The Overall Performance

Table 3 shows the F1 scores of comparison models on binary
classification, the observations are as follows:

1) On the whole, the performance of models based on ar-
gument representation is lower than that of the others. This
could be caused by the parallel encoding of discourse argu-
ments and neglecting the links between two arguments. The
F1 scores of knowledge-based models are higher than those
of the others. It indicates that wider context is beneficial to
this task and different knowledge may influence the predic-
tion of different discourse relations.

2) For each relation, the F1 scores of Temporal are the
lowest in all models. This is reasonable since it accounts for
the smallest number of instances (only 5%) in the corpus.
With the increase of instance number in different discourse
relations, the F1 scores also rise. It proves that the corpus
is also crucial to the task. And Lei2018 gains the worse F1

score on Temporal, due to the lack of its specific linguistic
properties in their manual analysis.

3) Our KANN model achieves the state-of-the-art F1

scores on Comparison and Expansion relations than those
of other models, which indicates the effectiveness of our
knowledge enhancement paradigm. The reasons include two
aspects: (i) some argument pairs may have confusing word
pairs, which can be effectively mined by mutual attention;

4We argue that those properties as their linguistic knowledge.
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Model F1 Acc.

Liu2016(2-level) 46.29 57.17
Liu2016(3-level) 44.95 57.57
Rönnqvist2017† 39.51 49.22
Chen2016† 44.61 51.86
Lei2017 46.46 -
Lan2017 47.80 57.39
Lei2018 47.15 -
Our KANN 47.90 57.25

Table 4: Comparisons with the state-of-the-art models (%)
on four-way classification. “†” indicates the same meaning
as above.

(ii) only relying on the linguistic properties of discourse it-
self is insufficient. Some complex entity pairs which have
indicative clues need to be further understood by leveraging
external knowledge, especially, the synonyms and antonyms
in WordNet are beneficial to the two discourse relations.

The results of four-way classification are shown in Table
4, and we make the following observations:

1) Argument representation-based models have the com-
parable F1 scores with the methods based on pair interac-
tion. This illustrates that properly representing arguments is
as important as modeling the interactions. In addition, the
F1 score of Liu2016 (2-level) model is higher than that of
three levels’ (1.34%). It indicates that paying more attention
may lead to the over-fitting problem.

2) The F1 score of Lan2017 model is higher than that of
other approaches, which achieves 1.41%, 1.34% improve-
ments than Liu2016 (2-level) and Lei2017 respectively. It
proves the clues that integrating the relevant knowledge into
the representation is more important than only focusing the
important information of the arguments themselves or their
interactions.

3) The performance of our KANN model is comparable
with that of Lan2017, both higher than Lei2018. The main
reasons are: (i) multi-task applied in Lan2017 could obtain
different kinds of auxiliary information from different cor-
pora, and we also introduce external knowledge to enrich
the semantic understanding of discourse; (ii) Lei2018 ob-
tains the specific linguistic properties, which only focuses
on the discourse self.

The Effectiveness of External Knowledge

We utilize three ablation methods to compare with our
KANN model and obtain the following observations of the
results in Table 5:

1) The performance of LSTM is the worst on all relations.
Although BiLSTM captures more information than that of
LSTM, the results are not very good. The reason is that sep-
arately encoding discourse argument by LSTM or BiLSTM
ignores the local focused cues.

2) Compared with LSTM and BiLSTM, BMAN model
achieves much better performance. It indicates that BMAN
not only obtains the focused parts of discourse argument, but
also captures the specific interaction clues by constructing

Model F1
Acc.

Pre-trained Randomly
LSTM 36.41 54.49 50.43
BiLSTM 36.54 55.31 52.31
BMAN 42.21 55.92 54.80
Our KANN 47.90 57.25 55.35

Table 5: The performance of ablation models with different
setting on four-way classification.

the relevance of word pairs.
3) The accuracy (with pre-trained vectors) of our KANN

model is slightly higher than the BMAN by 1.33%. We per-
form significance test for the improvement, and they are both
significant under one-tailed t-test (p < 0.05). This manifests
that some discourse arguments need rich knowledge to help
the semantic understanding, and proves the effectiveness of
the knowledge-enhanced attention module.

4) For the accuracy, all the ablation models with pre-
trained embedding achieve much better performance than
that of randomly initialized model. This reveals that the
words associated with semantics could help the task. KANN
(with randomly initialized vectors) has a comparable score
with BMAN using the pre-trained vectors. It illustrates that
the implicit and explicit utilization of external knowledge
could effectively improve the comprehension of discourse.

Case Study

(a) Mutual attention.

(b) Knowledge-enhanced mutual attention.

Figure 3: A visualization of the attention matrices.
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To demonstrate the validity of our external knowledge uti-
lization, we visualize the heat maps of different attentions
shown in Figure 3, which shows the attention matrices in an
example. Every word accompanies with the various back-
ground colors. Darker patches denote higher correlations of
word pairs. The example is listed below:

Arg1: Psyllium’s not a good crop.
Arg2: You get a rain at the wrong time and the crop

is ruined.
With respect to Figure 3a, we can observe the word pairs

associating with ”not”, ”good” are important context to de-
termine the semantics which obtain much higher scores. It
demonstrates the mutual attention could capture important
parts of the arguments. However, the distribution of word
pairs with higher scores is relatively average, which indi-
cates that it is not enough to mine own information through
such attention.

Figure 3b is as a comparison, the scores of word pairs are
more prominent, which illustrates that integrating external
knowledge makes the focused parts of arguments more clear.
Meanwhile, it also reflects the characteristics of antonyms in
WordNet, for example, the score of (good, wrong) is much
lower.

Related Work
Traditional discrete feature-based methods for discourse re-
lation recognition heavily rely on artificial and shallow fea-
tures, such as POS, polarity, word position, etc. Recent neu-
ral network-based methods acquire the better performance,
there are main three aspects as follows:

Discourse Argument Representation

The prerequisite of recognizing discourse relation is to have
a good argument representation. Most previous researches
exploit various neural networks, such as CNN, RNN, and
hybrid models (Zhang et al. 2015; Qin, Zhang, and Zhao
2016a; Rutherford, Demberg, and Xue 2016) to encode dis-
course arguments as low-dimensional, dense and continu-
ous representations. (Ji and Eisenstein 2015) integrated the
linguistic features, including syntactic parsing and corefer-
ent entity mentions into compositional distributed represen-
tations.

Though argument representation contains the high-level
semantics, it does not embody emphasis during reading
comprehension. And various attention mechanisms are used
to reflect the emphasis on discourse arguments (Liu and Li
2016; Li, Li, and Chang 2016; Zhang, Xiong, and Su 2016).
(Li, Li, and Chang 2016) exploited the hierarchical attention
to capture the focus of different granularities. (Liu and Li
2016) imitated the repeated reading strategy, and proposed
neural networks with multi-level attention (NNMA) to rec-
ognize discourse relations. However, these researches have
not considered the reciprocal effects of two arguments at the
beginning.

Argument Pair Interactions

Most studies tend to discover more semantic interactions be-
tween two arguments by complex neural networks (Chen

et al. 2016; Qin, Zhang, and Zhao 2016b; Lan et al. 2017;
Lei et al. 2017). (Chen et al. 2016) developed the deep
neural architecture with a novel gated relevance network
to capture semantic interactions between arguments. (Cai
and Zhao 2017) generated discourse argument representa-
tions via pair-specified feature extraction. (Lei et al. 2017)
conducted word interaction score to capture both linear and
quadratic relation for argument representation. However, the
studies only focused on intra-sentence information and ig-
nored the external knowledge context.

Integration of External Knowledge

Most public available external knowledge sources are de-
fined as a set of concepts connected by relations. Succeed-
ing in many NLP tasks (Yang and Mitchell 2017; Chen et al.
2018; Mihaylov and Frank 2018) shows that external knowl-
edge is effective for improving the performance of neural
network-based models. (Yang and Mitchell 2017) incorpo-
rated knowledge directly into the LSTM cell state to improve
event and entity extraction. (Chen et al. 2018) enriched neu-
ral network-based natural language inference (NLI) models
with external knowledge in co-attention, local inference col-
lection and inference components.

Different from the previous work, to our knowledge, we
employ a paradigm with two ways of utilizing external
knowledge to enrich the argument representations for the
first time, which tries to break the inherent mode of tradi-
tional researches.

Conclusion and Future Work

Implicit discourse relation recognition demands sufficient
understanding about the arguments from discourse itself
and its relevant external knowledge. To this end, we pro-
pose to imitate the human-like working memory and exploit
more comprehensive features through modeling the pro-
cess of instant memory and long-term memory. Therefore,
we design a novel neural Knowledge-Enhanced Attentive
Neural Network (KANN) framework. The new knowledge
enhancement paradigm makes an effective fusion of dis-
course and its external knowledge. Thus, KANN can update
the argument representations with corresponding knowl-
edge, which can provide effective clues to identify discourse
relations. Our experimental results on PDTB show that the
proposed KANN model is effective.

In future work, we would like to explore different ways
of integrating external knowledge into our task, and deeply
investigate how to utilize the external knowledge inference
for improving implicit discourse relation recognition.
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