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Abstract

Text generation tasks aim at generating human-readable text
from different kinds of data. Normally, the generated text
only contains the information included in the data and its ap-
plication is thus restricted to some limited scenarios. In this
paper, we extend the task to an open domain event text gen-
eration scenario with an entity chain as its skeleton. Specif-
ically, given an entity chain containing several related event
entities, the model should retrieve from a trustworthy repos-
itory (e.g. Wikipedia) the detailed information of these en-
tities and generate a description text based on the retrieved
sentences. We build a new dataset called WikiEvent1 that
provides 34K pairs of entity chain and its corresponding de-
scription sentences. To solve the problem, we propose a wiki
augmented generator framework that contains an encoder,
a retriever, and a decoder. The encoder encodes the entity
chain into a hidden space while the decoder decodes from
the hidden space and generates description text. The retriever
retrieves relevant text from a trustworthy repository which
provides more information for generation. To alleviate the
overfitting problem, we propose a novel random drop com-
ponent that randomly deletes words from the retrieved sen-
tences making our model more robust for handling long input
sentences. We apply the proposed model on the WikiEvent
dataset and compare it with a few baselines. The experimen-
tal results show that our carefully-designed architecture does
help generate better event text, and extensive analysis further
uncovers the characteristics of the proposed task.

Introduction

In recent years, many natural language generation (NLG)
tasks have been proposed to generate human-readable text
based on different kinds of data. (Gardent et al. 2017a;
2017b) propose the WebNLG task to generate text descrip-
tions based on a group of knowledge base triples. The E2E
(Novikova, Dušek, and Rieser 2017) task aims to gener-
ate restaurant reviews with respect to the given attributes.

∗The work described in this paper is substantially supported by
a grant from the Research Grant Council of the Hong Kong Special
Administrative Region, China (Project Code: 14204418).
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Available at https://github.com/fuzihaofzh/WikiEvent

The WikiBio (Lebret, Grangier, and Auli 2016) task gener-
ates the first sentence of a person’s biography based on its
Wikipedia Infobox.

Punic War
Roman Republic
Ancient Carthage

The second Punic war between Rome and Carthage
broke out in  219 BC and ended in 201 BC.

Figure 1: Illustration of the Open Domain Event Text Gen-
eration task. The event description is generated based on a
given entity chain.

The current NLG tasks always assume that the generated
text only contains the information included in the given data.
However, this assumption is very rigid and sort of less prac-
tical in the real world. For example, in the novel writing sce-
nario as shown in Fig. 1, when a writer wants to describe the
“Punic War”, what comes into his mind first is only some
entity words such as “Punic War”, “Roman Republic” and
“Ancient Carthage”. Then, he digs his own or turns to cer-
tain resources for help to acquire knowledge of these entities
to compose a complete sentence. It would be very useful if
such event text description can be automatically generated.

In this paper, we propose a new task named Open Do-
main Event Text Generation (ODETG). In this task, we are
given a sequence of entities called an entity chain. The goal
is to generate a sentence with this entity chain as its skele-
ton. We assume that we only know the entity chain and re-
quire the model to retrieve from a trustworthy repository
(e.g. Wikipedia) to find the detailed information of these en-
tities and generate a description text based on the retrieved
sentences. The ODETG task can be applied to more scenar-
ios where the traditional generation task cannot handle eas-
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ily. Traditional tasks are restricted since they assume that the
given data contain all the needed information and the gener-
ated sentences can only describe the given information. Dif-
ferent from traditional generation tasks, the ODETG task re-
quires to retrieve information from a trustworthy repository.
Therefore, such nature allows our new task to be used in
much broader scenarios, meanwhile, it also makes the task
more challenging.

We propose a novel Wiki Augmented Generator (WAG)
framework to solve this problem of generating sentences
based on a given entity chain. Our framework firstly re-
trieves sentences from a trustworthy sentence repository
with queries formed with the entities, and then it generates
an event description with the retrieved sentences. Accord-
ingly, the core part of our framework contains an encoder,
a retriever and a decoder. The encoder encodes the given
entity chain into a hidden space. The retriever retrieves the
related information for the given entity chain. Precisely, it
retrieves the sentences describing the entities from the sen-
tence repository. The decoder generates text based on the
encoder output and the retrieved text. We observe that since
the retrieved sentences can be extremely long, the training
procedure of the generation model can easily get overfitted.
We employ a random drop component to alleviate the over-
fitting problem.

We build a real-world dataset called WikiEvent to evalu-
ate the performance of our model. The dataset is built based
on Wikipedia and provides 34K pairs of entity chains and
their corresponding description text. We also build a sen-
tence repository based on Wikipedia for the retriever to fetch
useful text information for the generation sub-task. Presum-
ably, it can be regarded as a trustworthy one and, of course,
it could be replaced by other resources such as daily news. In
summary, our contributions are as follows. (1) We propose
a new task, namely, Open Domain Event Text Generation
(ODETG), which is much more challenging and practical.
(2) We contribute a new dataset called WikiEvent which can
be used to evaluate the models for this task. (3) We propose a
novel model tackling the characteristics of this task to solve
the ODETG problem. (4) We propose an effective random
drop component to tackle the overfitting problem encoun-
tered in the training process.

Related Works
Nowadays, many data-to-text generation tasks have been
proposed to generate text aiming at explaining different
kinds of data in a more human-readable form. For exam-
ple, the WebNLG task (Gardent et al. 2017a; 2017b) gen-
erates sentences corresponding to a group of related triples
sampled from DBpedia (Auer et al. 2007; Lehmann et al.
2015). A similar task is to generate a description text from
the attributes of an entity, such as generating a short biog-
raphy with person attributes in the WikiBio dataset (Lebret,
Grangier, and Auli 2016), or a review from the restaurant
attributes in the E2E dataset (Novikova, Dušek, and Rieser
2017). (Chen and Mooney 2008; Wiseman, Shieber, and
Rush 2017) propose to generate a summarization of a com-
petition. All these tasks strive to generate text exactly ex-
plaining the data without adding extra information to help

understand the data.
On the other hand, many works have been proposed to

generate text from different kinds of prompts. Fan, Lewis,
and Dauphin (2018) use reddit’s WritingPrompts data to
expand a short story to a long one. (Park and Ahn 2018;
Feng et al. 2018; Peng et al. 2018) propose to generate
sentences from keywords. Yan (2016) proposes to gen-
erate a poem from given keywords. Drissi, Watkins, and
Kalita (2018) propose to generate text by learning from
the output of a summarization model. Wang, Chen, and
Lee (2019) propose to generate text from hidden explain-
able topics. (Li et al. 2013; Li, Luong, and Jurafsky 2015;
Martin et al. 2018) propose to generate text based on an ab-
stract state translation. However, instead of using a trustwor-
thy repository to provide information, these tasks generate
text solely based on the prompts and knowledge from the
training set. Different from them, our framework expands
the semantic of the input entity chain by retrieving rich con-
tent from a trustworthy repository, i.e. Wikipedia.

WikiEvent Dataset Construction

We build our WikiEvent dataset based on the English
Wikipedia dump2 with three steps: (1) selecting articles de-
scribing some events; (2) extracting hyperlinked entities to
form (entity chain, text) pairs; (3) filtering the candidates to
build the final dataset. In addition, we also build a trustwor-
thy sentence repository from the Wikipedia dump.

Article Selection

In order to find articles describing some events, we deter-
mine some keywords (namely Battle, Revolution, Revolt,
Campaign, Rebellion, Siege, War, Conflict, Invasion, Inci-
dent, Conference, Treaty, Affair, Uprising, Expedition) that
may refer to some events and choose the articles containing
any keyword in their titles. We ignore the functional articles
that contain words such as “Category”, “List of ”, “disam-
biguation”, “Image:”, “File:” in the title.

Candidate Extraction

We split the article text into sentences with NLTK (Bird and
Loper 2004). After we get the tokenized sentences, we ex-
tract the entities and corresponding text by regular expres-
sions. For example, given the text in Wikipedia markup lan-
guage “[[Washington, D.C.|Washington]] is the capital of
the [[United States|U.S.]]”, an entity is marked in the square
brackets and it is separated into two parts by “|”. The first
part in the brackets is the formal entity name while the sec-
ond part is the surface text shown in the rendered Wikipedia
page. Therefore, the extracted entity chain is “Washington,
D.C. — United States”, while the extracted text description
is “Washington is the capital of the U.S.”. In such manner,
one entity in different entity chains keeps the same form and
its different surface forms may occur in different description
text. After the extraction, we get a candidate set of (entity
chain, text) pairs, and each of them contains an entity chain
as the skeleton and a piece of text as the target description.

2https://dumps.wikimedia.org/enwiki/20190320/
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train test dev
Battle 9,770 644 629
Revolution 1,221 64 83
Revolt 328 23 22
Campaign 1,748 113 98
Rebellion 425 31 23
Siege 1,689 109 112
War 8,187 551 558
Conflict 548 34 33
Invasion 584 40 41
Incident 506 43 48
Conference 2,371 154 166
Treaty 1,261 106 83
Affair 410 23 34
Uprising 299 19 25
Expedition 653 46 45
Total 30,000 2,000 2,000

Table 1: Dataset

Filtering

We use a rule-based filter to further clean the candidate pairs
obtained above since some of them may not be suitable for
our task. We require the number of entities in each pair to
be less than 10 and the target sentence length in the range
of 20 to 50 words. We also filter out the text containing
certain keywords (such as “Category”, “Portal”, “Timeline
of”) since we observe that such text is unlikely to be a desir-
able event description. After some other filtering steps, we
finally obtain a set of 34,000 (entity chain, event text) pairs,
and split it into train, development (dev), and test sets. The
statistics of the final dataset is shown in Table 1.

Trustworthy Sentence Repository

We also build a trustworthy sentence repository for storing
the raw information supporting the process of retrieving use-
ful related information for text generation. This repository
is a collection of information from trustworthy source (in-
cluding Wikipedia, news, etc.). We split all the articles in
the dump into sentences similar to Section . By importing
the sentences into Elasticsearch3, they can be retrieved with
search queries, i.e. entity names.

Our Proposed Framework

Overview

Formally, we denote ei as the ith entity in an entity chain
Ec = [e1, e2, · · · , en]. Given an entity chain Ec, the
goal of the model is to generate a target sequence G =
[g1, g2, · · · , gl] where gi is the ith word and G maximizes
the conditional probability:

max
G

P (G|Ec).

Our proposed Wiki Augmented Generator (WAG) frame-
work is illustrated in Fig. 2. It is composed of three com-
ponents, i.e. an encoder, a retriever and a decoder. The en-
coder, on the bottom left, contains a typical S2S encoder

3https://www.elastic.co/

to encode the entity chain into hidden vectors. In order to
utilize more detailed information, we require the model to
retrieve related information for each entity from the trust-
worthy repository. The retriever on the bottom right uses the
input entity as the query words to retrieve some sentences
from the trustworthy repository. After that, it will go through
a random drop (RD) component which randomly removes
some words when training. The retriever only depends on
the entity chain and thus can be invoked as a pre-processing
step. We denote si as the ith sentence in the retrieved sen-
tences list Sw = [s1, s2, · · · , sn]. The decoder on the top
generates a hidden state vector q for each generation step.
Then, the decoder uses q as a query vector to impose an at-
tention weight on each word of the retrieved text for calcu-
lating an aggregated vector. The aggregated vector and the
hidden state vector are then used to generate the final output.

Encoder

We develop the encoder based on a common S2S frame-
work. It encodes the entity chain into a hidden rep-
resentation which will be used by the decoder. Each
entity in the entity chain Ec is firstly concatenated
one after another to form an input vector E′

c =

[w
(1)
e1 , · · · , w(ne1

)
e1 , · · · , w(1)

en , · · · , w(nen )
en ], in which w

(j)
ei

stands for the jth word in the ith entity in Ec. Subsequently,
E′

c is sent to an embedding layer to get the embedding of
each word:

Eh = Emb(E′
c),

where Eh ∈ R
de×nc . de stands for the dimension of the em-

bedding while nc is the total word count of E′
c. The hidden

representation Eh is then sent to an RNN layer (Here, we
use multi-layer multi-directional LSTM) to get the hidden
representation for each word:

H = RNN(Eh),

where H ∈ R
dh×nc . dh is the size of each hidden vector.

The final state and cell state of this RNN network will be
used to initialize the decoder’s RNN network.

Retriever

The retriever retrieves sentences from the sentence reposi-
tory with traditional retrieve methods. We use the existing
Elasticsearch tool to retrieve the relevant sentences from the
trustworthy repository. It gives each sentence a score and
returns the highly scored sentences. The score4 in Elastic-
search is calculated as follows:

s(e, d) =
1

‖e‖q · C(e, d)·
∑

t∈e

(tf(t, d) · idf(t)2 ·B(t) · ‖d‖f ),

where e is the query. 1
‖e‖q

is the query normalization fac-
tor. C(e, d) is the coordination factor. tf(t, d) is the term fre-
quency for the term t in the document d. idf(t) is the in-
verse document frequency for the term t. B(t) is the boosted

4https://www.elastic.co/guide/en/elasticsearch/guide/
current/practical-scoring-function.html

7750



Punic War Rome Republic  Ancient Carthage

The second Punic war

… and the Rome republic won this war in 201 BC. …

… and the Rome won war 201 BC. …

E′
c

Eh

H

q

S′
w

S′′
w

Ew

�

c’
Decoder

Encoder Retriever

Figure 2: Our proposed Wiki Augmented Generator (WAG).

value for t. ‖d‖f is the field-length norm of the document d.
The detailed definition can be found in the reference guide4.
When retrieving related sentences for an entity chain Ec, we
retrieve sentences for each entity respectively and combine
them together. For the entity ei, the score function can be
expressed as:

score(ei, d) = 1(ei ∈ d)s(e1 + e2 + · · ·+ en, d),

where 1 is an indicator function. It equals to 1 when ei ∈ d
and equals to 0 otherwise. e1 + e2 + · · · + en denotes the
concatenation of the entities into a long sequence. Subse-
quently, we select top-nr sentences for each entity to make
the retrieved sentences list Sw. It is then concatenated into a
sequence S′

w = [w
(1)
s1 , · · · , w(ns1

)
s1 , · · · , w(1)

sm , · · · , w(nsm )
sm ],

where w(j)
si stands for the jth word in the ith sentence in Sw.

Since the retriever only depends on the entity chain, it can
be conducted as a pre-processing step. Meanwhile, the re-
triever component is only based on statistics of words and
thus it has no parameters to learn.

Decoder

The decoder first applies a random drop component on the
retriever output and then it utilizes the remaining token se-
quence combined with the encoder output to generate the
target text.

It has been observed that the retrieved sentences can be
extremely long. Consequently, the training procedure can
easily get overfitted since it can just ad-hocly focus on a
particular portion of the retrieved text, i.e. S′

w, and uses it
to generate the target. To alleviate this problem, we pro-
pose a random drop (RD) mechanism that randomly re-
moves words in S′

w with a drop ratio. Different from the tra-
ditional dropout layer, RD directly deletes the words while

the dropout layer just sets the random dimensions to 0. Let
S′′
w = RD(S′

w) denote the sequence after the RD operation.
The RD component is only applied in the training stage,
while set ineffective in the testing stage, since its purpose
is for preventing overfitting of training.

The hidden state and cell state of each decoding step (t >
0) are calculated by passing the previous step’s states to an
RNN cell:

ht, ct = RNN([ht−1, ct−1]),

where ht ∈ R
dh is the hidden output of an RNN cell and

ct ∈ R
dh is the cell state. The encoder’s final state is used

h0. ht is then sent to an attention layer to get the traditional
attention context vector, called query vector q here, from H
weighted by the relatedness to the current state ht:

q = Attn(ht, H),

where Attn is the traditional attention function (Bahdanau,
Cho, and Bengio 2014). In the traditional S2S framework,
the output of the attention layer, i.e. q, is directly used to pre-
dict the next output word. In our framework, since we have
extra retrieved text information, i.e. S′′

w, q will be used as
a query vector to fetch additional context information from
S′′
w.
Specifically, we firstly embed S′′

w as:

Ew = Emb(S′′
w),

where Ew ∈ R
de×|S′′

w| and |·| denotes the sequence length. It
has been observed that |S′′

w| can always be very large even if
we use a random drop component to remove some words. If
we directly use Ew for the decoder, a lot of irrelevant infor-
mation may be introduced and it thus hurts the performance.
To alleviate this problem, we use an attention mechanism
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to select relevant information for the decoder. For the vec-
tor q ∈ R

dh , it first goes through a linear layer to get the
transformed query vector:

q′ = Weq + be,

where We ∈ R
dh×de and be ∈ R

de is the transform matrix
and bias vector respectively. The aligning weight is calcu-
lated by a simple matrix product with the embedding Ew

and q:

s = ET
wq

′,

where s ∈ R
|S′′

w| is the alignment vector. Afterwards, s is
passed through a softmax layer to get a probability over all
the words:

a =
es

∑|S′′
w|

j=1 esj
,

where a ∈ R
|S′′

w| and the sum of all elements in a equals to 1.
The probability gives each word in the retrieved sentences a
weight. Then, a context vector is calculated by the weighted
sum of the Ew matrix with the weight a:

c′ = Ewa,

where c′ ∈ R
de . It contains the information we need from

the retrieved text.
The decoder generates the output text from the context

vector and the query vector jointly. The context vector c′

is concatenated with the input query vector. Then it goes
through a linear layer and a tanh layer to get the final context
vector.

c = tanh(Wc[q; c
′] + bc),

where c ∈ R
dh ,Wc ∈ R

dh×(dh+de), bc ∈ R
dh . c is the

context vector and is used to calculate the probability for all
the words as:

yt = Softmax(Wyc+ by),

where yt ∈ R
|V | and |V | is the size of the target vocabu-

lary. Wy ∈ R
|V |×dh , by ∈ R

|V |. Copy mechanism (He et al.
2017) is utilized to solve the out-of-vocabulary problem.

Experiments

Experiment Setup

The output is evaluated with several metrics, namely BLEU
(Papineni et al. 2002), NIST (Doddington 2002), METEOR
(Banerjee and Lavie 2005), ROUGEL (Lin 2004), and
CIDEr (Vedantam, Lawrence Zitnick, and Parikh 2015).
The evaluation is conducted with the package provided by
(Novikova, Dušek, and Rieser 2017) and we follow the
setting in the package where the ROUGEL is a harmonic
mean of precision and recall with β = 1.2. We build our
model based on the traditional sequence-to-sequence (S2S)
model (Sutskever, Vinyals, and Le 2014; Cho et al. 2014;
Klein et al. 2017). We set both the embedding size and the
hidden size to 500, the dropout rate to 0.3, the optimization
algorithm to SGD with the initial learning rate of 1.0 and the

decay rate of 0.5. The random drop ratio is set to 0.5 and the
retrieved sentence number is set to 1 for each entity. All the
hyper-parameters are tuned on the dev set and some details
are presented later.

Comparison Models

We employ a few baselines that are developed with the S2S
framework and its variants that use our entity chain and the
retrieved sequence as input.

S2S-E utilizes the traditional S2S (Sutskever, Vinyals,
and Le 2014; Cho et al. 2014; Klein et al. 2017) frame-
work with the standard attention (Bahdanau, Cho, and Ben-
gio 2014; Luong, Pham, and Manning 2015) and the copy
mechanism (He et al. 2017). We flatten the entity chain as
a simple sequence and separate each entity with a special
token. It is then used as the input of the S2S framework.

S2S-W has the same structure as S2S-E model. We firstly
retrieve Wikipedia sentences from the repository with the
entity chain as the key. Then, we directly use the retrieved
text as the input of the S2S framework.

S2S-E-W-1 uses the entity chain as the S2S input se-
quence and uses the retrieved text as an additional feature
vector. It encodes the retrieved text by an RNN network and
averages the output states of all time steps to convert the text
as a feature vector. This vector is then concatenated to the
input vector at each decoding step to generate the output se-
quence.

S2S-E-W-2 firstly retrieves sentences from the trustwor-
thy repository and concatenates the retrieved text at the end
of the flattened entity chain. The concatenation is then sent
into the S2S framework.

S2S-E-W-2’ uses the same input of S2S-E-W-2 but adds
a random drop (RD) component on the text before it is con-
catenated at the end of the flattened entity chain.

S2S-E-W-2” is similar to S2S-E-W-2’. The difference is
that S2S-E-W-2’ drops words randomly while S2S-E-W-2”
drops words with a probability depending on whether the
current word is near a word in the entity chain. Words far
from the entity words are more likely to be dropped.

WAG w/o RD is an ablation variant of our WAG model,
by removing the RD component.

BLEU NIST METEOR ROUGEL CIDEr
S2S-E 0.200 4.38 0.200 0.377 1.47
S2S-W 0.157 3.92 0.156 0.316 1.11
S2S-E-W-1 0.210 4.84 0.201 0.377 1.51
S2S-E-W-2 0.224 5.16 0.204 0.385 1.62
S2S-E-W-2’ 0.224 5.11 0.209 0.394 1.64
S2S-E-W-2” 0.231 5.51 0.209 0.387 1.62
WAG w/o RD 0.231 5.43 0.207 0.383 1.69
WAG 0.238 5.64 0.216 0.397 1.76

Table 2: Main results

Experimental Results

Main Results. The experimental result is shown is Table
2. It can be observed that our WAG model outperforms all
baseline models, and presumably we can draw the following
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Figure 3: The effect of the number of retrieved sentence.

three conclusions. (1) Comparing with S2S-E and S2S-W,
WAG utilizes both types of input information and thus it can
naturally outperform the two baselines. (2) Comparing with
the four baselines of S2S-E-W-X’s, WAG can more appro-
priately utilize the two types of information to generate bet-
ter text. (3) The comparison with WAG w/o RD shows that
our proposed RD component does help train a more robust
model so that it can perform better for testing.

Specifically, S2S-W performs very poor because without
giving the entity chain as skeleton, the model does not have
sufficient guidance regarding what aspect to talk more about
and it is even worse than only using the entity chain, i.e.
S2S-E. S2S-E-W-X baselines can easily outperform S2S-
E and S2S-W, no matter how they combine the two types
of information, even in a rather simple manner as used by
S2S-E-W-1. S2S-E-W-2 can further improves S2S-E-W-1
by concatenating the entity chain and the text, which pro-
duces a more favourable input for the S2S model. By ap-
plying the drop operation for preventing training overfitting,
S2S-E-W-2’ and S2S-E-W-2” get even better results. Over-
all, S2S-E-W-2” performs slightly better than S2S-E-W-2’
(i.e. more advantages on BLEU and NIST, even on ME-
TEOR, less disadvantages on ROUGE and CIDE), probably
because its drop mechanism is more sophisticated than RD,
i.e. deleting more words that are less likely to be used in
the target text. Note that WAG adopts the RD component for
drop operation since it is more straightforward and efficient.
Even though, WAG can still outperform S2S-E-W-2” on all
metrics, which can definitely be attributed to the tailor-made
model architecture of WAG. Concretely, WAG utilizes the
fetched information at each decoding step by querying the
retrieved text (i.e. its embedding matrix) with a query vector
of that step, and thus it can generate text that complies better
with the skeleton and meanwhile provides more appropriate
semantic context from the fetched information.

Effect of the Number of Retrieved Sentence. In the
above main result, we retrieve 1 sentence for each entity. To
study the influence of the retrieval sentence number, we con-
duct an experiment by setting the number ranging from 0 to
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Figure 4: Training curve on every 2,000 steps.

Figure 5: Attention map for the decoder. The entity chain
is “South America — Treaty of Madrid (1750)”. The y-axis
is the generated text, while the x-axis is the retrieved text
where “SENTSEP” is the separator between two sentences.

10. The result is illustrated in Fig. 3. It can be observed that
under both the precision-oriented metric (i.e. BLEU) and the
recall-oriented metric (i.e. ROUGRL-R), introducing the re-
trieved text do help improve the result. In general, retrieving
one or two sentences for each query entity achieves the best
performance. As the increasing of the retrieved sentences,
the sentence quality is decreasing and some irrelevant sen-
tences could be involved. Thus, it enlarges the difficulty for
the model to distill the useful information.

Effect of Random Drop. To have a closer study on the
effect of our random drop component, we plot 3 metrics 5

namely accuracy, perplexity and cross entropy every 2,000
steps during the training stage in Fig. 4. The accuracy is
defined as the ratio of the correct word count over the to-
tal word count. The perplexity is defined as the exponential
of the loss over the total word count. The cross-entropy is
defined as the loss over the total word count. Higher accu-
racy with lower perplexity and cross entropy represents a
better performance for the model. It can be observed that in
training, WAG w/o RD component outperforms WAG with
RD. The reason is that randomly dropping words makes it
harder to learn, and of course, the other side of the coin is

5http://opennmt.net/OpenNMT-py/index.html
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Entity Chain Retrieved Sentences Generated Text Gold Text

Western Desert
Campaign —
Second World

War — Battle of
El Agheila

During the Second World War the north-eastern desert between El
Agheila and the Egyptian border was the scene of heavy fighting

between the Axis powers and the Western Allies , a period known as the
Western Desert Campaign . <SENTSEP> The “ Siege of Tobruk ”

lasted for 241 days in 1941 , after Axis forces advanced through
Cyrenaica from El Agheila in Operation Sonnenblume against Allied

forces in Libya , during the Western Desert Campaign ( 1940–1943 ) of
the Second World War . <SENTSEP> The defence of “Outpost Snipe”

in Egypt , took place in the Second Battle of El Alamein , part of the
Western Desert Campaign during the Second World War .

The Battle of El
Agheila was a
battle of the

Western Desert
Campaign of the
Second World

War .

The Battle of El
Agheila was a brief
engagement of the

Western Desert
Campaign of the

Second World War .

Tsardom of
Russia —

Constantinople
— Istanbul —

Ottoman Empire
— Ottoman

It ended the Russo-Turkish War of 1686-1700 . <SENTSEP> The “
Vilayet of Constantinople ” or “ Istanbul ” was a first-level
administrative division ( vilayet ) of the Ottoman Empire ,

encompassing the imperial capital , Constantinople ( Istanbul ) .
<SENTSEP> The treaty was concluded on 3 July ( O.S . ) 13 July
1700 in Constantinople . The Tsardom of Russia and the Ottoman

Empire agreed on a truce set to expire in thirty years . <SENTSEP>“
Garabet Yazmaciyan ” ( 1868 Constantinople , Ottoman Empire ;

Istanbul , Turkey 1929 ) was a prominent Ottoman painter of Armenian
descent. <SENTSEP> birth place = Istanbul , Ottoman Empire

The Treaty of
Constantinople
was signed on 3

July 1700
between the
Tsardom of

Russia and the
Ottoman Empire.

The Treaty of
Constantinople or

Istanbul was signed on
13 July 1700 between
the Tsardom of Russia

and the Ottoman
Empire .

Lo Giang —
Battle of Lo

Giang

During the Tet Offensive of 1968 , the People ’s Army of Vietnam (
PAVN ) 2nd Division tried to capture Da Nang but they were defeated in
the Battle of Lo Giang . <SENTSEP> “ ’ Lo Khac Tam “ ’ is a former
Vietnamese officer and Lieutenant General who fought for the army of

North Vietnam during the Vietnam War .

The Battle of Lo
Giang was fought

during the
Vietnam War.

The Battle of Lo Giang
was a battle during the

Vietnam War.

Dongnae —
Siege of
Dongnae

It resulted in the capture of Dongnae , a mountain castle on the way to
Hanseong , by the Japanese . <SENTSEP> In 1592 , after Japan ’ s
request for aid conquering Ming China was rebuffed , approximately

200,000 Japanese soldiers invaded Joseon , and the Japanese invasions
of Korea ( 1592–98 ) began .

The Siege of
Dongnae was a

battle of the
Japanese

invasions of
Korea ( 1592–98

).

The Siege of Dongnae
was a siege that

occurred on 25 May
1592 during the

Japanese invasions of
Korea ( 1592–98 ).

Table 3: Examples for generated text.

the model is less likely to get overfitted. Therefore, in the
validation, we observe that our WAG using RD suffers less
from the overfitting problem. Specifically, both models get
overfitted after 12,000 steps, but WAG w/o RD gets worse
more quickly after that.

Case Study

In order to show that the decoder can focus on the correct
position in the retrieved text, we draw the attention map for
each generated word as shown in Fig. 5. Brighter stands for
higher attention. It can be observed that during the genera-
tion procedure, three major areas have been focused on. The
decoder pays more attention to the portion of “the Treaty of
Madrid separated” in the retrieved text, i.e. area 1©, when it
generates the subject of the output. Then it utilizes the infor-
mation fetched from area 2© for outputting the time of the
event. Finally, it outputs the parties of the treaty with the in-
formation fetched from area 3©. It can be concluded that the
decoder focuses on specific information and utilizes corre-
sponding information for generating.

Table 3 presents some generated sentences to give an in-
tuitive understanding of the task and the model. It can be
observed that the generated sentences contain more specific
information with the given entity chain as the skeleton. For

example, in the second case, our model retrieved the infor-
mation “the treaty of Constantinople was signed on 13 July”
which is not given by the entity chain. It shows that our pro-
posed model can successfully retrieve related information
from the trustworthy repository and can give a more detailed
description of the entity chain.

Conclusions

We propose a new task namely Open Domain Event Text
Generation (ODETG). This task can be applied in scenarios
where traditional generation tasks are not applicable. Be-
sides, we contribute a new dataset, namely, WikiEvent, to
evaluate models that solving the ODETG problem. It con-
tains 34K (entity chain, text) pairs composed of an entity
chain and the corresponding description text. Moreover, we
propose a novel framework containing an encoder, a re-
triever and a decoder. The encoder encodes the entity chain
into hidden representation. The retriever retrieves related in-
formation to enhance the generation procedure. The decoder
with a random drop component successfully decodes a se-
quence depicting the entity chain with more detailed infor-
mation. Our proposed model on the WikiEvent dataset out-
performs a few baselines, which shows that our carefully-
designed architecture does help generate better event text.
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Extensive analysis further uncovers the characteristics of the
new task and our proposed model.

In the future, we will explore the following directions: 1)
We will try to incorporating more event articles to enrich the
trustworthy repository. 2) We will explore using reinforce-
ment learning to further refining the retrieved text.
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