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Abstract

Most problems in natural language processing can be approx-
imated as inverse problems such as analysis and generation at
variety of levels from morphological (e.g., cat+Plural↔cats)
to semantic (e.g., (call + 1 2)↔“Calculate one plus two.”).
Although the tasks in both directions are closely related,
general approach in the field has been to design separate
models specific for each task. However, having one shared
model for both tasks, would help the researchers exploit
the common knowledge among these problems with reduced
time and memory requirements. We investigate a specific
class of neural networks, called Invertible Neural Networks
(INNs) (Ardizzone et al. 2019) that enable simultaneous op-
timization in both directions, hence allow addressing of in-
verse problems via a single model. In this study, we investi-
gate INNs on morphological problems casted as inverse prob-
lems. We apply INNs to various morphological tasks with
varying ambiguity and show that they provide competitive
performance in both directions. We show that they are able
to recover the morphological input parameters, i.e., predict-
ing the lemma (e.g., cat) or the morphological tags (e.g., Plu-
ral) when run in the reverse direction, without any significant
performance drop in the forward direction, i.e., predicting the
surface form (e.g., cats).

Introduction

Inverse problem is a general term used in natural sciences
and mathematics to describe the process of recovering the
hidden model parameters, x, from a set of observations,
y. In general, the forward problem, i.e., generating obser-
vations/outputs from parameters, is well-defined; while the
inverse problem is generally ill-posed, i.e., no (unique) so-
lution exists. For instance, inferring seismic properties of
the Earth’s interior from surface observations is a typical in-
verse problem in geophysics (Snieder and Trampert 1999);
since forward problem is well-defined and can be simu-
lated by a forward model, recovering the seismic proper-
ties that lead to a specific surface value is ill-posed. Al-
though inverse problems have been tackled in many fields
such as imaging (Bertero and Boccacci 1998; Adler et al.
2019), astronomy (Osborne, Armstrong, and Fletcher 2019;
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Ardizzone et al. 2019) and geophysics (Snieder and Tram-
pert 1999), natural language processing (NLP) has not yet
witnessed an explicit exploration, mostly due to the discrete
nature of human language. However NLP contains many
tasks that resemble inverse problems such as semantic pars-
ing ↔ text generation, morphological analysis ↔ morpho-
logical generation, text-to-data (e.g., database records) ↔
data-to-text generation and many more. Recently, the NLP
field has replaced traditional discrete representations of text
with dense and low-dimensional continuous ones, referred
to as word/sentence vectors. This has enabled us to refor-
mulate some of the classical morphological tasks as inverse
problems within an existing framework that has been previ-
ously employed for such problems in other fields.

Inverse problems always exist together with their forward
problem. Even so, traditional methods in NLP, optimize the
inverse problems in an isolated fashion via a supervised loss
for direct posterior probability learning, p(x |y), causing
challenges for ill-posed problems, i.e., multiple possible x
values in y → x 1. In addition, the direct formulation ig-
nores the connection to its forward problem, losing the po-
tential to exploit the shared knowledge between those two.
Furthermore, direct optimization of those problems requires
two dedicated models to be trained separately, increasing the
computational requirements.

Recently, a new class of neural networks, called Invertible
Neural Networks (INNs), have been introduced by Ardiz-
zone et al. (2019) following the research line of Dinh,
Krueger, and Bengio; Dinh, Sohl-Dickstein, and Bengio;
Kingma and Dhariwal (2014; 2017; 2018). INNs offer three
key functionalities: (i) modeling inverse problems within a
single network (shared parameters), (ii) having an invert-
ible architecture that allows getting the inverse mapping
y → x for free during prediction; and enables efficient bi-
directional training (i.e., training the network at both ends);
and (iii) addressing the ill-posed problems via an additional
latent output variable z to have a one-to-one input and output
mapping as x↔ [y, z].

In this work, we model two well-known morphologi-

1In case of a unique solution, we refer to it as a well-posed
inverse problem, otherwise it is named as ill-posed following Ka-
banikhin (2008)

7814



Figure 1: Modeling of morphological tasks within the INN framework. TR: Turkish, TL: Tagalog, FR: French

cal tasks: morphological inflection and lemmatization to-
gether with their approximated inverses via modified invert-
ible neural networks. Morphological inflection is defined as
inflecting a lemma with a set of inflectional morphemes to
generate a surface form. Some examples of morphological
inflection for Turkish, Tagalog and French are given in the
left side of Fig. 1. It is considered as a well-defined problem,
since (almost always) only one surface form can be gener-
ated given the lemma and the tag combination. Its inverse
problem is morphological analysis, that aims to extract the
lemma and the tags given the surface form. Unlike inflec-
tion, it may be ambiguous, i.e. there may be multiple possi-
ble analysis of a single surface form, depending on the lin-
guistic properties of the language. Note that the examples
in Fig. 1-left have only one possible analysis. Lemmatiza-
tion is the task of finding the lemma of a given surface form.
Although it is possible to have multiple lemmas per surface
form, it is treated as a well-defined task in literature 2. Its
inverse problem is surface form generation, similar to mor-
phological inflection, however without the guidance of mor-
phological tags. We name it as surface form sampling, since
one can sample a z variable and generate surface forms given
the lemma as shown in Fig. 1-right.

In this work, we recognize, for the first time, that NLP
contains problems similar to “inverse problems” that are
found in many other fields such as imaging, geophysics,
medical and astronomy. This recognition would provide new
ways to approach traditional NLP problems by adapting the
existing solutions developed for inverse problems in other
fields. We experiment with several languages from diverse
language families and morphological typologies and show
that:

• INNs have the ability to optimize for both problems si-
multaneously providing strong results for both, however

2For instance, the Turkish word “dolar” can have the lemma
“dol” (to fill), “dola” (to wrap) or “dolar” (dollar), which can only
be determined when the surface form “dolar” is given within a sen-
tence. However this task is considered different and named contex-
tual lemmatization. Therefore such cases are not handled in scope
of the lemmatization task.

generally 2%-6% less then a strong method designed
specifically for the forward task under our experimental
settings,

• Bi-directional training is crucial to provide competitive
scores for both sides of the network, e.g., adding reverse
training to morphological inflection, boosts the lemma
prediction performance (inverse problem), while causing
only a slight drop in morphological inflection (forward
process),

• Introduction of additional categorical latent variables pro-
vide improvements in lemmatization for all languages,
even surpassing a strong model for some languages,

• INNs implicitly learn simple morphological tag distri-
butions even without a dedicated loss function, however
words needed direct supervision.

We believe that this initial exploration of INNs for inverse
problems in morphology would encourage research in that
direction for more complex NLP tasks.

Background: Invertible Neural Networks

(INNs)

INNs are originally proposed to address ill-posed inverse
problems that have a well-defined forward process, i.e., a
unique x → y, whereas the inverse problem is ambiguous,
i.e., multiple y → x mappings. It is addressed by introduc-
ing an additional latent variable, as illustrated in Fig. 2, that
turns x↔ [y, z] into a bijective mapping. In other words, it
enables the reparametrization of p(x |y) into a determinis-
tic function x = f(y, z). Therefore we can define an inverse
function x = f−1(y, z) = g(y, z) to estimate the full pos-
terior distribution, p(x |y). Recently proposed neural net-
work components that are invertible such as coupling layers
can now be employed as described in more details later in
this section. Such networks are unique since they can be run
backwards to get the inverse y → x without any additional
cost at prediction time. Furthmermore, INNs offer efficient
training procedure that can optimize both ends of the net-
work simultaneously, which is referred to as bi-directional
training.
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Figure 2: Additional latent variable z for one-to-one map-
ping

Invertible Component

INNs consist of layers of “reversible block”s shown with
Fig. 3 that contain complemantary affine coupling layers
proposed by Dinh, Sohl-Dickstein, and Bengio (2017). First,
the input vector u is split into two halves u1 and u2 (in a
fixed way), which are then transformed by the learned affine
functions si and ti, where i ∈ {1, 2} using the following
equations:

v1 = u1 � exp
(
s2(u2)

)
+ t2(u2)

v2 = u2 � exp
(
s1(v1)

)
+ t1(v1),

where � denotes element-wise multiplication. The output v
is then simply calculated by concatenating v1;v2. The input
u can then be recovered with:

u2 = (v2 − t1(v1))� exp
(− s1(v1)

)
u1 = (v1 − t2(u2))� exp

(− s2(u2)
)
.

si and ti need not be invertible and generally represented by
multi-layered feed-forward neural networks with nonlinear
activations, which can then be trained by standard backpro-
pogation algorithm. Similar to previous methods, in order to
vary the splits [u1,u2] among different layers, we employ a
permutation layer between the reversible blocks which shuf-
fle the elements in a randomized but a fixed way.

Bi-directional Training

As discussed by Grover, Dhar, and Ermon (2018), networks
that are invertible offer a unique oppurtunity to optimize for
both the input and output domains simultaneously, i.e., ap-
ply the loss functions Lx, Ly and Lz given in Fig. 3 for
the forward and the inverse passes at the same time. This is
achieved by performing forward and inverse iterations in an
alternating fashion, and then accumulating the gradients to
update the network parameters. This training procedure has
been shown to be highly beneficial in auto-encoders (Teng
and Choromanska 2019) and our own experiments.

Method

Different applications of INNs (Osborne, Armstrong, and
Fletcher 2019; Ardizzone et al. 2019; Adler et al. 2019) have
commonly used continuous latent variables with Gaussian

Figure 3: Demonstration of one layer INN. Revertible block
is shown inside the dashed box. The operations (e.g., +,�)
are only shown for the forward direction for convenience.
They are inverted to subtraction and element-wise division
in reverse direction. L denotes loss function.

priors as z ∼ N (μ, σ2). Unlike in previously addressed ill-
posed inverse problems, most NLP tasks contain categorical
and discrete values. For instance in lemmatization the z vari-
able is expected to capture the morphological tags which are
categorical by definition. Therefore, we have employed cat-
egorical latent variables (Jang, Gu, and Poole 2017) that is
based on the idea of approximating a categorical distribu-
tion via a differentiable distribution called Gumbel-Softmax
(GS). This distribution can be smoothly annealed into a
categorical distribution via a temperature parameter, τ . As
τ → 0, the GS distributions are identical to samples from
a categorical distribution (one-hot), where as τ → ∞ GS
samples become uniform.

Then the method can be formally defined as: Given the
input vector x ∈ R

n, the output vector y ∈ R
m, we assume

that the forward process y = s(x), i.e., morphological in-
flection and lemmatization, is well-defined by an arbitrary
transformation function s. Our goal is to approximate the
posterior p(x |y) by a tractable distribution q(x |y). This is
then reparameterized by a deterministic function g, repre-
sented by the neural network with parameters θ. Categorical
output latent variable z ∈ R

d×cat is drawn from a Gumbel-
Softmax (GS) distribution, where d is latent variable dimen-
sion and cat is the number of categories for each dimension.
Then g is defined as:

x = g(y, z; θ) where z ≈ p(z) = GS(z; τ)

We learn the inverse model g(y, z; θ) jointly with the for-
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ward model f(x; θ) that approximates the s(x) function:

[y, z] = f(x; θ) = [fy(x; θ), fz(x; θ)] = g−1(x; θ)

and fy(x; θ) ≈ s(x)

It should be noted that both functions f and g share the same
parameters θ, therefore can be implemented by a single
model. The invertibility property, f = g−1 is ensured by the
architecture that consists of invertible affine coupling layers
defined in previous background section. One of the restric-
tions of using an invertible architecture is the equality con-
straint on the dimensions of the input x and the output [y, z].
To satisfy this constraint, we pad the lower-dimensional side
(i.e., input or output) with zeros 3. Finally the posterior dis-
tribution is calculated as the following as shown in (Ardiz-
zone et al. 2019):

q(x = g(y, z; θ)|y) = p(z)|Jx|−1,where

Jx = det

(
∂g(y, z|θ)
∂[y, z]

∣∣∣∣
y,fz(x)

)

where Jx is the Jacobian determinant and can be easily cal-
culated due to its triangular structure. We refer the reader to
the original study (Ardizzone et al. 2019) for details of the
above derivations.

For all morphological tasks, the words (lemmas and sur-
face forms) are divided into smaller units, i.e., subword
units, via the Byte-Pair-Encoding (BPE) algorithm (Sen-
nrich, Haddow, and Birch 2016). We then used the 100
dimensional pretrained multilingual embeddings released
by Heinzerling and Strube (2018) that provide vector rep-
resentations for the BPE subword units. Finally each word
is represented as sum of its subword unit vectors that we
denote as �lemma ∈ R

100 and �surface ∈ R
100. For mor-

phological inflection, we define the vector �t ∈ [0, 1]N to
represent the morphological tagset, where N is the number
of distinct morphological tags in the training set. Then ti is
set to 1, if the feature i is among the tagset of the surface
form.

Variables: For morphological inflection, as given in
Fig. 1-left, x is defined as x = [ �lemma;�t] where ; denotes
concatentation operation and y is simply equal to �surface.
According to Fig. 1-right, x and y are equal to �surface and

�lemma accordingly for lemmatization.

Loss Functions: We use a supervised loss, implemented
via cosine distance function, to minimize the error be-
tween the network prediction �surface′ and the gold value

�surface defined as:

Lsurface = 1−
�surface · �surface′

‖ �surface‖‖ �surface′‖
3One could implement an additional loss to keep padding values

closer to zero throughout the training. However we have not seen
any significant change in performances when implemented.

for both tasks. The loss between the predicted �lemma′ and
the gold �lemma is again calculated via cosine distance. For
morphological inflection where �t′ is the predicted and �t is
the gold tag vector, we minimize the error using binary cross
entropy loss defined as below:

Lt = − 1

N

N∑
i=0

(ti.log(t
′
i) + (1− ti)log(1− t′i))

Lx in Fig. 3 is defined as Llemma + Lt for morphological
inflection, where it is equal to Lsurface for lemmatization
task. Similarly Ly is defined as Lsurface and Llemma re-
spectively for morphological inflection and lemmatization.
Finally, we use KL divergence loss for z. The final losses
are calculated as following:

Linflection = αx(Llemma + Lt) + αyLy + αzLz

Llemmatization = αxLx + αyLy + αzLz

The relative weights of the losses denoted with α are ad-
justed as hyperparameters.

Training Procedure: Bi-directional training is performed
iteratively to calculate forward and backward losses. The
pseudocode for training morphological inflection task is
given in Algorithm 1.

Algorithm 1: Training Procedure

1: procedure TRAININFLECTION
2: for each lemma, tagset, surface in train split do

3: x← [ �lemma;�t]

4: y← �surface
5: y′, z′ ← INN(x)
6: z← GumbelSoftmax(z′)
7: x′ ← INN(y, z, reverse = True)
8: Ltotal ← αxLx + αyLy + αzLz

9: Ltotal.backward()

Testing Procedure: In both models, we choose the word
with the highest cosine similarity to the predicted vector dur-
ing testing. This nearest neighbor search is very efficiently
implemented in the gensim framework (Řehůřek and Sojka
2010). To predict morphological tagset, we use sigmoid acti-
vation function on �t′ and choose the features with activations
above 0.5.

Experiments

We first describe the dataset used in the paper, then detail our
experimental design, training settings and evaluation mea-
sures.

Dataset

Wicentowski is the most commonly used dataset for lemma-
tization, which is one of the most interesting ill-posed in-
verse problems investigated in this paper. Previous stud-
ies (Dreyer 2011; Rastogi, Cotterell, and Eisner 2016) use
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a subset of the dataset created by Wicentowski (2003) 4.
However, since previous works evaluate on the lemmatiza-
tion task only, this subset does not contain any morphologi-
cal tags but only the unique lemma-surface pairs. Therefore
we have used the original dataset that additionally contains
morphological tags. In this dataset, each language has its
own set of morphological tags. Furthermore, they are arbi-
trarily written (e.g., 1P and Past instead of person=“1P” and
tense=“Past”) without providing the morphological category
like person and tense. The statistics for the dataset is given
in Table 1.

Dataset Number of tokens #Tag

train dev test

FR 81K/14K 10K/2K 10K/2K 20
FIN 70K/46K 9K/6K 9K/6K 35
RO 41K/5K 5K/1K 5K/1K 23
TR 6.3K/1.6K 782/201 783/202 27
TL 1.4K/1.3K 184/165 184/165 25
GA 864/550 108/69 108/69 17

Table 1: Dataset Statistics. First half: Celex data, Second
half: Wicentowski dara. FR: French, FIN: Finnish, RO: Ro-
manian, TR: Turkish, GA: Irish. Numbers after “/” show the
number of unique lemma-surface pairs. #Tag: Number of
unique morphological tags in the training data.

Experimental Design

We perform morphological experiments with the proposed
framework on 6 different languages from diverse lan-
guage families and morphology types, namely Turkish (Tur-
kic, agglutinative), Romanian (Romance, fusional), Finnish
(Uralic, agglutinative), French (Romance, fusional), Irish
(Celtic, fusional) and Tagalog (Austronesian, agglutinative).
Agglutinative and fusional languages have different mor-
phological properties. Typical properties of agglutinative
languages include (1) the ability to generate/derive words by
attaching morphemes like beads on a string; and (2) associ-
ating each morpheme with one certain semantic unit only,
e.g., using the Turkish “lar” morpheme only for plurality.
This leads to having a high ratio of out-of-vocabulary words,
however the meaning of words are generally predictable.
Unlike agglutinative languages, fusional languages typically
have smaller ratio of morphemes per word, i.e., not as pro-
ductive as agglutinative languages. However one morpheme
is generally associated with multiple meaning units, e.g.,
tense and person information conveyed with one morpheme.
This generally results in lower out-of-vocabulary ratios with
more ambiguous words, especially when the context is un-
known.

Training and Evaluation

For all models, we have used 100-dim vectors extracted from
pretrained Byte-Pair-Encoding (BPE) model with vocabu-
lary size of 1K, provided by Heinzerling and Strube (2018).

4We thank the author for sharing the dataset with us.

Model L (EM%) Tag (F1%) S (EM%)

Fi
nn

is
h L

E
M

baseline 94.0 - -
(Aharoni and Goldberg 2017) 99.6 - -

INN (Ly+Lx) 97.68 -
INN (+Lz , dimz=2, dimcat=3) 97.54 -
INN (+Lz , dimz=6, dimcat=4) 98.18 -

IN
F

baseline - - 85.15

INN (Ly) 0.01 11.84 94.07
INN (Ly+Lx) 95.56 12.42 92.23
INN (Ly+Lx+Lt) 93.33 49.99 91.26

Fr
en

ch

L
E

M

baseline 95.91 - -
(Aharoni and Goldberg 2017) 98.24 - -

INN (Ly+Lx) 95.91 -
INN (+Lz , dimz=2, dimcat=3) 96.03 -
INN (+Lz , dimz=6, dimcat=4) 96.14 -

IN
F

baseline - - 88.94

INN (Ly) 0.0 23.5 98.18
INN (Ly+Lx) 98.56 13.32 97.55
INN (Ly+Lx+Lt) 98.27 26.01 97.49

Ir
is

h

L
E

M

baseline 95.35 - -
(Aharoni and Goldberg 2017) 94.2 - -

INN (Ly+Lx) 94.2 -
INN (+Lz , dimz=2, dimcat=3) 94.2 -
INN (+Lz , dimz=6, dimcat=4) 95.65 -

IN
F

baseline - - 61.11

INN (Ly) 0.0 25.98 76.85
INN (Ly+Lx) 97.22 20.55 79.63
INN (Ly+Lx+Lt) 100 67.33 77.78

R
om

an
ia

n L
E

M
baseline 82.39 - -
(Aharoni and Goldberg 2017) 92.89 - -

INN (Ly+Lx) 89.5 -
INN (+Lz , dimz=2, dimcat=3) 88.85 -
INN (+Lz , dimz=6, dimcat=4) 90.95 -

IN
F

baseline - - 89.45

INN (Ly) 0.0 16.5 97.87
INN (Ly+Lx) 99.26 14.24 97.67
INN (Ly+Lx+Lt) 98.88 0.02 97.34

Ta
ga

lo
g L

E
M

baseline 88.48 - -
(Aharoni and Goldberg 2017) 92.72 - -

INN (Ly+Lx) 88.06 -
INN (+Lz , dimz=2, dimcat=3) 90.03 -
INN (+Lz , dimz=6, dimcat=4) 91.52 -

IN
F

baseline - - 30.05

INN (Ly) 0.0 15.24 37.7
INN (Ly+Lx) 85.41 10.13 33.33
INN (Ly+Lx+Lt) 69.73 43.14 33.88

Tu
rk

is
h L

E
M

baseline 95.28 - -
(Aharoni and Goldberg 2017) 96.53 - -

INN (Ly+Lx) 98.51 -
INN (+Lz , dimz=2, dimcat=3) 99.01 -
INN (+Lz , dimz=6, dimcat=4) 99.54 -

IN
F

baseline - - 88.89

INN (Ly) 0.0 36.29 97.57
INN (Ly+Lx) 99.62 24.37 97.45
INN (Ly+Lx+Lt) 99.74 77.34 97.45

Table 2: Lemmatization and inflection results for different
languages and experimental settings. LEM: Lemmatization,
INF: Inflection. L (EM%): Lemma exact match score, S
(EM%): Surface exact match score. Best scores are given
in bold for each score. Second best scores for lemmatiza-
tion is shown in italics. EM: Exact Match, dimz , dimcat:
dimensions of z variable and number of categories for each.
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We have initialized the weight parameters orthogonally. For
all INN models, we have used 3 invertible blocks, with 3
fully connected linear layers with hidden dimension of 128
(with ReLU activations in the intermediate layers) as affine
coefficient function. We used gradient clipping and early
stopping to prevent overfitting. Models are optimized with
Adam optimizer with the initial learning rate of 0.001, de-
creased by 0.3 if scores on development set do not improve
for 5 epochs. Unless otherwise stated, we used the weights
αx = 20, αt = 10, αy = 80 and αz = 1 respectively
for Lx, Lt, Ly and Lz . These weights are intuitively cho-
sen following the previous studies that has employed INNs.
We have trained all models for 30 epochs, and did not per-
form a comprehensive hyperparameter search since the goal
of this study is not delivering state-of-the-art results, rather
providing and investigate a different perspective.

For the baseline models, we used 3 fully connected linear
layers with hidden dimension of 128, with ReLU activations
in intermediate layers. We kept the other settings the same as
the INNs (except from zero-padding, since it is not necessary
for feed forward networks). Our method is not directly com-
parable to previous methods for three main reasons: (a) none
of the previous morphological inflection or works report two
(three when tag scores are included) scores with the same
model, (b) none of the previous lemmatization studies offer
sampling surface forms with the given lemma, (c) most of
the previous works are able to generate unseen words, while
we treat the generation as “a selection from a large vocabu-
lary” problem that simplifies the problem space. Neverthe-
less, we have chosen one of the recent state-of-the-art mod-
els by (Aharoni and Goldberg 2017) as a reference for com-
parison, to provide an insight about the proposed model’s
performance. For evaluation we use the percentage of exact
match score for lemma and surface form predictions, and F1
score for morphological tag predictions due to having mul-
tiple labels per form.

Since a nearest neighbor search is performed between the
network output and the existing word embedding space us-
ing cosine similarity, words that have not been encountered
in the training data, would not be predicted. In order to ad-
dress this, we have extended the vector space with 500K
most common words, which can be considered quite many,
along with the words encountered in the test data during pre-
diction time.

As discussed previously, morphological analysis, i.e.,
inverse of the morphological inflection task, may be ill-
posed depending on the linguistic properties of the lan-
guage. For instance, agglutinative languages have one-to-
one morpheme-to-tag mapping, while for fusional languages
one morpheme may stand for multiple tags. This means that,
morphological analysis of fusional languages is ill-defined
while (mostly) the opposite is true for agglutinative ones. In
case of ill-posedness, continuous sampling from z is neces-
sary to find distributions of the morphological tags, which
are hard to score. To simplify scoring of predicted tags, we
ignore z and only consider the most likely tagset in a current
setting. Since the ambiguity greatly varies with the language
families, we focus on the tag scores of languages with less
ambiguous input.

Results and Analysis

We present the results of lemmatization and the morpholog-
ical inflection tasks for 6 languages in Table 2. First, we ob-
serve that all models in all experimental settings outperform
the baseline.

Lemmatization: Inroducing latent variables help increas-
ing the performance of lemmatization in all languages, sur-
passing the (Aharoni and Goldberg 2017) by a small margin
for Turkish and Irish, and providing similar results for other
languages. More specifically, relative performance to (Aha-
roni and Goldberg 2017) ranges between [-2%, +3%]. In ad-
dition, we observe that larger the z dimension gets, better
the scores become in all languages. It may be due to simply
providing the network with a larger representation space, al-
lowing for a more flexible learning process. We have then
used the trained model to sample surface forms for the given
lemma. We have observed that, the model almost always
generates a valid surface form when run backwards. How-
ever we have also noticed the diversity of the generated sur-
face forms being quite low. This may be due to the statistical
properties of the dataset, i.e., observing one dominant mor-
phological tag combination throughout the trainig set. Sec-
ond reason, is the problem similar to the one described in
Bowman et al. (2016). This study uses Variational Autoen-
coders (VAE) to generate diverse sentences via the help of
latent variable, z, that aims to encode useful global infor-
mation hence enable generation of diverse sentences. How-
ever, they observe KL-divergence loss of zero that causes the
model to ignore z.

Morphological Inflection: One of the most important
findings for this task is the evidence of network’s ability to
provide remarkably strong results for both directions when
Ly+Lx are used. This suggests that, optimizing the same
network parameters (θ) with loss functions of dual prob-
lems, is feasible and necessary for dual strong results. Al-
though majority of the time, adding Lt, slightly decreased
the lemma recovery scores, in Irish and Turkish, we observe
improvement on both scores, which may be due to rela-
tively small number of training data. We see mixed results
for tag F1 scores, due to varying morphological ambiguity
in languages. For agglutinative languages, Finnish, Tagalog
and Turkish, where each morpheme is associated with a tag,
the ambiguity is lower, therefore F1 scores are higher; in
contrast to fusional languages, Romanian and French. Inter-
estingly, even when the network is only optimized for Ly ,
INNs started to implicitly learn the morphological tags for
all languages, demonstrated by the tag F1 scores ranging be-
tween 11.84-36.29. However no improvement had been ob-
served for the lemma, suggesting that the distribution of the
lemma is too complicated to learn implicitly, hence an ex-
plicit supervision is necessary. Finally, for all agglutinative
languages, lemma exact match scores in lemmatization task
are better than or very similar to the scores in the inverse task
of morphological analysis; which can be explained by one-
to-one morpheme to tag mapping, that is implicitly learned
without any guidance.
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Related Work

Morphological Tasks Most morphological problems
dealt in this paper are also known as string-to-string trans-
duction problems. Dreyer, Smith, and Eisner (2008) intro-
duce a general modeling framework based on weighted fi-
nite state transducers (WFST) that employ n-gram features
and latent variables. They perform experiments on morpho-
logical form generation and lemmatization and show that
incorporating latent variables improves the results dramati-
cally. Although they use the same framework for both prob-
lems, the models are trained separately for each problem.
Furthermore, the framework learns the best alignment be-
tween the lemma and the inflected form, separately for
each task, which may not be known beforehand in a real-
istic scenario. Schnober et al. (2016) compare more recent
encoder-decoder architectures such as seq2seq with hard
monotonic attention (Aharoni and Goldberg 2017) with tra-
ditional transduction techniques based on conditional ran-
dom fields and WFSTs on classical string transduction tasks
including lemmatization. They find that although traditional
models have similar performance to neural models in most
cases, their performances fall behind of the neural models
for lemmatization task. This suggests that the lemmatization
can be considered as a more complex/ambiguous problem
compared to other tasks. Ribeiro et al. (2018) introduce
a method to reduce the transduction to sequence labeling
problem, and show that although neural methods perform
on par or worse (e.g., on Finnish OCR) in most cases, it is
the opposite for the morphological inflection task.

Invertibility in NLP He, Neubig, and Berg-Kirkpatrick
(2018) employ invertible transformations (coupling layers
that are very similar to the ones used in this study), to
perform unsupervised learning of syntactic structure. They
demonstrate the efficiency of the invertibility property on
POS tagging and dependency parsing. Recently, Ziegler and
Rush (2019) proposed a flow-based model for discrete se-
quences such as text, and show that their proposed autore-
gressive model performs on par with traditional sequential
models on character-level language modeling task.

Joint models A few decades ago, the researchers have at-
tempted to design a unified framework, i.e., a reversible,
single grammar, for parsing and generation (Shieber 1988;
Wintner, Gabrilovich, and Francez 2000). However, the
grammar development has been replaced by advanced sta-
tistical tools; therefore those works have not been explored
recently. Another set of models that are conceptually sim-
ilar to ours, perform paired training (Konstas et al. 2017;
Hu et al. 2017; Cao et al. 2019), however still optimize sep-
arate models and generally have a more complicated training
procedure.

Conclusions

We have proposed modeling several inverse problems in
morphology together with their dual problem, such as mor-
phological analysis↔ inflection, with recently proposed in-
vertible neural networks that uses a single model for both

problems, offer efficient bi-directional training with the help
of invertibility layers and provide free inverse mapping. We
showed that they are capable of simultaneous optimization
of such dual problems providing strong results on both;
and lemmatization benefits from additional categorical la-
tent variables. We demonstrated that simple distributions are
implicitly learned while complex, multimodal distributions
needed supervision. We hope that these initial encouraging
results for inverse problems in morphology would inspire
the researchers to explore other inverse problems of NLP.
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