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Abstract

Story Ending Prediction is a task that needs to select an ap-
propriate ending for the given story, which requires the ma-
chine to understand the story and sometimes needs common-
sense knowledge. To tackle this task, we propose a new neu-
ral network called Diff-Net for better modeling the differ-
ences of each ending in this task. The proposed model could
discriminate two endings in three semantic levels: contex-
tual representation, story-aware representation, and discrimi-
native representation. Experimental results on the Story Cloze
Test dataset show that the proposed model siginificantly out-
performs various systems by a large margin, and detailed ab-
lation studies are given for better understanding our model.
We also carefully examine the traditional and BERT-based
models on both SCT v1.0 and v1.5 with interesting findings
that may potentially help future studies.

Introduction

To read and comprehend human language is an important
task in Artificial Intelligence (AI). Machine Reading Com-
prehension (MRC) aims to comprehend the given context
and answer the related questions, which is a challenging
task in NLP and received extensive attention. Owing to the
availability of various large-scale datasets, we have seen
rapid progress on the related neural network approaches
(Hermann et al. 2015; Kadlec et al. 2016; Cui et al. 2016;
Wang and Jiang 2016; Seo et al. 2016; Cui et al. 2017;
Dhingra et al. 2017).

Story Ending Prediction is closely related to the ma-
chine reading comprehension, which aims to comprehend
stories and predict the real ending, requiring world knowl-
edge and commonsense. Mostafazadeh et al. (2016) intro-
duced a dataset for this purpose. The dataset consists of a
large-scale unlabeled training data consisting five-sentence
commonsense stories (which forms ROCStories dataset) and
labeled validation/test data, which we call Story Cloze Test
(SCT). Figure 1 shows an example of SCT dataset, where
the story is composed of four sentences along with one real
and fake ending options, respectively.

Copyright c© 2020, Association for the Advancement of Artificial
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[Story]
Gina’s new pencils were gone.
And she knew a boy named Dave had taken them.
She decided she would confront him to get them back.
She marched to his desk and begin yelling.

[Real Ending]
Gina was very angry.
[Fake Ending]
Gina was very calm.

Figure 1: An example of the Story Cloze Test dataset.

Previous works mainly focus on analyzing linguistic
styles (Schwartz et al. 2017), introducing external knowl-
edge (Lin, Sun, and Han 2017), exploiting large-scale un-
labeled training data (Wang, Liu, and Zhao 2017) etc. In
recent research, Cai, Tu, and Gimpel (2017) propose a
fully end-to-end neural network model and achieve com-
petitive performance as previous feature-based approaches.
Chaturvedi, Peng, and Roth (2017) proposed the hidden
coherence model for effectively combining several aspect
models which significantly outperform traditional ensemble
approaches. Even though various efforts have been made in
this task, most of them ignore the importance of better mod-
eling endings, as two endings may both plausible, and we
should pick a better one through comparisons.

To this end, we propose to address the comparisons of
two endings and design an effective neural network instead
of feature engineering or sophisticated reasoning rules. As
shown in Figure 1, the two candidate endings are quite sim-
ilar except for the last word, which is the dominant com-
ponent of representing the sentiment of the whole sentence.
Inspired by this, we propose to model the different part of
two endings for better identifying the real ending. We pro-
pose Diff-Net to model the differences between real and fake
endings on different levels in the neural network, including
contextual representation, story-aware representation, and
discriminative representation. The main contributions are as
follows.

• We propose a novel neural network called Diff-Net for
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better modeling the differences of endings for the SCT
task.

• Experimental results on the SCT test v1.0 and v1.5 dataset
show that the proposed model could significantly outper-
form various systems by a large margin.

• Detailed ablations are given, and several analyses on the
SCT dataset are carried out with interesting observations
that may help future studies.

Related Works

Machine reading comprehension is a task to read and
comprehend given articles and answer the questions based
on them, whose subtasks include cloze-style RC, span-
extraction RC, open-domain RC, commonsense RC, etc.

CNN/DailyMail (Hermann et al. 2015) and Children’s
Book Test (CBT) (Hill et al. 2015) are the representative
cloze-style reading comprehension datasets and various neu-
ral network models have been proposed which become cor-
nerstones for future research, such as Attentive Reader (Her-
mann et al. 2015), Attention Sum (AS) Reader (Kadlec et
al. 2016), Attention-over-Attention (AoA) Reader (Cui et al.
2017), Gated-Attention (GA) Reader (Dhingra et al. 2017).

As a natural extension to the cloze-style reading com-
prehension, Rajpurkar et al. (2016) proposed a large-
scale crowdsourced dataset SQuAD, which aims to answer
the question using a span in the passage. After the re-
lease of SQuAD, various neural network models are pro-
posed, including Match-LSTM (Wang and Jiang 2016), Bi-
Directional Attention Flow (BiDAF) (Seo et al. 2016) etc.
In recent SQuAD leaderboard, the performances of several
ensemble models have already surpassed the average human
performance on this dataset.

Except for the efforts on SQuAD-like datasets, some re-
searchers are heading for another aspect of reading compre-
hension. They are investigating how to incorporate external
knowledge to improve the performance of reading compre-
hension. In this context, Mostafazadeh et al. (2016) intro-
duced a dataset called ROCStories, which consists of five-
sentence commonsense stories. To evaluate the story com-
prehension, they also propose evaluation sets called Story
Cloze Test (SCT) aiming to comprehend given stories and
predict the real ending with world knowledge and common-
sense. This dataset is composed of two parts: one large-scale
unlabeled training data and labeled validation/test data. They
also introduced several baselines for this task, and the results
indicate that the current models are far from human perfor-
mance.

The related works on this dataset are mainly divided into
two genres: exploiting large-scale unlabeled training data
or designing a more effective model. Different from other
types of reading comprehension tasks, the training data of
the SCT dataset is unlabeled, and it is hard to train a reliable
supervised model (such as neural networks, etc.). To tackle
this issue, Wang, Liu, and Zhao (2017) propose a genera-
tive adversarial network for exploiting the unlabeled train-
ing data. Also, some researchers proposed to directly use
the validation data as training data and evaluate their model
performance on the test data (Cai, Tu, and Gimpel 2017;

Chaturvedi, Peng, and Roth 2017). On the other hand,
Schwartz et al. (2017) focus on the writing styles in this
task and build a linear classifier with language models to
tackle this task. Lin, Sun, and Han (2017) propose a multi-
knowledge reasoning approach which could exploit hetero-
geneous knowledge. Cai, Tu, and Gimpel (2017) propose a
fully end-to-end neural network model, and it shows com-
petitive performance as previous precisely designed feature-
based approaches. They also mentioned that by using the
ending itself could give competitive performances to the
ones that using story information. Chaturvedi, Peng, and
Roth (2017) proposed the hidden coherence model for effec-
tively combining several aspect feature models which out-
perform traditional ensemble approaches.

Though various efforts have been made, we have found
that most of the previous works neglect the importance of
modeling two endings. To this end, in this paper, we propose
a fully end-to-end neural network called Diff-Net, which
aims to model the differences between the real and fake end-
ings in various semantic levels to fully discriminate them.
We also perform detailed ablation studies to better demon-
strate the importance of each component in our model. Fi-
nally, careful analysis of traditional and BERT-based model
on both SCT v1.0 and v1.5 had been carried out, which re-
veals how these models achieve good results on this task.

The Approach

Story Ending Prediction

First, we give a formal definition of the story ending pre-
diction task. Specifically, we describe the Story Cloze Test
dataset (Mostafazadeh et al. 2016). Given a four-sentence
story S = {s1, s2, s3, s4}, we aim to predict real ending ˜E
among two candidate endings Ei. In most cases, both end-
ings are relevant to the story, but there is only one appropri-
ate ending where sometimes need commonsense knowledge
to distinguish them.

˜E = argmax
i=1,2

P (S,Ei) (1)

Diff-Net

In this paper, we propose a neural network called Diff-Net
to dynamically model the differences between two endings
and fully utilize them for predicting the real ending. We dis-
criminate two endings in three semantic aspects: contextual
representation, story-aware representation, and discrimina-
tive representation.

We step in our model with three inputs. The first one is
the input of the story S. We do not encode each sentence
individually and regard the whole story as a single long sen-
tence. The other two inputs are the candidate endings Ei,
which contains the real and fake ending. We use the Siamese
network (Chopra, Hadsell, and LeCun 2005) to encode two
endings with shared weights in order to encode them freely
regardless of its order of the entry. Also, unless indicated,
the weights are not shared across the story and endings.
Throughout this section, we use t for representing tth word
in the story or ending, and the super-script S for the story, E
for the ending, which can be either E1 or E2.
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Figure 2: Neural network architecture of the proposed Diff-Net model. Note that, several operations are omitted for simplicity.
Both Match Module and Discriminative Module share the same Modified AoA Module without/with transformation function,
respectively.

• Contextual Representation We first transform word in
the story and two endings into one-hot representations and
then convert them into continuous word embeddings with
a shared pre-trained word embedding matrix We. As the
dataset is relatively small, using pre-trained word embed-
ding may mitigate the lack of data. Also, we add the follow-
ing binary features into embedding representations of two
endings.

• End-End Match: F ′
t is 1 if ending’s token E(t) appears

in another ending, otherwise is 0, which is designed to
highlight the same/different parts on the token level.

• End-Story Match: F ′′
t is 1 if ending’s token E(t) appears

in the story, otherwise is 0, which is designed to highlight
the relevant parts w.r.t. the story.

• End-Story Fuzzy Match: We also use End-Story word-
stemmed matching feature F ′′′

t to mitigate the mismatch
by the plural form, verb tense, etc., which is generated by
NLTK toolkit (Bird and Loper 2004) with Porter Stemmer
(Porter 1980).1

This will form the enriched embeddings EE ∈
R

|E|×(e+3), where e represents embedding vector size. Note
that, we do not add features to the story embedding, thus
ES ∈ R

|S|×e.

ES
t = We · S(t) (2)

EE
t = [We · E(t);F ′

t ;F
′′
t ;F

′′′
t ] (3)

1We also tried lemmatization using such as NLTK WordNet
lemmatizer but did not outperform the simple stemmer.

After obtaining word embeddings, we further use bi-
directional LSTM (Graves and Schmidhuber 2005) to get
contextual representations of the story and endings indi-
vidually. Note that, we do not use shared LSTMs between
story and endings, because their content and semantic dis-
tributions are relatively different, as indicated by Cai, Tu,
and Gimpel (2017). Then we get Bi-LSTM representation

of each word in the story
←→
HS ∈ R

|S|×2h and endings←→
HE ∈ R

|E|×2h by concatenating forward and backward
LSTM hidden states in each time step, where h represents
hidden vector size for one direction. We take the ending rep-

resentation
←→
HE as an example, as shown in Equation 4 and

5.
←→
HE = [

−−−−→
LSTM(EE) ;

←−−−−
LSTM(EE)] (4)

Then we obtain the flattened representations of endings
HE ∈ R

2h by applying max-over-time pooling on the Bi-

LSTM representations
←→
HE .

HE = MaxPooling
t=1,...,N

(
←→
HE

t ) (5)

• Match Module In this module, we are focusing on cal-
culating the similarity between the story and each ending to
measure the coherency between them using the contextual
representations.

To enrich the representation of the story and endings, we
further apply a fully-connected layer with SELU activation
(denoted as σ) (Klambauer et al. 2017) to every time step,
forming enriched representations RS ∈ R

|S|×h and RE ∈
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R
|E|×h respectively. Note that, we halve the hidden size for

compact representations.

RS
t = σ(Wrs ·

←→
HS

t + brs) (6)

RE
t = σ(Wre ·

←→
HE

t + bre) (7)

To calculate the similarity between the story and ending,
we adopt the Attention-over-Attention (AoA) mechanism
(Cui et al. 2017) for its strong empirical performance. In this
paper, we make some modifications to the AoA mechanism
to get story-aware ending representations ME . First, we re-
place the dot calculation with cosine similarity. Second, we
adopt max-pooling instead of average-pooling. Third, we in-
troduce a transformation function for the similarity matrix.
We will give a formal definition of the proposed modified
AoA module, as we will reuse this module in the following
part. Note that there is no weight matrix applied in the AoA
mechanism. The general formulation is given in Algorithm
1. We will introduce how the modified AoA applied in Diff-
Net.

Given the story representation RS and one ending rep-
resentation RE , firstly, we calculate cosine similarity be-
tween one story word and one ending word forming a sim-
ilarity matrix. The transformation function is applied when
the η function is provided. Then we will follow the origi-
nal attention-over-attention calculation. First, we apply soft-
max function to each column of similarity matrix to obtain
story-level attention α w.r.t. each ending word. Then, we
transpose the similarity matrix and do max-over-time pool-
ing and apply softmax function to get a unified ending-level
attention β, indicating the importance of each ending word
w.r.t. the story. Finally, the attention-over-attention γ is ob-
tained by calculating the weighted sum of α and β. In order
to get story-aware representation ME , we simply calculate
the weighted sum of RE given attention value γ. A visual
depiction of the modified AoA mechanism can be seen in
Figure 2. Altogether, we can get story-aware representation
for each ending ME1

, ME2 ∈ R
h.

ME1

= AoA(RS , RE1

,None) (8)

ME2

= AoA(RS , RE2

,None) (9)

• Discriminative Module To further characterize each
ending, we will proceed with modeling differences between
two endings. We still use modified AoA, except for enabling
the transformation function η (Algorithm 1, Line 2) to get
the discriminative ending representations DE1

, DE2 ∈ R
h.

DE1

= AoA(RE2

, RE1

, η) (10)

DE2

= AoA(RE1

, RE2

, η) (11)

The transformation function η is designed to depict dis-
similarity between two endings, which is important for iden-
tifying the real ending. As the input of the transformation
function is the cosine similarity x, we simply apply −x to
measure the dissimilarity between two endings.

Algorithm 1 Modified Attention-over-Attention.
Input:

Time-Distributed representation TD1

Time-Distributed representation TD2

Transformation Function η(x), default None
Output: TD1-aware TD2 representation TD

1: Calculate similarity matrix between TD1
i and TD2

j :
sim(i, j) = cos <TD1

i ,TD2
j >

2: Skip if η is None, else apply transformation function η:
sim(i, j) = η(sim(i, j))

3: Attention for each TD2
j :

α(t) = softmax(sim(1, t), ..., sim(M, t)) ;
α = [α(1); ...;α(N)]

4: Transpose similarity matrix: simT = transpose(sim)
5: Max-over-time pooling: simM = max-pool(simT )
6: Softmax over simM : β = softmax(simM )
7: Attention-over-Attention: γ = softmax(αTβ)
8: TD1-aware TD2 representation: TD= (TD2)T γ
9: return TD

• Final Output After obtaining various ending represen-
tations, we will use them to predict the final probability of
being the real ending. We concatenate three ending represen-
tations from different levels: contextual representation HE ,
story-aware representation ME , discriminative representa-
tion DE , and feed them into a highway network (Srivastava,
Greff, and Schmidhuber 2015) with SELU activation on the
output to get a hybrid representation. Finally, we squash the
output of the highway network to a single scalar score. We
concatenate two ending scores and use the softmax function
for final prediction.

OE = σ(Highway([HE ;ME ;DE ])) (12)

P (S,Ei) = softmax([WOE1

;WOE2

]) (13)

• Training Objective To train our model, we simply min-
imize the categorical cross entropy loss between the predic-
tions and ground truths. Besides, we also add additional co-
sine similarity loss on the highway representations of two
endings OE to minimize the similarity of two representa-
tions in the latent semantic space. We have found that adding
additional cosine similarity loss could further improve the
performance of the model and stabllize the results as well,
which will be demonstrated in the experiment section.

L = Lcce + Lcosine (14)

Lcosine = cos < OE1

, OE2

> (15)

Incorporate BERT in Diff-Net

Bidirectional Encoder Representation from Transformers
(BERT) (Devlin et al. 2019) has shown marvelous perfor-
mance in various NLP tasks. In order to strengthen the ex-
perimental results and demonstrate the effectiveness of pro-
posed modules, we use two ways to incorporate BERT in
our model to strengthen the baseline systems.
• BERT as Feature: A straightforward way is to use BERT

as a feature generator for the text. We concatenate flat-
tened BERT representation, which is the average pooling
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result of the last hidden layer of BERT, for the highway
input in Equation 11. Note that, in this case, the weights
in BERT will not be updated during training phase.

OE = σ(Highway([HE ;ME ;DE ;BERTE ])) (16)

• Fine-tuning BERT: Another way is to fine-tune the
BERT on SCT task directly. In this setting, we obtain
two BERT representation with shared BERT weights for
[end1, story] and [end2, story] as two end-
ing representations and feed into the Discriminative Mod-
ule. The final predictions are made by concatenating
BERT representation and discriminative representation,
where Equation 11 can be rewritten as follows. The final
predictions are similarly made as Equation 12.

OE = σ(Highway([DE ; FT-BERTE ])) (17)

Experiments

Experimental Setups

We evaluate our approach on the Story Cloze Test dataset
(Mostafazadeh et al. 2016), which consists of 1,871 vali-
dation and test set, respectively. Following previous works
(Cai, Tu, and Gimpel 2017; Chaturvedi, Peng, and Roth
2017; Schwartz et al. 2017), we take the validation set for
training and evaluate the performance on the test set. Note
that, unlike using the scheme of ‘pre-training then fine-
tuning’ (Liu et al. 2017), we did not exploit 50k unlabeled
ROCStories training data to do task-specific pre-training.
The basic settings of the proposed model are listed below
in detail.
• Embedding Layer: The embedding weights are initial-

ized by the pre-trained GloVe vectors (840B version, 300
dimension) (Pennington, Socher, and Manning 2014) and
updated during the training phase. Note that, there are also
three additional binary features concatenated to the Glove
embedding.
• Hidden Layer: We use Bi-LSTM with 200 dimension for

each direction (400 in total), and 200 for the enriched rep-
resentation R.

• Regularization: We apply l2-regularization of 0.001 on
the embedding weights and a dropout (Srivastava et al.
2014) rate of 0.5 after the embedding layer.
• Optimization: We use ADAM for weight updating

(Kingma and Ba 2014) with an initial learning rate of
0.001, and decaying learning rate at each epoch by a fac-
tor of 0.8. Also we clipped the l2-norm of gradient to 5
(Pascanu, Mikolov, and Bengio 2013) to avoid gradient
explosion. The batch size is set to 32.
The results are reported with the best model, and the en-

semble models are trained on the different random seeds,
and we use the majority voting approach. Our implemen-
tation is based on Keras (Chollet 2015) and TensorFlow
(Abadi et al. 2016). Traditional neural models are trained on
NVIDIA Tesla V100 GPU. BERT related models are trained
on a single TPU v2, which has 64G HBM. For the models
that using BERT, specifically, we use uncased BERT-large
pre-trained model, which has 1024 hidden dimension and
24 transformer layers.

System Test

DSSM (Mostafazadeh et al. 2016) 58.5
Conditional GAN (Wang, Liu, and Zhao 2017) 60.9
Heterogeneous Knowledge (Lin, Sun, and Han 2017) 67.0
Linguistic Style (Schwartz et al. 2017) 72.4
Hier, EndingOnly (Cai, Tu, and Gimpel 2017) 72.5
Logistic Regression (Chaturvedi, Peng, and Roth 2017) 74.4
Hier, EncPlotEnd, Att (Cai, Tu, and Gimpel 2017) 74.7
Linguistic Style + RNNLM (Schwartz et al. 2017) 75.2
Diff-Net 77.8
Diff-Net + BERT 84.3

Majority Voting (ensemble)∗ 69.5
Soft Voting (ensemble)∗ 75.1
HCM (3-aspects)∗ 77.6
Diff-Net (ensemble) 79.0

Fine-tuned Pre-trained Systems
Transformer LM (Radford et al. 2018) 86.5
BERT 89.2
BERT + Diff-Net 90.1

Table 1: Overall results (accuracy) on Story Cloze Test v1.0
dataset. Our results are depicted in bold face (verified by
the significant test with p < 0.05). Result with underline
means it utilizes pre-trained model. * indicates results from
Chaturvedi, Peng, and Roth (2017).

Results on SCT v1.0

The overall results are shown in Table 1. As we can see that
our Diff-Net achieves an accuracy of 77.8, which outper-
forms previous system by an absolute gain of 2.6% com-
pared to Schwartz et al. (2017), demonstrating the effec-
tiveness of the proposed model. Note that, the best previ-
ous single model by Schwartz et al. (2017) adds additional
RNNLM trained on the large-scale training set, while we do
not exploit any knowledge from the training data.

When it comes to the ensemble model, we can see that the
proposed model also brings significant improvements com-
pared to the traditional majority voting or soft voting ap-
proaches. Also, our model surpasses the previous hybrid sys-
tem by the Hidden Coherence Model (HCM) (Chaturvedi,
Peng, and Roth 2017) with 1.4% improvements in accuracy.

By incorporating the BERT representation, our model
could further boost up to 84.3. However, the fine-tuned
BERT model itself could beat all previous single and en-
semble systems with an accuracy of 89.2. After incorporat-
ing Discriminative Module, BERT+Diff-Net could give an-
other improvements over fine-tuned BERT with an accuracy
of 90.1, demonstrating its effectiveness.

Results on SCT v1.5

SCT v1.5 (Sharma et al. 2018) is an evolved version of SCT
v1.0, which alleviate the ending bias in the original dataset.
Similar to v1.0 settings, we use the development set (1,571
samples) for training. Different from v1.0, the test set v1.5
is hidden to the public, and we submit our best perform-
ing model on test v1.0 to get the final results. From Table
2, as we can see that, our model could also give consistent
improvements over fine-tuned BERT system, demonstrating
the effectiveness of the proposed model.
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System Test v1.0 Test v1.5

word2vec† 53.9 59.4
EndingReg† 71.5 64.4
cogcomp† 77.6 60.8

BERT 88.7 80.7
BERT + Diff-Net 90.1 82.0

Table 2: Results on SCT v1.5 dataset. † indicates the results
from Sharma et al. (2018).

Ablation Studies

In the following parts, we will carry out detailed ablation
studies to better understand our model. In order to avoid
training instability on small data and non-determinism of
TensorFlow under GPU or TPU, except for reporting the
best accuracy, we also report the average and standard devi-
ation through 10 independent runs.2 We ablate on Diff-Net
without BERT to eliminate the effect by its powerful empir-
ical performance to solely evaluate on our model. We will
analyze the results based on the average score and its stan-
dard deviation, which is statistically stable and reliable. We
first begin with the general components in our Diff-Net, and
the results are shown in Table 3.

System Test v1.0 Accuracy

Diff-Net 77.8 (77.60± 0.12)
L1: SELU→ Tanh 77.2 (77.04± 0.06)
L2: w/o cosine loss 77.2 (77.02± 0.20)
L3: w/o modified AoA 77.0 (76.93± 0.07)
L4: w/o match module 77.1 (76.85± 0.20)
L5: w/o discriminative mod-
ule

76.9 (76.75± 0.21)

L6: AoA→ dot product 76.7 (76.58± 0.11)
L7: w/o all binary features 76.0 (75.78± 0.12)

Table 3: Ablations on Diff-Net. The results are ordered by
the descending average score. For reference simplicity, we
label each experiment with L1 to L7.

When compared to the original AoA mechanism (L3), the
modified AoA gives 0.67% improvements on average, indi-
cating that the modified AoA is more powerful in the con-
text of our model. Also, it demonstrates that the max-pooling
is relatively superior at filtering noise and choose the most
representative values in the vectors. If we replace the AoA
mechanism to the simple dot product (L6), there is a signifi-
cant drop by near 1%, suggesting that the AoA mechanism is
helpful in precisely calculating attentions. By discarding the
match module (L4), we see a significant drop in performance
by 0.75%, while without the diff module (L5) gives an even
lower score. This demonstrates that retrieving relevant infor-
mation from the story as well as discriminating two endings

2The average accuracy and standard deviation are shown in the
brackets. Note that, due to the Non-Gaussian distribution of the
results, average + stdev �= max.

System Test v1.0 Accuracy

Diff-Net (all features) 77.8 (77.60± 0.12)
- w/o E-E Match 77.2 (77.05± 0.11)
- w/o E-S Match 77.0 (76.83± 0.12)
- w/o E-S Fuzzy Match 76.9 (76.78± 0.11)
- w/o all features 76.0 (75.78± 0.12)

Table 4: Ablations on using different binary features in word
embedding (E: ending, S: story).

are both important in this task, and combining these com-
ponents yields further improvements. If we remove the co-
sine loss in training objective (L2), there is a slight drop in
the performance as well as brings bigger fluctuation in re-
sults, indicating that adding additional loss could stabilize
the experimental results, which demonstrates that separating
latent semantic distance between two endings are helpful in
this task. Also, as we can see that, without using any binary
features (L7) will bring a significant drop in performance,
which demonstrates that the matching features will help the
model better recognize the alignment between the story and
endings in the traditional models.

Recall that we have added three binary features to en-
hanced word embedding representation of the endings, es-
pecially when the training data is not enough. The ablation
results are given in Table 4. Among three binary features,
the most useful one is the end-story fuzzy matching feature,
in the meantime, it could give slight improvements over the
end-story non-fuzzy matching. The end-end matching fea-
ture brings moderate improvements which could be a rem-
edy for providing mutual information of the endings.

Discussion

While BERT, as well as our modifications, brings good per-
formance on this task, there are still several questions that
remain unclear.

- Does models truly understand or comprehend the story?

- Is Story Cloze Test data (both v1.0 and v1.5) suitable for
evaluating story comprehension?

- Except for the objective metric, in which aspects does
BERT improve than the traditional neural networks?

To investigate the questions above, we conduct compre-
hensive quantitative analyses to examine both models and
datasets. We have an intuition that the last part of the story
is critical for predicting the real ending. To verify this as-
sumption, we discard each sentence in the story to see which
sentence is of the most help in this task. Also, we set an ex-
periment that does not use the story at all to see how much
gain can we obtain by using the story information, to test the
ability of story comprehension. The quantitative analysis re-
sults are shown in Table 5, and we get some unanimous and
interesting observations.

Firstly, when we discard each sentence in the story, ex-
cept for the last sentence in the story, the other sentences
seem to provide little help in this task regardless of models
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Settings
Diff-Net BERT+Diff-Net
Test v1.0 Test v1.0 Test v1.5

Entire Story 77.8 90.1 82.0
- w/o 1st sent. 76.6 (-1.2) 90.0 (-0.1) 81.9 (-0.1)
- w/o 2nd sent. 77.2 (-0.6) 90.0 (-0.1) 82.0 (+0.0)
- w/o 3rd sent. 77.2 (-0.6) 89.6 (-0.5) 82.2 (+0.2)
- w/o 4th sent. 76.5 (-1.3) 83.6 (-6.5) 74.9 (-7.0)

Ending only 75.9 (-1.9) 80.6 (-9.5) 69.1 (-12.8)
Reverse story 77.5 (-0.3) 89.3 (-0.8) 81.4 (-0.5)
Random order 77.6 (-0.2) 89.3 (-0.8) 78.7 (-3.2)

Table 5: Quantitative analysis on using different proportion
and sentence order of the story. The performance gap com-
pared to the baseline is depicted in the bracket.

and datasets. In most situations, the first sentence is provid-
ing the background information and topic of the story, and
we can see that it helps in finding the correct ending only in
the traditional neural network model (w/o BERT). However,
when it comes to BERT-based models, there is only little
variance regardless of test v1.0 or v1.5. To our surprise, in
test v1.5, though it was an evolved version of SCT, remov-
ing the second or third sentence in the story could weirdly
improve overall performance, which was not expected. We
suspect that the middle sentences are not the final state of
the story, thus have little impact on the ending. Lastly, when
removing the last sentence, the performance of all models in
all sets decrease dramatically, which indicates that it is the
most important in the story and provides key clues for pre-
dicting the real ending. That is, the last-sentence bias still
exists in SCT v1.5. The following example shows the last-
sentence bias in this task, where we could easily pick the
real ending by only looking at the last sentence in the story.

[Story]
Janet worked hard to train for her wrestling meet.
When she got there her opponent seemed game.
They both tried their hardest.
It ended in a tie.
[Real Ending]
Janet was content with the result.
[Fake Ending]
Janet won the first place trophy.

Figure 3: An example of last-sentence bias issue. By only
looking at the word ‘tie’ in the last story sentence, we can
easily pick the real ending, as word ‘won’ in fake ending
raises contradiction to the story.

Secondly, in Diff-Net, there is only a 1.9% decrease in
the system performance without the presence of the story
(ending only), indicating that the story does help in choos-
ing the real ending, but the improvement is quite moderate.
However, in BERT+Diff-Net, though the baseline increases
a lot, as we can see that there is about 10% to 12% drop
without the story in the test v1.0 and v1.5 data. This sug-
gests that: 1) the traditional models focus less on the story

and ending itself plays a key role. 2) The BERT-based model
is better than traditional models in finding relations between
the story and ending, as the input sequence is the concate-
nation by them and be fed into very deep transformer layers
with self-attention mechanism.

Thirdly, to our surprise, reversing the story sentences or
even randomly placing these sentences do not show a sig-
nificant drop in the performance, which suggests that the
order of the event sequence does not affect much in iden-
tifying the real ending in these datasets. Nonetheless, there
is a significant drop in the test v1.5 compared to the coun-
terparts, which demonstrate the test v1.5 does improve the
evaluation on the narrative order of the story, but not that
salient (only -3.2% in the accuracy). While Chen, Qiu, and
Huang (2016) discussed the importance of sentence ordering
with respect to the story coherency, according to the results
above, it seems not to be a crucial component in current story
comprehension dataset.

Also, it can be inferred that current models are treating
the sentences in the story as discrete clues rather than a tem-
poral event sequence. Thus, we suspect the effect of using
script knowledge for helping this task is quite limited, and
we would investigate this in the future.

Conclusion

In this paper, we proposed a novel neural network model
called Diff-Net to tackle the story ending prediction task.
Our model could dynamically model the ending differences
in three aspects and retrieve relevant information from the
story. Also, we propose to use additional cosine objective
function to separate the latent semantic distance between
two ending representations. Experimental results on SCT
v1.0 and v1.5 show that the proposed model could bring
significant improvements over traditional neural baselines
and BERT baselines. Except for the proposed model, we
also carried out quantitative analyses on both traditional and
BERT models and concluded that there is still a long way to
go to achieve actual story comprehension.

As we indicated, the order of the story sentences does not
affect the final performance much, in the future, we are go-
ing to verify our assumptions by introducing script knowl-
edge to see if this could help in identifying real ending. Also,
we would like to investigate the potential usage of unlabeled
training data, such as training pre-trained models or con-
structing knowledge base for this task.
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