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Abstract

Neural network language models (NNLMs) have achieved
ever-improving accuracy due to more sophisticated archi-
tectures and increasing amounts of training data. However,
the inductive bias of these models (formed by the distribu-
tional hypothesis of language), while ideally suited to mod-
eling most running text, results in key limitations for today’s
models. In particular, the models often struggle to learn cer-
tain spatial, temporal, or quantitative relationships, which are
commonplace in text and are second-nature for human read-
ers. Yet, in many cases, these relationships can be encoded
with simple mathematical or logical expressions. How can
we augment today’s neural models with such encodings?
In this paper, we propose a general methodology to en-
hance the inductive bias of NNLMs by incorporating sim-
ple functions into a neural architecture to form a hierarchi-
cal neural-symbolic language model (NSLM). These func-
tions explicitly encode symbolic deterministic relationships
to form probability distributions over words. We explore the
effectiveness of this approach on numbers and geographic lo-
cations, and show that NSLMs significantly reduce perplexity
in small-corpus language modeling, and that the performance
improvement persists for rare tokens even on much larger cor-
pora. The approach is simple and general, and we discuss how
it can be applied to other word classes beyond numbers and
geography.

Introduction

Neural network language models (NNLMs) have achieved
ever-improving accuracy due to more sophisticated archi-
tectures and increasing amounts of training data (Radford
et al. 2019; Krause et al. 2019; Merity, Keskar, and Socher
2017). These models are formulated on the inductive bias of
the distributional hypothesis of language, which states that
words appearing in similar contexts are likely to have sim-
ilar meanings (Firth 1957). This is realized in NNLMs by
embedding words with similar meanings close to each other
in a high-dimensional space.

The NNLM inductive bias, while well-suited to modeling
most running text, can result in key limitations for the mod-
els. In particular, today’s NNLMs often struggle to learn cer-
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tain spatial, temporal, or quantitative relationships, that are
commonplace in text and are second-nature for human read-
ers. Consider the following examples in which a language
model is asked to predict the final word shown in square
brackets:

William the Conqueror won the Battle of Hastings in
1066, and died in [1087]

Exciting European cities are Paris, Rome and [London]

Based on the context, a human reader can predict that the
target word in the first case will likely be a four-digit number
that is at least as large as (but not much larger than) 1066.
Likewise, the target word in the second case will be a city
that is geographically close to the other locations (i.e., a city
in Europe). While these expectations can be encoded with
simple mathematical or logical expressions, as we show in
our experiments they are nontrivial for NNLMs to learn.

How can we augment today’s neural models with such en-
codings? In this paper we propose a general methodology to
enhance the inductive bias of NNLMs by incorporating sim-
ple functions into a neural architecture to form a hierarchical
Neural-Symbolic Language Model (NSLM). To formulate
a NSLM, words associated with a particular language phe-
nomena are aggregated into a small number of classes with
their own class-specific vocabularies (e.g., four-digit years).
The NSLM takes the form of a hierarchical NNLM (Ben-
gio et al. 2006) that jointly generates a probability distribu-
tion over the classes and the non-class vocabulary. Simple
functions are then used to allocate probability assigned to
a particular class to the words in the class-specific vocabu-
lary (see Figure 1). These simple functions explicitly encode
symbolic deterministic relationships to form probability dis-
tributions over a class-specific vocabulary, and are called
micro-models (MMs). For example, an MM for four-digit
years could capture how the numeric difference between two
consecutive years in text often follows a predictable distri-
bution (see Figure 2).

We implement our approach within Recurrent NNLMs,
and demonstrate the effectiveness of NSLMs in the num-
ber and geographic domains. Micro-models are formulated
using a small set of general-purpose building blocks and
parameters of these functions are learned on the training
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Figure 1: Neural-Symbolic Language Model Architecture.
The bottom panel shows a traditional NNLM where a LSTM
language model generates a probability distribution PW

over the entire vocabulary VW (the purple cells). The mid-
dle panel shows a hierarchical NNLM where a probability
distribution P (c) is generated over a word class vocabulary
VC (the yellow cells) and probability distributions P (w)

C and
P

(n)
C over disjoint word and number vocabularies V (w)

C (the
blue cells) and V

(n)
C (the green cells), respectively. Up to this

point, all probabilities are estimated using neural methods.
The top panel depicts a NSLM where probability P

(n)
C is

replaced with a micro-model (the red cells) which uses sym-
bolic expressions to generate a probability distribution P

(n)
MM

over vocabulary V
(n)
MM of number tokens. In the William the

Conqueror example, all tokens are members of VW , non-
number tokens are members of V

(w)
C , number tokens are

members of V (n)
C , while 1066 and 1087 map to w

(n)
t−1 and

w
(n)
t , respectively to form V

(n)
MM .

corpora. We show that NSLMs reduce perplexity for num-
bers and geographic locations (4% of the tokens in our cor-
pora) by approximately 40% and 60%, respectively, on the
Wikitext-2 data set, and outperform the previous state-of-
the-art for modeling numbers within a language model (Sp-
ithourakis and Riedel 2018). While NSLMs are most useful
for small training corpora, we show that they can still offer
significant advantages on the larger Wikitext-103 data set,
especially for rare tokens. The approach is simple and gen-
eral, and we discuss how it can be applied to other word

classes.

Previous Work

Our work is related to three active subareas within language
modeling research: numeracy, predicting geographic loca-
tions and integrating symbolic reasoning with NNLMs.

Numeracy in language models has only recently started
to be explored. Spithourakis et al. (2016) showed how to
ground numbers in language models by appending the value
of a number to its word embedding. A variety of tech-
niques to improve numeracy in language models was more
recently explored, including hierarchical models, character
models, mixture of Gaussians and hybrid models of these
techniques (Spithourakis and Riedel 2018). These models
were conditioned using only the preceding textual context
and emphasized the generation of out-of-vocabulary num-
bers. Other related work explores the use of language mod-
els to solve algebra word problems (Kushman et al. 2014;
Roy and Roth 2015) or to evaluate nested arithmetic expres-
sions (Hupkes and Zuidema 2018). By contrast, we model
numbers in general-domain text, and use this as a test bed
for new methods that incorporate symbolic functions into
neural models.

Most works considering geographic locations in language
models are focused on geotagging social media content.
Geotagging is generally defined as estimating the geo-
graphic coordinates of a piece of content such as text, an
image, etc., (Kordopatis-Zilos, Papadopoulos, and Kompat-
siaris 2017). Geotagging approaches often rely on gazetteers
to provide textual features (Smart, Jones, and Twaroch 2010)
and large-scale language modeling approaches (O’Hare and
Murdock 2012).

The closest prior work to our own are methods that incor-
porate symbolic knowledge into NNLMs. One of the more
prominent examples is the Neural Knowledge Language
Model (NKLM), which composes a knowledge graph with a
NNLM (Ahn et al. 2017). This knowledge is acquired sym-
bolically from a plain text triple (subject, relation, object)
and is encoded in an embedding space. The model is trained
to predict “fact” or “not a fact”, in which case the next to-
ken in a sequence is selected from the knowledge triples or
the word vocabulary. This work was premised on improving
performance on rare tokens, and in particular named entities.
Neural-symbolic integration approaches (Besold et al. 2017)
explore general methods of integrating first-order logic with
neural networks. Our work is less broad and focuses on for-
mulating NSLMs that can encode inductive bias for speci-
fied domains.

Our approach is distinct from each of these in that we en-
code an enhanced inductive bias by appending functionality
to a NNLM in the form of symbolic functions, which are
probabilistically triggered in response to the neural outputs.

Models

We now formally introduce the components of an NSLM
and discuss how class-specific NSLMs are formulated.

7635



Background

A Neural-Symbolic Language Model (NSLM) is a hierar-
chical NNLM that incorporates simple functions to enhance
inductive bias. Formally, the NSLM is defined over one or
more classes of tokens C, which each represent natural lan-
guage phenomena incompletely captured by a traditional
NNLM. Individual tokens w(c)

t comprising each class form
a vocabulary VC unique to C. A NSLM consists of two com-
ponents: a hierarchical NNLM which assigns probability to
each class C, and a micro-model that allocates this probabil-
ity over the words in VC . The hierarchical NNLM operates
over individual word tokens and special <tag> tokens used
to label each class C. A micro-model is a simple symbolic
function that encodes an inductive bias specialized to a given
class C, aimed at improving the model’s predictive perfor-
mance on tokens from C.

In general, micro-models can be manually specified us-
ing domain knowledge about the classes C. In this work, we
find that micro-models for our target domains can be built up
from a small set of simple standardized components. These
components fall into two categories: metric functions that
calculate a scalar m(c)

t for each possible token w
(c)
t in posi-

tion t within the class vocabulary VC , and a probability den-
sity function (PDF) that maps all m(c) to a probability distri-
bution over VC . The metric functions that we work with are
either unary fc(w

(c)
t ) and consider only the token at position

t, or binary fc(w
(c)
t , w

(c)
t−1) and operate over both the current

token w
(c)
t and the immediately preceding token w

(c)
t−1 be-

longing to C.

Figure 2: Fitted Gaussian for <year> Class. The distribution
of the difference between the token yeart and the preceding
year token yeart−1 is highly peaked at one year, illustrating
the strong locality of this number class.

Number tokens in natural language text offer a concrete
example of where NSLMs could be helpful. Traditional
NNLM perform poorly over number tokens (Spithourakis
and Riedel 2018) in that they do not fully capture the phe-
nomenon that numbers can be expressed as ordered sets.

Specifically, consider <year> tokens in natural language
text forming a class C. The vocabulary VC would consist of
all four-digit years in a training corpus. In the corpora that
we worked with, we observed strong locality among year
tokens, meaning that the four-digit year most likely to oc-
cur next in text is based on the numeric interval between
it and the year occurring most recently in the context (see
Figure 2). This regularity, while difficult for an NNLM to
learn, forms an inductive bias that can be encoded with a
micro-model where the metric function calculates the dif-
ference between two consecutively occurring years and the
PDF maps these differences to a probability distribution over
all four-digit years in the vocabulary VC .

Micro-Models

We define a micro-model as a compact expression that uses
simple functions to generate a probability distribution PMM

over a vocabulary VMM to predict word w
(m)
t , such that:

PMM (w
(m)
t |c;w(m)

t−1) = MM(w
(m)
t , w

(m)
t−1 , θMM ) (1)

where c is the word class, MM is a symbolic expression
which implements and applies fc to a PDF to generate a
probability distribution, θMM is a set of parameters learned
from data, and w

(m)
t−1 and w

(m)
t are members of the same

vocabulary VMM and w
(m)
t−1 is the most recent occurrence

of a class m token preceding w
(m)
t (e.g., in the illustration

above, 1066 and 1087 would be examples of w(m)
t−1 and w

(m)
t ,

respectively).

Language Models

RNNs with LSTM cells are a canonical architecture that,
until recently, powered state-of-the-art performance on most
corpora (Merity, Keskar, and Socher 2017). Since the micro-
model approach is equally applicable to any other language
modeling architecture that uses a softmax output layer, we
use LSTMs for evaluation. An LSTM assigns a probability
distribution PW over a vocabulary VW to predict the next
word wt in a sequence by jointly learning neural network
parameters θNNLM and word embeddings W to produce a
hidden state ht that summarizes the previous context w0:t−1.

P (wt|w0:t−1) = PW (wt|ht; θNNLM) (2)

In hierarchical NNLMs (Morin and Bengio 2005), tokens
are assigned to two or more word classes C consisting of
class-specific vocabularies VC , which are typically disjoint
subsets of VW . The NNLM architecture is modified to sep-
arately generate probability distributions P (c) conditioned
on w0:t−1, and PC over the word class vocabularies VC us-
ing the neural approach described above. The probability of
an individual token is the product of these two distributions:

P (wt|w0:t−1) = P (c|w0:t−1) · PC(w
(c)
t |c;w0:t−1) (3)

where w(c)
t denotes a token at position t from the vocabulary

VC .
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Our proposed architecture replaces the neural component
used to generate PC with a probability distribution PMM

derived using a micro-model, such that:

P (wt|w0:t−1) = P (c|w0:t−1)·PMM (w
(m)
t |c;w(m)

t−1) (4)

creating a NSLM. Most hierarchical language models are
motivated by the desire to reduce model computational com-
plexity. This is often at the expense of accuracy since it re-
quires the product of probabilities from two distributions.
By contrast, NSLMs are aimed at better capturing particular
domain-specific phenomena in language. They have a sym-
bolic component which is conditionally fired based upon the
prediction of a class within the hierarchy. This symbolic
component makes them distinct from HNLMs and allows
them to improve accuracy rather than just reducing complex-
ity.

We believe that NSLMs provides several advantages
over traditional NNLM architectures. As simple functions,
micro-models are vastly more parameter efficient than neu-
ral approaches, where even small NNLMs can have large
parameter spaces. Whereas other approaches require that ex-
ternal knowledge be converted into a neural form such as
embeddings (Ahn et al. 2017), micro-models can work with
knowledge in symbolic form. In addition, micro-models are
fully inspectable, addressing opacity as one of the prominent
criticisms of neural approaches (Marcus 2018).

Number and Geography NSLMs

We evaluate NSLMs on number and geographic location
word classes. Micro-models are formulated using a small set
of metric functions and PDFs. A difference metric function
is used to calculate the numeric difference between the value
of two tokens. Unary metric functions frequency and value
compute the frequency and numeric value, respectively, for
individual tokens. The convert metric function calculates an
exact value base upon tokens w

(c)
t−1 and its accompanying

units to produce a correct/incorrect metric which is eval-
uated against a binary distribution. The Euclidean metric
function calculates the negative squared distance between
pairs of locations using longitude and latitude coordinates.
This metric leverages Tobler’s First Law of Geography (To-
bler 1970) which states that ”everything is related to ev-
erything else, but near things are more related than distant
things.” The quantities produced by these metric functions
are mapped to probability distributions using multinomial,
unigram, Gaussian and a mixture of Gaussians PDFs, which
may be continuous or discrete.

An exhaustive grid search over {metric function, PDF}
pairs is performed on the validation set to select specific
micro-models. Metric function and PDF selections for each
word class are presented in Tables 2 and 3 below.

Generalization of NSLMs

Despite the potential complexity of the foregoing, NSLMs
are relatively straight-forward to construct (see Table 1).
Specifying the set of candidate metric functions provides
the most flexibility for authors of a NSLM. The candidate

metric functions used for our tasks are by no means exhaus-
tive, and additional metric function can readily be specified.
Longitude and latitude values are provided to the Euclidean
metric function for geographic word classes. Similar quan-
titative values can be specified (or learned) for members of
other word classes. In addition, the list of PDFs could readily
be expanded beyond those that we considered.

NSLM Construction Algorithm

1. Identify a natural language phenomenon
associated with a class of tokens C, which has
an inductive bias that can be encoded as a simple
mathematical or logical expression.

2. Write a regular expression to identify tokens in
class C, and let VC be the subset of the
vocabulary that matches the regular expression.

3. Add/delete candidate metric functions
fc(w

(c)
t , w

(c)
t−1) and PDFs to be considered.

4. Train a hierarchical NNLM on words and class
labels and select a {metric function,PDF} pair.

Table 1: General Steps Required to Construct a NSLM.
NSLMs can be built by applying a small number of standard
language modeling tasks, and providing code to implement
simple metric functions and PDFs.

To illustrate the creation of a NSLM for another domain,
consider a language model to be trained on a recipe corpus
where the objective is to improve performance when pre-
dicting verbs. The causal ordering of verbs in recipes (e.g.,
“measuring” occurs before “mixing,” which occurs before
“baking,” “cooling,” etc.) provides an inductive bias that can
be encoded with a micro-model (Step 1). Tokens in this
word class C and the class vocabulary VC could be iden-
tified with regular expressions built from a gazetteer and
morphological rules (Step 2). To encode the inductive bias
as a micro-model, we could define a simple metric function
that encodes whether a verb obeys the causal partial order
in the cooking domain (e.g., “cooling” after “baking” obeys
the partial order, but “measuring” after “broiling” does not).
A multinomial density function could then be used to as-
sign higher probability to verbs that obey the partial order
than those that do not. We may also explore other candidate
metric and PDFs (Step 3). Finally, the hierarchical NNLM
would be trained on class labels and words, and a {metric
function, PDF} pair would be selected to form a micro-
model (Step 4).

We believe that any number of NSLMs could be similarly
constructed given sufficient domain knowledge and the abil-
ity to identify an incremental inductive bias. Other exam-
ples of potential NSLMs include (i) baseball commentary,
(ii) financial reports and (iii) technical manuals. A NSLM
could be constructed to improve the running commentary
of a baseball game by inducing a symbolic model of game-
play from structured and unstructured data such as game
states and play-by-play descriptions, respectively. Augment-
ing language models with symbolic accounting and finan-
cial reporting rules could enhance performance in the grow-
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ing field of text analysis in finance research. Text generation
for technical manuals could be enhanced by leveraging part-
whole information about a product, function of components,
etc., by retrieving these relations from a symbolic external
knowledge base.

In our experiments, NNLMs were trained with standard
techniques and a exhaustive grid search was used to select
micro-models.

Experimental Setup

We now present our experimental setup for evaluating
NSLMs on number and geographic location tokens.

Training Corpora

Evaluating on numbers and geographic locations requires
some corpus selection and preparation. Pre-processing ap-
plied to most popular text corpora have eliminated number
tokens by replacing them with specialized tokens such as N
(Penn Treebank), word forms (text8) or tokenized represen-
tations (Wikitext). These modifications improve overall lan-
guage performance by reducing the vocabulary and remov-
ing hard-to-predict tokens. To the best of our knowledge, the
1B Word corpus (Chelba et al. 2013) is the only major text
corpus which keeps numbers in their original form. How-
ever, the 1B Word corpus is randomized at the sentence level
destroying much of the number locality.

To evaluate numbers on the Wikitext corpora, we reverse
the tokenization applied to commas and decimals, and leave
negative sign tokenization in place since it appears in other
contexts such as hyphenated words. Numbers expressed as
words or ordinals were also ignored since their usage as
numbers is ambiguous. To evaluate geographic locations on
the Wikitext corpora, multi-word named entities appearing
in the Geonames data set (GeoNames 2019) are chunked to-
gether to form single tokens. To minimize polysemy-related
errors, only cities with populations over 500,000 are consid-
ered. These procedures result in distinct corpora for numbers
and geographic locations, with differences to the standard
corpora.

Model Parameters and Baselines

The goal of our experiments is not to set new benchmarks for
predicting number and geographic word classes in text, but
instead to demonstrate that the NSLM approach can be used
to improve popular neural models of language by enhanc-
ing the inductive bias. Thus, we adopt a standard language
model architecture as our primary baseline, an RNN with
LSTM cells and hyper-parameters corresponding to medium
650 dimensional models (Zaremba, Sutskever, and Vinyals
2014). All models converged within 20 training epochs. Dur-
ing training, the softmax is computed using the full vo-
cabulary, except for the Wikitext-103 model which uses a
sampled-softmax (Jean et al. 2015) with a sampling rate of
2,500. Distributions used by the micro-models are learned
on the training sets.

We evaluated against four baselines, with each succes-
sively incorporating elements of our proposed architecture:

• A traditional LSTM (NNLM) is used to assign probabili-
ties to word classes over the vocabulary VW (Eq. 2).

• A hierarchical NNLM (HNLM) is used to assign prob-
abilities to both word classes and members of the class
vocabulary VC (Eq. 3). This evaluates how the benefit of
working with smaller vocabularies for numbers and geo-
graphic locations may offset potentially poor accuracy of
class probability estimates.

• Character RNNs (CRNN) are used to assign probabilities
to word lass tokens by predicting one character of a token
at a time. Separate CRNNs were trained for each class and
probability was assigned to each token using the chain
rule (Józefowicz et al. 2016).

• Neural cache models (Grave, Joulin, and Usunier 2017)
consider locality in language model results by up-
weighting the probability of target words for repetitions
in a historical window. Neural-cache was applied to the
three other neural baselines. Step size, ensembling factor
λCache and temperature θCache were set to 500, 0.25 and
0.75, respectively, after tuning on the validation set.

Model Implementations

We trained separate models for number and geographic word
classes. NNLMs trained on the Wikitext-2 and Wikitext-103
corpora were on the order of 50 million and 370 million pa-
rameters, respectively. We trained our models in a multi-task
configuration, allowing us to maintain a consistent number
of parameters across NNLM, HNLM and NSLM architec-
tures.

Because our micro-models target specific phenomena,
they do not form a complete and accurate distribution on
their own. Thus, the final evaluation of our proposed archi-
tecture takes the form of an ensemble between the standard
NNLM (Eq. 2) and NSLM (Eq. 4). The multi-task model al-
lows us to construct these ensembles “for free” in that the
number of parameters does not increase.

Results
Our primary experimental results are shown in Tables 2 and
3. We report results in both a with- and without-cache set-
ting. Without cache, our methods beat the baseline on all
four data sets, by margins ranging from 16.6% to 62.6%,
making it the best performing of the methods we evaluated.
With cache, our approach is better on three of the four data
sets, but is outperformed by NNLM for the large data set
on geographic locations. Neural methods appear capable of
learning some of the functionality captured by the micro-
models given additional training text, which is exhibited on
the large data set by narrowing performance margins be-
tween our methods and the NNLM baselines.

Importantly, we see that using micro-models does not in-
crease global perplexity compared with baselines across all
data sets. This shows that micro-model improvements in
number and geographic location tokens do not arise simply
from the model shifting probability mass away from other
word classes.

For completeness, we also evaluated against a variety of
other models proposed to improve numeracy in language
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Metric Wikitext-2 Wikitext-103
Class Function PDF NNLM HNLM CRNN NSLM NNLM HNLM CRNN NSLM

Word Classes
<year> diff MoG 486.3 452.8 396.3 247.3 173.0 156.1 147.0 92.6
<day> freq unigram 76.2 78.5 72.6 70.8 51.7 49.7 48.2 48.2
<round> value multinomial 850.0 866.5 806.8 781.7 307.8 263.3 251.1 277.7
<decimal> diff MoG 10,476.4 7,524.4 6,715.5 6,998.0 11,244.6 9,423.2 7,305.5 9,144.2
<range> diff miltinomial 185.5 206.7 76.5 89.3 81.0 81.8 62.8 51.9
<convert> convert binary 351.9 303.7 93.3 33.3 157.4 147.4 129.4 20.1
<other> value multinomial 2,819.9 2,785.0 1,659.7 1,778.6 1,022.8 933.2 865.1 954.0

Aggregate
Numbers 790.2 765.5 559.3 475.5 364.6 332.0 305.5 262.0
% change (3.1%) (29.2%) (39.8%) (8.9%) (16.2%) (28.1%)
Global 92.0 90.9 90.2 89.8 57.8 58.0 57.9 57.7
% change (1.2%) (1.9%) (2.3%) 0.5% 0.2% (0.2%)
Num Cache 508.5 474.9 374.1 324.4 302.7 296.1 286.5 251.0
% change (35.6%) (39.9%) (52.7%) (59.0%) (17.0%) (18.8%) (21.4%) (31.2%)

Table 2: Perplexities for Number Word Classes. The NSLM architecture outperforms all other methods on both the Wikitext-2
and Wikitext-103 data sets, while Global perplexity does not increase indicating that the performance improvements achieved
by the NSLM approach is not the result of stealing probability mass from other parts of the model.

Metric Wikitext-2 Wikitext-103
Class Function PDF NNLM HNLM CRNN NSLM NNLM HNLM CRNN NSLM

Word Classes
<city> Euclidean Gaussian 24,870.5 19,853.3 26,493.1 2,400.4 2,202.7 1,617.4 1,457.6 1,517.1
<state> Euclidean Gaussian 3,137.1 2,726.5 2,978.8 1,967.2 667.1 639.5 670.7 595.8
<country> Euclidean Gaussian 3,361.3 3,060.2 3,330.8 1,498.6 274.4 218.9 231.7 233.5

Aggregate
Locations 4,812.1 3,911.1 4,500.0 1,801.1 585.7 496.0 507.6 488.6
% change (17.1%) (6.5%) (62.6%) (15.3%) (13.3%) (16.6%)
Global 91.0 91.2 91.3 90.5 58.0 58.1 58.2 58.1
% change 0.3% 0.4% (0.5%) 0.2% 0.3% 0.2%
Geo Cache 880.6 739.1 976.6 656.7 247.3 249.0 266.6 269.9
% change (81.7%) (84.6%) (79.7%) (86.4%) (57.8%) (57.5%) (54.5%) (53.9%)

Table 3: Perplexities for Geographic Location Word Classes. The NSLM architecture outperforms all other non-cache methods
on both the Wikitext-2 and Wikitext-103 data sets, with Global perplexity remaining constant.

models (Spithourakis and Riedel 2018). These models pri-
marily explored open vocabulary methods to address the
out-of-vocabulary problem associated with numeracy in lan-
guage models, which is different from our task. The NSLM
architecture shows superior performance (see Table 4). We
are not aware of any comparable baseline in prior work for
geographic locations.

Performance of our method on the larger data set dropped
substantially for geographic locations. However, we show
that our method still substantially outperforms the NNLM
baseline for rare tokens (see Figure 3) even on the large
training corpus. This suggests that the micro-model ap-
proach can continue to offer advantages for rare tokens, even
for larger corpora.

Incorporating Large-Scale Semantics

Our results show that NNLMs benefit from more training
data, meaning that we may be evaluating against a weak
baseline on the small data set. To evaluate this potential
factor, we initialized our models with GloVe embeddings

trained on the 6B token corpus (Pennington, Socher, and
Manning 2014). Results show a 23.0% and 21.8% improve-
ment (see Table 5) on numbers and geographic locations,
respectively, confirming the benefit of more training data.
However, even with stronger baselines our methods still
perform better with improvements of 42.1% and 63.1% on
numbers and geographic locations, respectively.

Grounding with External Knowledge

Limited amounts of external knowledge is provided to
certain micro-models. To evaluate the potential benefit of
this extra knowledge, we experimented with “grounding”
the word class embeddings (Spithourakis, Augenstein, and
Riedel 2016) by appending values for numbers and longi-
tude/latitude coordinates for geographic locations, and set-
ting these dimensions as non-trainable. Models trained with
this appended knowledge achieved non-trivial performance
improvements over the NNLM baseline (see Table 6), but
are much smaller than the improvements due to micro-
models. To evaluate the combined effect of grounding and
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Num %
PPL Change

Spithourakis Models

softmax (baseline) 709.6
softmax+RNN 700.5 (1.3%)
h-softmax 761.4 7.3%
h-softmax+RNN 631.5 (11.0%)
MoG 909.4 28.2%
d-RNN 1,247.8 75.8%
combination 997.0 40.5%

Our Model

NNLM (baseline) 831.2
NSLM 494.9 (40.6%)

Table 4: Comparison with Other Number Class Models.
NSLMs outperform a variety of other numeracy models on
Wikitext-2 with d = 300 (Spithourakis and Riedel 2018)
measured by percent improvement. Two separate baselines
were presented since the numeracy models use an artificially
small vocabulary, making a direct comparison difficult.

NNLM GloVe NSLM

Numbers 831.2 640.0 480.5
% change (23.0%) (42.1%)

Locations 4,969.4 3,888.3 1,833.6
% change (21.8%) (63.1%)

Table 5: Evaluation of Transfer from Larger Corpora.
Embeddings for Number and Geographic Locations word
classes were initialized with GloVe embeddings trained on
the 6B token Corpus with d = 300.

transfer from larger corpora we also evaluated our method
using a model both initialized with GloVe embeddings and
grounded with external knowledge. The NNLM component
of these models improved number and geographic loca-
tion perplexity by 26.1% and 22.5%, respectively, compared
to a same-sized NNLM that was not provided with exter-
nal knowledge or GloVe embeddings. However, the NSLM
component of these models performed better with perplexity
improvements of 45.7% and 63.3%.

Numbers and the Softmax Bottleneck

Our results show that NNLMs have difficulty learning to
predict numbers. One possible explanation for this is the
softmax bottleneck (Yang et al. 2018), which states that a
standard softmax NNLM is rank limited by the number of
hidden states of the model. We would expect that correct
numeric models are high-rank. For example, encoding that a
year observed in text should be numerically larger than the
previous year entails a model with rank at least as large as
the number of distinct years in the corpus. However, we per-
formed experiments on synthetic data that demonstrate that
existing NNLMs can in fact approximate high-rank relation-

Figure 3: Performance by Rarity on Geographic Tokens.

NNLM Grounded % change

Numbers 790.2 717.9 (9.2%)
Global 92.0 91.6 (0.4%)

Locations 4,812.1 3,890.2 (19.2%)
Global 91.0 90.9 (0.1%)

Table 6: Summary Results for Grounded Embeddings. The
NNLM performs better with grounding, but the gains are
smaller than with micro-models.

ships on numbers almost perfectly, but the models perform
relatively poorly because they fail to generalize.

NNLM GloVe NSLM
N Training Test Test Test

100 1.0 99.1 37.5 1.0
200 1.0 203.5 60.0 1.0

1,000 1.0 1,021.0 463.1 1.0
10,000 1.0 10,030.4 1.0

100,000 1.0 100,109.4 1.0

Table 7: Evaluation of NNLM Capacity to Learn Increment
Function. Perplexities for Learning the Function f(n) = n+
1. NNLMs are able to memorize the input/output pairs, but
are unable to generalize to the arithmetic function.

Specifically, we evaluate an LSTM of only 100 dimen-
sions on the task of learning an increment function on a syn-
thetic data set of consecutive pairs of integers represented
as strings (see Table 7). The LSTM trains to 100% accu-
racy even for tens of thousands of examples, demonstrating
that the LSTM has the capacity to approximate a relation-
ship with rank in the tens of thousands, meaning that the
softmax bottleneck is not the limiting factor. However, the
LSTM is unsuprisingly unable to generalize to unseen pairs.
Even when using better number embeddings, from a GloVe
model trained over a 6B token corpus, the model still gen-
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eralizes poorly. By contrast augmenting an NNLM with a
simple micro-models allows the model to generalize well on
this simple function.

Experiments with AWD-LSTM

We elected to evaluate NSLMs using a popular, standard ar-
chitecture (Zaremba, Sutskever, and Vinyals 2014) that is
fast to train. To determine if our results were extensible, we
also performed limited experiments on more expensive re-
cent models. For these experiments, we used AWD-LSTM
models with 33 million parameters (Merity, Keskar, and
Socher 2017). There are three distinctions from the NSLMs
presented above: a single model was used for both num-
bers and geographic word classes, models were trained for
500 epochs (with 750 being standard for this NNLM), and
a single-task configuration was used meaning that instead
of estimating P

(w)
C for class labels, P (w)

C was calculated by
summing all probability assigned to tokens in VC . These de-
sign choices were made for expediency.

NNLM NSLM % Change

Numbers 421.1 336.4 (20.1%)
Locations 2,066.3 1,340.7 (35.1%)
Global 71.5 70.9 (0.8%)

Table 8: NSLMs with AWD-LSTM on Wikitext-2.

Table Table 8 shows that NSLMs continue to offer signifi-
cant perplexity improvements for this different architecture.
The improvements are consistent with Tables 2 and 3, al-
though somewhat smaller in percentage terms (which may
be attributable to a “floor effect” as perplexity decreases).
We also note that global baseline perplexity is slightly higher
than previously published results due to the re-tokenization
of the corpora.

Conclusion

We introduced a novel language model architecture called
NSLMs formed by composing a hierarchical NNLM with
micro-models, and demonstrated that NSLMs substantially
improve perplexity on number and geographic word classes.
We also introduced micro-models as a way to enhance the
inductive bias of a language model by symbolically encod-
ing domain knowledge. We presented a procedure for con-
structing NSLMs for other domains, along with a discus-
sion of how to formulate and select general-purpose build-
ing blocks for metric functions and probability density func-
tions. NSLMs are general in nature and can be formed from
virtually any neural architecture with a softmax output layer.

Although we demonstrate the effectiveness of NSLMs on
number and geographic word classes, our objective is not
solely to achieve performance gains on a narrow set of word
classes. Language models inherently have an effective in-
ductive bias which is well-suited to most running text. We
seek to establish a general method to tune language models
for domain-specific tasks by enhancing the inductive bias
with symbolic expressions that encode domain knowledge.

The domains explored in the paper lend themselves to nu-
meric encoding and micro-models that perform simple oper-
ations on these encodings. One topic of future research is to
apply NSLMs to domains where symbolic expressions oper-
ate at a higher level of abstraction such as baseball play-by-
plays or financial reporting. Other enhancements to NSLMs
may involve the use of the full preceding context encoded
as the hidden state of a NNLM or using micro-models with
multiple PDFs to allocate probability within a word class.
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