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Abstract

Recently, recommender systems have been able to emit sub-
stantially improved recommendations by leveraging user-
provided reviews. Existing methods typically merge all re-
views of a given user (item) into a long document, and then
process user and item documents in the same manner. In prac-
tice, however, these two sets of reviews are notably different:
users’ reviews reflect a variety of items that they have bought
and are hence very heterogeneous in their topics, while an
item’s reviews pertain only to that single item and are thus
topically homogeneous. In this work, we develop a novel neu-
ral network model that properly accounts for this important
difference by means of asymmetric attentive modules. The
user module learns to attend to only those signals that are rel-
evant with respect to the target item, whereas the item module
learns to extract the most salient contents with regard to prop-
erties of the item. Our multi-hierarchical paradigm accounts
for the fact that neither are all reviews equally useful, nor are
all sentences within each review equally pertinent. Extensive
experimental results on a variety of real datasets demonstrate
the effectiveness of our method.

1 Introduction
The rapid shift from traditional retail and services to online
transactions has brought forth a large volume of review data
in areas such as e-commerce, dining, tourism, among many
others. While such reviews are routinely consulted directly
by consumers and affect their decision making, recent work
has shown that they can also be exploited by intelligent al-
gorithms. The detailed semantic cues that they harbor not
only reveal different aspects (e.g., quality, material, color,
and etc.) of an item, but also reflect the sentiment of users to-
wards these aspects. Such fine-grained signals are extremely
valuable to a recommender system and significantly com-
plement the sparse rating and click-through data, based on
which many traditional collaborative filtering methods (Ko-
ren, Bell, and Volinsky 2009) have been developed. Thus,
there has been a series of studies seeking to harness the po-
tential of reviews in improving the recommendation quality
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Figure 1: An example of user’s and item’s historical reivews.
User u rated a 5.0 score on item v after purchasing it.

(Zheng, Noroozi, and Yu 2017; Catherine and Cohen 2017;
Seo et al. 2017; Chen et al. 2018).

These studies have shown that leveraging reviews can in-
deed boost the recommendation effectiveness quite remark-
ably. Typically, these methods associate users with the re-
spective sets of reviews they have written, while associat-
ing each item with the set of all reviews that have been
written for it. To predict the rating for an unseen user–item
pair, in a first step, the embeddings of that user and item
are inferred from the respective sets of reviews via a neural
network. Then, the two embeddings are matched to predict
a numeric rating between them. For example, DeepCoNN
(Zheng, Noroozi, and Yu 2017) relies on convolutional neu-
ral networks to learn user (item) embeddings, and on a fac-
torization machine (Rendle 2010) to predict ratings. D-ATT
(Seo et al. 2017) uses dual-attention based networks to learn
embeddings, and a simple dot product to predict ratings.

Despite the encouraging progress, existing methods all re-
gard the set of reviews by a user and the set of reviews for
an item as the same type of documents, and invoke the same
model (or even a shared model) to process them in parallel.
In reality, however, the set of reviews for a user is fundamen-
tally different from the set of reviews for an item. In partic-
ular, reviews for users correspond to a diverse set of items
that they have rated, resulting in notably heterogeneous tex-
tual contents with a variety of topics for different items. In
contrast, each item’s reviews are only about itself, and the
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contents are thus homogeneous in the sense that the topic
is limited to a single narrow domain. For example, Fig. 1
shows several reviews from Amazon’s health domain. User
u’s historical reviews describe three items, Vitamin C, anti-
inflammatory medication, and an air freshener, while all re-
views for item v are about itself, i.e., Vitamin D3.

This profound difference necessitates distinct forms of at-
tention to be paid on user reviews as opposed to item re-
views, when deciding whether to recommend an item v to
a user u. To predict u’s preference of v, it is important to
extract from u’s reviews those aspects that pertain most to
v, e.g., comments on items that are similar to v. In contrast,
from v’s reviews, we wish to account for the sentiment of
other users with regard to relevant aspects of v. If u pays spe-
cial attention to certain aspects of items similar to v, while
other users wrote highly about v with regard to these par-
ticular aspects, then it is much more likely that v will be of
interest to u. For example, in Fig. 1, reviews 1 and 2 of u are
about non-prescription medicines that are similar to v. In re-
views 1 and 2, u mentioned aspects such as “not sourced
from genetically modified corn”, “easier to swallow”, “great
price”, and “no after taste”, indicating that u considers the
source and price and prefers easily swallowed products with-
out after-taste. Meanwhile, reviews 1-3 of v mention that
v “have no taste”, is “easy to swallow”, “gmo-free”, and
“prices low”, which are opinions expressed by others that
match u’s preferences. Thus, v is likely to be of interest to
u, and u indeed marked a 5.0 score on v after purchasing it.

Another vital challenge in our problem is how to reliably
represent each review. It is worth noting that sentences are
not equally useful within each review. For example, in Fig. 1,
the 2nd sentence in u’s review 1, “I take these in the morn-
ing and after every workout.” conveys little regarding u’s
concerns for Vitamin C, and thus is less pertinent than other
sentences in the same review. Since including irrelevant sen-
tences can introduce noise and may harm the final embed-
ding quality, it is crucial to aggregate only useful sentences
to represent each review.

To address the above challenges, in this paper, we pro-
pose an Asymmetrical Hierarchical Network with Atten-
tive Interactions (AHN) for recommendation. AHN pro-
gressively aggregates salient sentences to induce review rep-
resentations, and aggregates pertinent reviews to induce user
(item) representations. AHN is particularly characterized by
its asymmetric attentive modules to flexibly distinguish the
learning of user embeddings as opposed to item embeddings.
For items, several attention layers are invoked to highlight
sentences and reviews that contain rich aspect and sentiment
information. For users, we designed an interaction-based co-
attentive mechanism to dynamically select a homogeneous
subset of contents related to the current target item. In this
manner, AHN hierarchically induces embeddings for user–
item pairs reflecting the most useful knowledge for person-
alized recommendation. In summary, our contributions are

• We identify the asymmetric attention problem for review-
based recommendation, which is important but neglected
by existing approaches.

• We propose AHN, a novel deep learning architecture that

not only captures both of the asymmetric and hierarchi-
cal characteristics of the review data, while also enabling
interpretability of the results.

• We conduct experiments on 10 real datasets. The results
demonstrate that AHN consistently outperforms the state-
of-the-art methods by a large margin, meanwhile provid-
ing good interpretations of the predictions.

2 Related Work
Exploiting reviews in learning user and item representa-
tions has been proven considerably useful in recent work on
recommendation. Many methods primarily focus on topic
modeling based on the review texts. For example, HFT
(McAuley and Leskovec 2013) employs LDA to discover the
latent aspects of users and items from reviews. RMR (Ling,
Lyu, and King 2014) extracts topics from reviews to enhance
the user and item embeddings obtained by factorizing the
rating matrix. TopicMF (Bao, Fang, and Zhang 2014) jointly
factorizes a rating matrix and bag-of-words representations
of reviews to infer user and item embeddings. Despite the
improvements achieved, these methods only focus on topi-
cal cues in reviews, but neglect the rich semantic contents.
Moreover, these methods typically represent reviews as bag-
of-words, and thus remain oblivious of the order and con-
texts of words and sentences in reviews, which are essential
for modeling the characteristics of users and items (Zheng,
Noroozi, and Yu 2017).

Inspired by the astonishing advancements of recent deep
NLP techniques in various applications (Santos et al. 2016;
Wang et al. 2018; Peters et al. 2018; Dong and De Melo
2018; Devlin et al. 2018; Yang et al. 2019), there has been in-
creasing interests in studying deep learning models. For ex-
ample, DeepCoNN (Zheng, Noroozi, and Yu 2017) employs
CNNs as an automatic feature extractor to encode each user
(item) into a low-dimensional vector by parsing the relevant
set of historical reviews. TransNet (Catherine and Cohen
2017) extends DeepCoNN by augmenting the CNN archi-
tecture with a multi-task learning scheme to regularize the
user and item embeddings towards the target review. These
methods, however, lack interpretability in their results.

To better understand the predictions, several attention-
based methods have been developed. D-ATT (Seo et al.
2017) incorporates two kinds of attention mechanisms on
the words of reviews to find informative words. NARRE
(Chen et al. 2018) invokes review-level attention weights to
aggregate review embeddings to form user (item) embed-
dings. HUITA (Wu et al. 2019) is equipped with a symmetric
hierarchical structure, where, at each level (e.g., word level),
a regular attention mechanism is employed to infer the rep-
resentation of the subsequent level (e.g., sentence level).
MPCN (Tay, Luu, and Hui 2018) models the interactions be-
tween a user’s reviews and an item’s reviews via co-attention
based pointers that are learned with the Gumbel-Softmax
trick (Jang, Gu, and Poole 2016). However, all these meth-
ods just learn user and item embeddings in parallel and fail
to consider the important differences between the two. As
discussed before, this leads to suboptimal predictions.

Unlike the aforementioned methods, our method learns
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several hierarchical aggregators to infer user (item) embed-
dings. The aggregators are asymmetric to flexibly pay vary-
ing levels of attention to user’s (item’s) reviews, so as to en-
hance the prediction accuracy and model interpretability.

3 Our Proposed Model
In this section, we introduce our AHN model in a bottom-up
manner. Fig. 2 illustrates the architecture of AHN.

Sentence Encoding
The sentence encoding layer (omitted in Fig. 2) aims to
transform each sentence (in each review) from a sequence of
discrete word tokens to a continuous vector embedding. We
use a word embedding model to lay the foundation of this
layer. Suppose the sentence s has l words. By employing a
word embedding matrix E ∈ R

d×|V|, s can be represented
by a sequence [e1, ..., el], where ei is the embedding of the
i-th word in s, d is the dimensionality of the word embed-
ding, and V is the whole vocabulary of words. The matrix E
can be initialized using word embeddings such as word2vec
(Mikolov et al. 2013) and GloVe (Pennington, Socher, and
Manning 2014), which are widely used in NLP. To refine the
word embeddings, E is fine-tuned during model training.

To learn an embedding for s, we employ a bi-directional
LSTM (Peters et al. 2018) on its constituent word embed-
dings, and apply max-pooling on the hidden states to pre-
serve the most informative information. That is

s = max([ẽ1, ..., ẽl]), (1)

where s is the embedding of s and

ẽi = BiLSTM(ẽi−1, ei) (1 ≤ i ≤ l), (2)

where ẽ0 is initialized by an all-zero vector 0.
Suppose a review has k sentences. We can then represent

this review by a sequence [s1, ..., sk], where si is the embed-
ding of the i-th sentence in the review, as inferred by Eq. (1).
However, using Eq. (1), each si only encodes its own seman-
tic meaning, but remains oblivious of any contextual cues
from its surrounding sentences in the same review. To fur-
ther refine the sentence embedding, we introduce a context-
encoding layer by employing another bi-directional LSTM
on top of the previous layer to model the temporal interac-
tions between sentences, i.e.,

s̃i = BiLSTM(̃si−1, si) (1 ≤ i ≤ k), (3)

where s̃i is the final embedding of the i-th sentence in the
review and s̃0 is initialized as 0.

Sentence-Level Aggregation
Next, we develop sentence-level aggregators to embed each
review into a compact vector from its constituent sentences.
As discussed before, an ideal method should learn review
embeddings in an asymmetric style. Thus, we design AHN
to learn different attentive aggregators for users and items,
respectively, as highlighted in Fig. 2.
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Figure 2: The overall architecture of AHN.

Sentence Aggregator for Items. Given an item, we are in-
terested in sentences that contain other users’ sentiments on
different aspects of the item, which are the key factors to de-
termine its overall rating. To build an informative embedding
for each review upon such sentences, we use a sentence-
level attention network to aggregate the sentence embed-
dings [̃sv1, ..., s̃

v
k] as follows, where the superscript v is used

to distinguish an item’s notation from a user’s notation.

rv =

k∑

i=1

αv
i s̃

v
i , (4)

Here,
∑k

i=1 α
v
i = 1, and αv

i is the attention weight assigned
to sentence s̃vi . It quantifies the informativeness of sentence
s̃vi with respect to v’s overall rating, compared to other sen-
tences. The weights αv

i ’s are computed by our attentive mod-
ule, which takes the sentence embeddings as the input and is
given by

αv
i =

exp (v�
s (tanh (Wss̃

v
i )⊗ σ(Ŵss̃

v
i )))∑k

j=1 exp (v
�
s (tanh (Wss̃vj )⊗ σ(Ŵss̃vi )))

. (5)

Here, vs ∈ R
h×1, Ws ∈ R

h×d, and Ŵs ∈ R
h×d are pa-

rameters, ⊗ is the element-wise product, and σ(·) is the sig-
moid function. As suggested by (Ilse, Tomczak, and Welling
2018), the approximate linearity of tanh(·) in [−1, 1] could
limit the expressiveness of the model, and this problem can
be alleviated by introducing a non-linear gating mechanism.
Thus, in Eq. (5), a gate function σ(Ŵss̃

v
i ) is incorporated,

which is indeed found effective in our experiments.

Sentence Aggregator for Users. Next, we develop an
interaction-based sentence aggregator for users. Given a
user–item pair, we aim to select a homogeneous subset of
sentences from each of the user’s reviews such that the se-
lected sentences are relevant to the item to be recommended,
i.e., the target item. In the following, we introduce a co-
attentive network that uses the target item’s sentences to
guide the search of user’s sentences.

After the sentence encoding layer, we can represent each
review by a matrix R = [̃s1; ...; s̃k] ∈ R

d×k, where [·; ·] is
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the concatenation operation. Suppose a user has n reviews
and an item has m reviews. Our method first concatenates
all sentences of the item to form [Rv

1; ...;R
v
m] ∈ R

d×mk,
whose constituent sentences are all relevant to the target
item, and thus can be used to guide the search of similar
sentences from the user’s reviews. To this end, we iterate
over each Ru

i (1 ≤ i ≤ n) to calculate an affinity matrix as
follows, where the superscript u indicates user’s notation.

Gi = φ(f(Ru
i )

�Msf([R
v
1; ...;R

v
m])), (1 ≤ i ≤ n) (6)

Here, Ms ∈ R
ds×ds is a learnable parameter, φ(·) is an ac-

tivation function such as ReLU, and f(·) is a mapping func-
tion such as a multi-layer perceptron (MLP). If f(·) is an
identity mapping, Eq. (6) becomes a bilinear mapping. Here,
the (p, q)-th entry of Gi represents the affinity between the
p-th sentence of Ru

i and the q-th sentence of [Rv
1; ...;R

v
m].

To measure how relevant the p-th sentence of the user’s
review Ru

i is to the target item, we use the maximum value
in the p-th row of Gi. The intuition is that, if a user’s sen-
tence (i.e., a row of Gi) has a large affinity to at least one
sentence of the target item (i.e., a column of Gi) – in other
words, the maximal affinity of this row is large – then this
user’s sentence is relevant to the target item.

However, not all sentences of the target item are useful
for searching relevant sentences from the user. For instance,
in Fig. 1, the first sentence of the item’s review 2, “I re-
ceived it three days ago.” conveys little information about
the target item, and hence cannot aid in identifying relevant
sentences from the user, and indeed may introduce noise
into the affinity matrix. To solve this problem, recall that
αv
i in Eq. (5) represents how informative an item’s sentence

is. Thus, we concatenate αv
i ’s of all sentences of the target

item to form αv ∈ R
1×mk. Subsequently, we compute an

element-wise product between each row of Gi and the vec-
tor αv , i.e., Gi ⊗row αv . In this manner, the (p, q)-th entry,
(Gi ⊗row αv)pq , is high only if the p-th sentence of the user
is similar to the q-th sentence of the target item and the q-th
sentence of the target item is non-trivial.

By summarizing the above insights, we learn attention
weights for the sentences in Ru

i for each i ∈ [1, n] by

αu
i = softmax(maxrow(Gi ⊗row αv)), (7)

where maxrow refers to row-wise max-pooling for obtaining
the maximum affinity. Intuitively, (αu

i )j is large if the j-th
sentence in the i-th review of the user describes some aspects
of some item that is highly similar to the target item. This
serves our purpose for selecting a homogeneous subset of
sentences from the user.

Next, we use αu
i to aggregate the sentences in Ru

i to infer
an embedding of the i-th review for the user:

rui =

k∑

j=1

(αu
i )j(R

u
i )∗j , (8)

where (Ru
i )∗j is the j-th column of Ru

i . Recall that Ru
i =

[̃su1 ; ...; s̃
u
k ], where each column of Ru

i is a sentence embed-
ding. Note that our method iterates over i for i ∈ [1, n] to
calculate all review embeddings ru1 , ..., run.

Remark. Our co-attentive mechanism employs the idea of
sequence pair modeling but notably differs from the conven-
tional co-attention used in QA systems (Santos et al. 2016;
Xiong, Zhong, and Socher 2017; Zhang et al. 2017). First,
we only consider one side of the affinity matrix, i.e., the user.
Second, our affinity matrix is adapted by row-wise multipli-
cation of αv to quantify the utility of the item’s sentences.
Thus, our method is designed specifically for learning asym-
metric attentions from user–item interactions.

Review-Level Aggregation
From Eq. (4), we obtain review embeddings for an item, rv1 ,
..., rvm. From Eq. (8), we obtain review embeddings for a
user, ru1 , ..., run. As shown in Fig. 2, based on these review
embeddings, we develop review-level aggregators to infer an
embedding for each user and item, respectively.

As discussed before, different reviews exhibit different
degrees of informativeness in modeling users and items. In
particular, an item’s reviews are homogeneous. Thus, we are
interested in reviews with rich descriptions regarding its rel-
evant aspects and corresponding sentiments, such as the re-
views 1–3 of v in Fig. 1, compared with the less informative
review 4 of v. To attend to such reviews, similar to Eq. (4),
we aggregate the review embeddings to represent an item by

ṽ =
m∑

i=1

βv
i r

v
i , (9)

where
∑m

i=1 β
v
i = 1, and βv

i is the attention weight assigned
to review rvi . It quantifies the informativeness of the review
rvi with respect to v’s overall rating. βv

i is produced by an
attentive module with gating mechanism as follows:

βv
i =

exp (v�
r (tanh (Wrr

v
i )⊗ σ(Ŵrr

v
i )))∑k

j=1 exp (v
�
r (tanh (Wrrvj )⊗ σ(Ŵrrvi )))

, (10)

where vr ∈ R
h×1, Wr ∈ R

h×d, and Ŵr ∈ R
h×d are

model parameters.
At the same time, a user’s reviews are heterogeneous con-

cerning a variety of items that the user has purchased, and
not all reviews are relevant to the target item. Thus, similar
to Eq. (6) and Eq. (7), given a user–item pair, a review-level
co-attentive network is designed to select reviews from the
user as guided by the reviews of the item.

Specifically, an affinity matrix at the review level is first
computed by

G = φ(f([ru1 ; ...; r
u
n])

�Mrf([r
v
1; ...; r

v
m])), (11)

where Mr ∈ R
dr×dr is a learnable parameter. Here, the

(p, q)-th entry of G represents the affinity between the p-th
review of the user and the q-th review of the item.

Then, the attention weights for the reviews of the user are
calculated by

βu = softmax(maxrow(G⊗row βv)), (12)
where βv = [βv

1 , ..., β
v
m] was obtained by Eq. (10) for the

item. It is introduced to adapt G to encode important reviews
of the item. Finally, we aggregate the review embeddings to
represent a user by the following weighted sum.

ũ =

n∑

i=1

βu
i r

u
i (13)
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Encoding Latent Rating Patterns. Although the embed-
dings ũ and ṽ contain rich semantic information from re-
views, there are some latent characteristics of users (items)
that are not encoded by their reviews, but can be inferred
from the rating patterns. For instance, a picky user might
tend to uniformly pick lower ratings than a more easygo-
ing user. To encode such personalized preferences, as in-
spired by (Koren, Bell, and Volinsky 2009), we embed a
one-hot representation of the ID of each user (item) using
an MLP, and obtain an embedding vector û (v̂) for the user
(item). This vector directly correlates with the ratings of a
user (item), and is thus able to capture the latent rating pat-
terns. Then, as illustrated in Fig. 2, we concatenate ũ and
û to obtain the final embedding of a user, i.e., u = [ũ; û],
and concatenate ṽ and v̂ to obtain the final embedding of an
item, i.e., v = [ṽ; v̂].

Prediction Layer
As shown by the top part of Fig. 2, the prediction layer
receives u and v, and concatenates them to [u;v], which
is then fed into a function g(·) to predict the rating. In
this work, we realize g(·) as a parameterized factorization
machine (FM) (Rendle 2010), which is effective to model
the pairwise interactions between the input features for im-
proving recommendation performance. Given an input x ∈
R

d×1, g(·) is defined as

g(x) = b+
d∑

i=1

wixi +

d∑

i=1

d∑

j=i+1

〈zi, zj〉xixj , (14)

where b is a bias term, w is a parameter for linear regression,
{zi}di=1 are the factorized parameter for modeling the pair-
wise interactions between xi and xj , 〈·, ·〉 denotes the inner
product, and the output of g(x) is the predicted rating.

To learn model parameters, we minimize the difference
between the true ratings and the predicted ratings, as mea-
sured by the mean squared error

� =
1

c

c∑

i=1

(yi − g([u;v]))2, (15)

where c is the total number of user–item pairs in the training
data, and yi is the true rating of the i-th user–item pair. The
� in Eq. (15) serves as our loss function for model training.

4 Experiments
In this section, we evaluate our AHN model on several real
datasets and compare it with state-of-the-art approaches.

Datasets
We conducted experiments on 10 different datasets, includ-
ing 9 Amazon product review datasets for 9 different do-
mains, and the large-scale Yelp challenge dataset1 on restau-
rant reviews. Table 1 summarizes the domains and statistics
for these datasets. Across all datasets, we follow the existing
work (Seo et al. 2017; Tay, Luu, and Hui 2018) to perform

1https://www.yelp.com/dataset/challenge

Table 1: Statistics of datasets

Dataset #Users #Items #Reviews
Digital Music (DM) 5,541 3,568 64,706
Office Products (OP) 4,905 2,420 53,258
Health (HE) 38,609 18,534 346,355
Toys and Games (TG) 19,412 11,924 167,597
Kindle Store (KS) 68,223 61,935 982,619
Pets Supplies (PS) 19,856 8,510 157,836
Tools and Home (TH) 16,638 10,217 134,476
Videos Games (VG) 24,303 10,672 231,780
Automotive (AM) 2,928 1,835 20,473
Yelp 88,370 33,902 1,332,447

preprocessing to ensure they are in a t-core fashion, i.e., the
datasets only include users and items that have at least t
reviews. In our experiments, we evaluate the two cases of
t = 5 and t = 10. For the Yelp dataset, we follow (Seo
et al. 2017) to focus on restaurants in the AZ metropolitan
area. For each dataset, we randomly split the user–item pairs
into 80% training set, 10% validation set, and 10% testing
set. When learning the representations for users and items,
we only use their reviews from the training set, and none
from the validation and testing sets. This ensures a practical
scenario where we cannot include any future reviews into a
user’s (item’s) history for model training.

Compared Methods
We compare our model with both conventional approaches
and state-of-the-art approaches, including Factorization Ma-
chines (FM) (Rendle 2010), SVD (Koren, Bell, and Volin-
sky 2009), Probabilistic Matrix Factorization (PMF) (Mnih
and Salakhutdinov 2008), Nonnegative Matrix Factorization
(NMF) (Lee and Seung 2001), DeepCoNN (Zheng, Noroozi,
and Yu 2017), D-ATT (Seo et al. 2017), MPCN (Tay, Luu,
and Hui 2018), and HUITA (Wu et al. 2019).

Among these methods, FM, SVD, PMF, and NMF are
rating-based collaborative filtering methods. DeepCoNN, D-
ATT, MPCN, and HUITA are state-of-the-art methods that
leverage the semantic information in reviews for improved
performance. Specifically, DeepCoNN uses the same CNN
module to learn user and item embeddings based on their re-
views for recommendation. D-ATT extends DeepCoNN by
adding a dual-attention layer at word-level before convolu-
tion. MPCN attends to informative reviews by several point-
ers. HUITA uses a symmetric hierarchical structure to infer
user (item) embeddings using regular attention mechanisms.
It is worth noting that all of the above review-based methods
regard user reviews and item reviews as the same type of
documents and process them in an identical way.

Finally, to gain further insights on some of the design
choices of our AHN model, we compare AHN with its vari-
ants, which will be discussed later in the ablation analysis.

Experimental Settings
The parameters of the compared methods are selected based
on their performance on the validation set. Specifically, for
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Table 2: MSE results of the compared methods on different 5-core datasets

Dataset FM PMF NMF SVD DeepCoNN D-ATT MPCN HUITA AHN
Digital Music (DM) 0.8498 0.8788 1.0491 1.0843 0.8754 0.8506 0.8396 0.8719 0.8172
Office Products (OP) 0.7291 0.7807 0.9285 0.7906 0.7253 0.7124 0.7084 0.7082 0.6825
Health (HE) 1.1825 1.2076 1.4317 1.1508 1.0862 1.0915 1.0817 1.1207 1.0743
Toys and Games (TG) 0.8639 0.9192 1.1105 0.9188 0.8391 0.8364 0.8452 0.8969 0.8220
Kindle Store (KS) 0.6469 0.6695 0.8032 0.7370 0.6514 0.6382 0.6577 0.6544 0.6270
Pets Supplies (PS) 1.3303 1.434 1.6806 1.3191 1.2598 1.2730 1.2566 1.3038 1.2515
Tools and Home (TH) 1.0229 1.1182 1.3580 1.0373 0.9856 0.9850 0.9871 1.0189 0.9671
Videos Games (VG) 1.1849 1.2473 1.4357 1.3168 1.1575 1.1448 1.1747 1.1772 1.1138
Automotive (AM) 0.8189 0.9187 1.2074 0.8140 0.7809 0.7654 0.7643 0.7766 0.7314
Yelp 1.6094 1.8207 1.8389 1.6615 1.5957 1.5959 1.6195 1.6105 1.5735

Table 3: MSE results of the compared methods on different 10-core datasets

Dataset FM PMF NMF SVD DeepCoNN D-ATT MPCN HUITA AHN
Digital Music (DM) 0.8611 0.8641 0.9491 0.8503 0.8734 0.8429 0.8629 0.8512 0.7880
Office Products (OP) 0.6291 0.6695 0.7346 0.6757 0.6016 0.5914 0.6120 0.6009 0.5717
Health (HE) 0.8166 0.9158 0.9200 0.8275 0.8328 0.8019 0.8020 0.8177 0.7802
Toy and Games (TG) 0.6904 0.6233 0.7575 0.6331 0.6331 0.6292 0.6412 0.6303 0.5964
Kindle Store (KS) 0.5954 0.6035 0.6305 0.6483 0.5325 0.5275 0.5124 0.5312 0.5092
Pet Supplies (PS) 1.2236 1.5239 1.2536 0.9950 0.9927 0.9616 1.0722 1.0168 0.9421
Tools and Home (TH) 0.8746 0.7668 0.9032 0.7391 0.6632 0.6297 0.6507 0.6445 0.5948
Videos Games (VG) 1.0611 1.0718 1.2435 1.0318 1.0743 1.0365 1.0730 1.0697 0.9927
Yelp 1.5432 1.4734 1.5735 1.4025 1.3961 1.4018 1.4033 1.4040 1.3671

Figure 3: The relative improvements of AHN over (a) DeepCoNN, (b) D-ATT, (c) MPCN, and (d) HUITA, on different datasets.
The abbreviations of the datasets can be found in Table 1-3. Here, blue refers to the improvement on the 10-core datasets, orange
refers to the improvement on the 5-core datasets, brown is the overlapped area between blue and orange.

FM, the dimensionality of the factorized parameters is 10.
For SVD, PMF, and NMF, the number of factors is set to
50. DeepCoNN uses 100 convolutional kernels with window
size 3. D-ATT uses 200 filters and window size 5 for local
attention; 100 filters and window sizes [2, 3, 4] for global
attention. MPCN uses 3 pointers, and hidden dimensionality
of 300 for inferring affinity matrix. HUITA uses 200 filters
in the word-level CNN with window size 3, and 100 filters
in the sentence-level CNN with window size 3.

For our AHN model, the dimensionality of the hidden
states of the BiLSTM is set to 150. The dimensionality of
the user and item ID embeddings are set to 300. The dimen-
sionality of Ms (Mr) in Eq. (6) (Eq. (11)) is 300. We apply
dropout (Srivastava et al. 2014) with rate 0.5 after the fully
connected layer to alleviate the overfitting problem. The loss
function is optimized by Adam (Kingma and Ba 2014), with

a learning rate of 0.0002 and a maximum of 10 epochs.
For the methods DeepCoNN, D-ATT, and HUITA, the

pre-trained GloVe (Pennington, Socher, and Manning 2014)
is used to initialize the word embeddings. For MPCN and
our AHN, the word embeddings are learned from scratch
since using pre-trained embeddings generally degrades their
performance. For all methods, the dimensionality of the
word embedding is set to 300. We independently repeat each
experiment 5 times, and use the averaged mean square er-
ror (MSE) (Zheng, Noroozi, and Yu 2017) to quantitatively
evaluate the performance.

Experimental Results
Table 2 summarizes the results of the compared approaches
on the 5-core datasets. We have several observations from
the results. First, review-based methods generally outper-
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Figure 4: The visualization of attention weights on (a) user’s
reviews, (b) item’s reviews, (c) user’s sentences, (d) item’s
sentences. The item is a sleep aid medicine. The vertical bars
represent weights. Darker colors indicate higher weights.

form rating-based methods. This validates the usefulness of
reviews in providing fine-grained information for refining
user and item embeddings for improving the accuracy of
rating prediction. Second, methods that distinguish reviews,
such as D-ATT and MPCN, often outperform DeepCoNN,
which suggests that different reviews exhibit different de-
grees of importance for modeling users and items. We also
observe that HUITA does not show superiority over Deep-
CoNN. This may stem from its symmetric style of attention
learning, which does not make much sense when reviews are
heterogeneous. Finally, the proposed AHN consistently out-
performs other methods, which demonstrates the effective-
ness of distinguishing the learning of user and item embed-
dings via asymmetric attentive modules so as to infer more
reasonable attention weights for recommendation.

Table 3 presents the results on the 10-core datasets, from
which the Automotive dataset is excluded because only very
few users and items are left after applying the 10-core cri-
terion on it. In contrast to Table 2, all methods in general
achieve better results in Table 3, since more ratings and re-
views become available for each user and item. In this case,
we observe that D-ATT often outperforms MPCN. This may
be because the Gumbel-Softmax pointers in MPCN make
hard selections on reviews, thereby filtering out many re-
views that may result in a significant loss of information.
This problem is more severe when users (items) have more
useful reviews, as in the 10-core scenario. Additionally, we
observe that the performance gaps between AHN and the
compared methods become larger. To see it, we summarize
the relative improvements of AHN over each of the review-
based methods in Fig. 3. From the figure, we observe that
AHN generally gains more on the 10-core datasets, with ab-
solute gains of up to 11.6% (DeepCoNN), 7.0% (D-ATT),
13.8% (MPCN), and 8.4% (HUITA). This suggests that the
more reviews each user and item has, the more important it
is to perform proper attention learning on relevant reviews
and sentences at the users’ side and item’s side, respectively.

Case Study
In this section, we investigate the interpretability of AHN.
Fig. 4(a) and (b) show the attention weights of AHN on the
top three reviews of a pair of user and item on the Health
dataset, where the item is a sleep aid medicine. In each of

Table 4: Ablation analysis

Model VG DM AM OP
AHN 1.1138 0.8172 0.7314 0.6825
(a) –Item aggregators 1.1286 0.8205 0.7506 0.6951
(b) –User aggregators 1.1604 0.8246 0.7467 0.6941
(c) –Adapted affinity 1.1363 0.8229 0.7348 0.6936
(d) –FM 1.1267 0.8341 0.7723 0.7078
(e) –Gating 1.1220 0.8188 0.7385 0.6883

the user’s reviews, the highlighted words indicate the item
described by the review. As can be seen, the first two items
“krill oil” and “pain relief patch” are more relevant to the
item “sleep aid medicine” than the “laundry detergent” in
the lowest-weighted review. On the other hand, the top two
reviews of the item are more informative with regard to the
aspects of the item than the last review, which only describes
about “packaging”, a marginal aspect of a medicine. Thus,
the review-level attention weights of AHN are meaningful.

Fig. 4(c) and (d) zoom into the attention weights of AHN
on the top three sentences of the first review of the user and
item, respectively. The highlighted words indicate the reason
of why the sentences are ranked highly. As can be seen, the
user cares about the taste of a medicine and prefers easily-
swallowed softgels, while the item indeed appears to taste
good and is easy to swallow. It is worth noting that although
the first two sentences in Fig. 4(d) are short, they convey
more useful information that the lowest-weighted sentence.
Thus, the sentence-level attention weights of AHN are also
meaningful. This explains why AHN predicts a 4.4 rating
score on this user–item pair, which is close to the true rating
5.0 as marked by the user.

Ablation Analysis

Table 4 presents the results of our ablation analysis using
four datasets. In the table, AHN is our original model. In
(a), the item’s attention modules are replaced by average-
pooling. In (b), the user’s co-attention modules are replaced
by attention modules similar to the item’s ones and thus con-
stitutes a symmetric model. In (c), we remove the row-wise
multiplication between the affinity matrix and the attention
weights in Eq. (7) and Eq. (12). In (d), the parameterized
factorization machine is replaced by dot product. In (e), the
gating mechanisms in Eq. (5) and Eq. (10) are removed.

From Table 4, we observe that different variants of AHN
show suboptimal results to various degrees. Comparing with
(a), we can observe the importance of considering attention
weights on the sentences and reviews of each item. The de-
graded MSEs of (b) suggest that our asymmetric design in
the model architecture is essential. The results of (c) vali-
dates our design of the attention-adapted affinity matrix in
Eq. (7) and (12). The substantial MSE drops in (d) signify
the superiority of using FM as the prediction layer. The com-
parison between (e) and AHN suggests the effectiveness
of the gating mechanisms. Thus, the results of the ablation
study validate the design choices of our model architecture.
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5 Conclusions
In this work, we highlight the asymmetric attention problem
for review-based recommendation, which has been ignored
by existing approaches. To address it, we propose a flexi-
ble neural architecture, AHN, which is characterized by its
asymmetric attentive modules for distinguishing the learn-
ing of user embeddings and item embeddings from reviews,
as well as by its hierarchical paradigm to extract fine-grained
signals from sentences and reviews. Extensive experimental
results on datasets from different domains demonstrate the
effectiveness and interpretability of our method.
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