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Abstract

Language evolves over time in many ways relevant to nat-
ural language processing tasks. For example, recent occur-
rences of tokens 'BERT” and ’ELMO’ in publications re-
fer to neural network architectures rather than persons. This
type of temporal signal is typically overlooked, but is impor-
tant if one aims to deploy a machine learning model over
an extended period of time. In particular, language evolution
causes data drift between time-steps in sequential decision-
making tasks. Examples of such tasks include prediction of
paper acceptance for yearly conferences (regular intervals) or
author stance prediction for rumours on Twitter (irregular in-
tervals). Inspired by successes in computer vision, we tackle
data drift by sequentially aligning learned representations.
We evaluate on three challenging tasks varying in terms of
time-scales, linguistic units, and domains. These tasks show
our method outperforming several strong baselines, including
using all available data. We argue that, due to its low compu-
tational expense, sequential alignment is a practical solution
to dealing with language evolution.

Introduction

As time passes, language usage changes. For example, the
names ‘Bert” and ‘Elmo’ would only rarely make an appear-
ance prior to 2018 in the context of scientific writing. After
the publication of BERT (Devlin et al. 2018) and ELMo (Pe-
ters et al. 2018), however, usage has increased in frequency.
In the context of named entities on Twitter, it is also likely
that these names would be tagged as PERSON prior to 2018,
and are now more likely to refer to an ARTEFACT. As such,
their part-of-speech tags will also differ. Evidently, evolu-
tion of language usage affects natural language processing
(NLP) tasks, and as such, models based on data from one
point in time cannot be expected to generalise to the future.

In order to become more robust to language evolution,
data should be collected at multiple points in time. We con-
sider a dynamic learning paradigm where one makes pre-
dictions for data points from the current time-step given la-
belled data points from previous time-steps. As time incre-
ments, data points from the current step are labelled and new
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unlabelled data points are observed. This setting occurs in
NLP in, for instance, the prediction of paper acceptance to
conferences (Kang et al. 2018) or named entity recognition
from yearly data dumps of Twitter (Derczynski, Bontcheva,
and Roberts 2016). Changes in language usage cause a data
drift between time-steps and some way of controlling for the
shift between time-steps is necessary.

In this paper, we apply a domain adaptation technique to
correct for shifts. Domain adaptation is a furtive area of re-
search within machine learning that deals with learning from
training data drawn from one data-generating distribution
(source domain) and generalising to test data drawn from an-
other, different data-generating distribution (target domain)
(Kouw and Loog 2019). We are interested in whether a
sequence of adaptations can compensate for the data drift
caused by shifts in the meaning of words or features across
time. Given that linguistic tokens are embedded in some vec-
tor space using neural language models, we observe that
in time-varying dynamic tasks, the drift causes token em-
beddings to occupy different parts of embedding space over
consecutive time-steps. We want to avoid the computational
expense of re-training a neural network every time-step. In-
stead, in each time-step, we map linguistic tokens using the
same pre-trained language model (a "BERT” network (De-
vlin et al. 2018)) and align the resulting embeddings using a
second procedure called subspace alignment (Fernando et al.
2013). We apply subspace alignment sequentially: find the
principal components in each time-step and linearly trans-
form the components from the previous step to match the
current step. A classifier trained on the aligned embeddings
from the previous step will be more suited to classify em-
beddings in the current step. We show that sequential sub-
space alignment (SSA) yields substantial improvements in
three challenging tasks: paper acceptance prediction on the
PeerRead data set (Kang et al. 2018); Named Entity Recog-
nition on the Broad Twitter Corpus (Derczynski, Bontcheva,
and Roberts 2016); and rumour stance detection on the Ru-
mourEval 2019 data set (Gorrell et al. 2018). These tasks
are chosen to vary in terms of domains, timescales, and the
granularity of the linguistic units. In addition to evaluat-
ing SSA, we include two technical contributions as we ex-
tend the method both to allow for time series of unbounded



e ©
L)
[ ad -
«ernie °
| oo
° | .
o . o ° obert ° .
elearning | N
o _.netvyork °
.||1.Eelllg?ent .
. j ° o e«johnson
o o
o o .
e .ernie °
L] [ ] L]
b L] -
e , Johnson
e
otusk
o
JJearning
i bert
L]
| network
[} °
o) » .

Figure 1: Example of a word embedding at ¢2017 VS 2018
(blue=PERSON, red=ARTEFACT, black=UNK). Source data
(top, too17), target data (bottom, t9915). Note that at o017,
’bert’ is a PERSON, while at 515, "bert’ is an ARTEFACT.

length and to consider instance similarities between classes.
The best-performing SSA methods proposed here are semi-
supervised, but require only between 2 and 10 annotated data
points per class from the test year for successful alignment.
Crucially, the best proposed SSA models outperform base-
lines utilising more data, including the whole data set.

Subspace Alignment

Suppose we embed words from a named entity recognition
task, where ARTEFACTSs should be distinguished from PER-
SONs. Figure 1 shows scatterplots with data collected at two
different time-points, say 2017 (top; source domain) and
2018 (bottom; target domain). Red points are examples of
ARTEFACTs embedded in this space and blue points are ex-
amples of PERSONs. We wish to classify the unknown points
(black) from 2018 using the labeled points (red/blue bottom)
from 2018 and the labeled points from 2017 (red/blue top).

As can be seen, the data from 2017 is not particularly rele-
vant to classification of data from 2018, because the red and
blue point clouds do not match. In other words, a classifier
trained to discriminate red from blue in 2017 would make a
lot of mistakes when applied directly to the data from 2018,
partly because words such as "bert’ have changed from be-
ing PERSONS to being ARTEFACTS. To make the source data
from 2017 relevant — and reap the benefits of having more
data — we wish to align source and target data points.
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Unsupervised Subspace Alignment

Unsupervised alignment extracts a set of bases from each
data set and transforms the source components such that they
match the target components (Fernando et al. 2013). Let Cg
be the principal components of the source data X;_; and
C'7 be the components of the target data set X;. The opti-
mal linear transformation matrix is found by minimising the
difference between the transformed source components and
the target components:

M* = argmin |CsM — Cr||%
M
= argmin |Cd CsM — CL Cr||%
M

=argmin |[M - C{Cr|% = CsCr, (1)
M
where || - || p denotes the Frobenius norm. Note that we left-
multiplied both terms in the norm with the same matrix C'&
and that due to orthonormality of the principal components,
CJICs is the identity and drops out. Source data X, 1 is
aligned to target data by first mapping it onto its own prin-
cipal components and then applying the transformation ma-
trix, Xy 1CsM*. Target data X, is also projected onto its
target components, X;Cr. The alignment is performed on
the d largest principal components, i.e. a subspace of the
embedding. Keeping d small avoids the high computational
expense of eigendecomposition in high-dimensional data.
Unsupervised alignment will only match the total struc-
ture of both data sets. Therefore, global shifts between do-
mains can be accounted for, but not local shifts. Figure 1
is an example of a setting with local shifts, i.e. red and
blue classes are shifted differently. Performing unsupervised
alignment on this setting would fail. Figure 2 (left middle)
shows the source data (leftmost) aligned to the target data
(rightmost) in an unsupervised fashion. Note that although
the total data sets roughly match, the classes (red and blue
ellipses) are not matched.

Semi-Supervised Subspace Alignment

In semi-supervised alignment, one performs subspace align-
ment per class. As such, at least 1 target label per class needs
to be available. However, even then, with only 1 target label
per class, we would only be able to find 1 principal com-
ponent. To allow for the estimation of more components,
we provisionally label all target samples using a 1-nearest-
neighbour classifier, starting from the given target labels.
Using pseudo-labelled target samples, we estimate d com-
ponents.

Now, the optimal linear transformation matrix for each
class can be found with an equivalent procedure as in Equa-
tion 1:

M = argj\;nin |CsxM —Cr |3 = C:gr)kCT’k. )

Afterwards, we transform the source samples of each class
XF | through the projection onto class-specific components
Cs, and the optimal transformation: X[ |Cs x M} Ad-
ditionally, we centre each transformed source class on the
corresponding target class. Figure 2 (right middle) shows



Figure 2: Illustration of subspace alignment procedures. Red vs blue dots indicate samples from different classes, arrows (black
for total data and red vs blue for each class) indicate scaled eigenvectors of the covariance matrix (error ellipses indicate
regions within 2 standard deviations). (Leftmost) Source data, fully labeled. (Left middle). Unsupervised subspace alignment:
the total principal components from the source data (black arrows in leftmost figure) have been aligned to the total principal
components of the target data (black arrows in rightmost figure). (Right middle) Semi-supervised subspace alignment: the class-
specific principal components of the source data (red/blue arrows from leftmost figure) have been aligned to the class-specific
components of the target data (red/blue arrows from the rightmost figure). Note that unsupervised alignment fails to match
the red and blue classes across domains, while semi-supervised alignment succeeds. (Rightmost) Target data, with few labeled

samples per class (black dots are unlabeled samples).

the source documents transformed through semi-supervised
alignment. Now, the classes match the target data classes.

Extending SSA to Unbounded Time

Semi-supervised alignment allows for aligning fwo time
steps, t1 and s, to a joint space t/1,2‘ However, when con-
sidering a further alignment to another time step ts, this
can not trivially be mapped, since the joint space t’l,2 nec-
essarily has a lower dimensionality. Observing that two in-
dependently aligned spaces, t] , and t5 3, do have the same
dimensionality, we further learn a new alignment between
the two, resulting in the joint space of t’172 and t’273, namely
’1’,273. While there are many ways of joining individual time
steps to a single joint space, we approach this by building
a binary branching tree, first joining adjacent timesteps with
each other, and then joining the new adjacent subspaces with
each other.

Although this is seemingly straight-forward, there is no
guarantee that ] 5 and #5 5 will be coherent with one an-
other, in the same way that two word embedding spaces
trained with different algorithms might also differ in spite
of having the same dimensionality. This issue is partially
taken care of by using semi-supervised alignment which
takes class labels into account when learning the ’deeper’
alignment ¢”/. We further find that it is beneficial to also take
the similarities between samples into account when aligning.

Considering Sample Similarities between Classes

Since intermediary spaces, such as #] , and #, 3, do not nec-
essarily share the same semantic properties, we add a step
to the semi-supervised alignment procedure. Given that the
initial unaligned spaces do encode similarities between in-
stances, we run the k-means clustering algorithm (k = 5)
to give us some course-grained indication of instance sim-
ilarities in the original embedding space. This cluster ID
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is passed to SSA, resulting in an alignment which both at-
tempts to match classes across time steps, in addition to in-
stance similarities. Hence, even though ¢/ , and t} 3 are not
necessarily semantically coherent, an alignment to t’1’7273 is
made possible.

Experimental Setup

In the past year, several approaches to pre-training represen-
tations on language modelling based on transformer archi-
tectures (Vaswani et al. 2017) have been proposed. These
models essentially use a multi-head self-attention mecha-
nism in order to learn representations which are able to at-
tend directly to any part of a sequence. Recent work has
shown that such contextualised representations pre-trained
on language modelling tasks offer highly versatile represen-
tations which can be fine-tuned on seemingly any given task
(Peters et al. 2018; Devlin et al. 2018; Radford et al. 2018;
2019). In line with the recommendations from experiments
on fine-tuning representations (Peters, Ruder, and Smith
2019), we use a frozen BERT to extract a consistent task-
agnostic representation. Using a frozen BERT with subse-
quent subspace alignment allows us to avoid re-training a
neural network each time-step while still working in an em-
bedding learned by a neural language model. It also allows
us to test the effectiveness of SSA without the confounding
influence of representation updates.

Three Tasks. We consider three tasks representing a broad
selection of natural language understanding scenarios: paper
acceptance prediction based on the PeerRead data set (Kang
et al. 2018), Named Entity Recognition (NER) based on the
Broad Twitter Corpus (Derczynski, Bontcheva, and Roberts
2016), and author stance prediction based on the RumEval-
19 data set (Gorrell et al. 2018). These tasks were chosen so
as to represent 1) different textual domains, across ii) differ-



ing time scales, and iii) operating at varying levels of linguis-
tic granularity. As we are dealing with dynamical learning,
the vast majority of NLP data sets can unfortunately not be
used since they do not include time stamps.

Paper Acceptance Prediction

The PeerRead data set contains papers from ten years of
arXiv history, as well as papers and reviews from major Al
and NLP conferences (Kang et al. 2018).! From the per-
spective of evaluating our method, the arXiv sub-set of this
data set offers the possibility of evaluating our method while
adapting to ten years of history. This is furthermore the only
subset of the data annotated with both timestamps and with a
relatively balanced accept/reject annotation.” As arXiv natu-
rally contains both accepted and rejected papers, this accep-
tance status has been assigned based on Sutton and Gong
who match arXiv submissions to bibliographic entries in
DBLP, and additionally defining acceptance as having been
accepted to major conferences, and not to workshops. This
results in a data set of nearly 12,000 papers, from which we
use the raw abstract text as input to our system. The first
three years were filtered out due to containing very few pa-
pers. We use the standard train/test splits supplied with the
data set.

Kang et al. show that it is possible to predict paper ac-
ceptance status at major conferences at above baseline lev-
els. Our intuition in applying SSA to this problem, is that
the topic of a paper is likely to bias acceptance to certain
conferences across time. For instance, it is plausible that the
likelihood of a neural paper being accepted to an NLP con-
ference before and after 2013 differs wildly. Hence, we ex-
pect that our model will, to some extent, represent the topic
of an article, and that this will lend itself nicely to SSA.

Model

We use the pre-trained BERT-BASE-UNCASED model as the
base for our paper acceptance prediction model. Following
the approach of Devlin et al., we take the final hidden state
(i.e., the output of the transformer) corresponding to the spe-
cial [CLS] token of an input sequence to be our represen-
tation of a paper, as this has aggregated information through
the sequence (Figure 3). This gives us a d-dimensional rep-
resentation of each document, where d = 786. In all of the
experiments for this task, we train an SVM with an RBF
kernel on these representations, either with or without SSA
depending on the setting.

Experiments & Results

We set up a series of experiments where we observe past
data, and evaluate on present data. We compare both unsu-
pervised and semi-supervised subspace alignment, with sev-
eral strong baselines. The baselines represent cases in which
we have access to more data, and consist of training our
model on either all data (i.e. both past and future data), on

"https://github.com/allenai/PeerRead

>The NIPS selection, ranging from 2013-2017, only contains
accepted papers. The other conferences contain accept/reject anno-
tation, but only represent single years.
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Figure 3: Paper acceptance model (BERT and SSA).
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Figure 4: Tuning semi-supervised subspace alignment on
PeerRead development data (95% CI shaded).

the same year as the evaluation year, and on the previous
year. In our alignment settings, we only observe data from
the previous year, and apply subspace alignment. This is a
different task than presented by Kang et al., as we evaluate
paper acceptance for papers in the present. Hence, our scores
are not directly comparable to theirs.

One parameter which significantly influences perfor-
mance, is the number of labelled data points we use for
learning the semi-supervised subspace alignment. We tuned
this hyperparameter on the development set, finding an in-
creasing trend. Using as few as 2 tuning points per class
yielded an increase in performance in some cases (Figure 4).

Our results are shown in Table 1, using 10 tuning sam-
ples per class. With unsupervised subspace alignment, we
observe relatively unstable results — in one exceptional case,
namely testing on 2010, unsupervised alignment is as help-
ful as semi-supervised alignment. Semi-supervised align-
ment, however, yields consistent improvements in perfor-
mance across the board. It is especially promising that adapt-
ing from past data outperforms training on all available data,
as well as training on the actual in-domain data. This high-
lights the importance of controlling for data drift due to lan-
guage evolution. It shows that this signal can be taken advan-
tage of to increase performance on present data with only a
small amount of annotated data. We further find that using
several past time steps in the Unbounded condition is gener-
ally helpful, as is using instance similarities in the alignment.



Test year All' Same Prev | Unsup. Semi-sup. | Unsup. Unb. S.Unb. S. Unb. w/Clst
2010 61.77 67.64 3529 70.59 70.59 70.58 70.59 70.59
2011 61.77 58.82 55.88 14.71 72.35 24.71 72.35 72.35
2012 56.25 56.25 58.75 50.00 72.50 45.00 72.80 72.30
2013 67.54 56.14 58.78 76.31 78.07 72.31 78.97 79.03
2014 50.53 51.64 51.64 36.88 68.03 31.88 69.03 69.45
2015 57.83  54.05 54.05 49.19 58.37 41.19 59.97 59.93
2016 58.89 57.36 57.36 50.61 61.04 38.61 63.04 63.04
2017 56.04 5824 5824 68.13 63.73 58.13 68.73 69.80
avg 58.82 5752 5375 | 5205 68.09 | 47.80 69.44 69.56

Table 1: Paper acceptance prediction (acc.) on the PeerRead data set (Kang et al. 2018). Abbreviations represent Unsupervised,
Semi-supervised, Unsupervised Unbounded, Semi-supervised Unbounded, and Semi-supervised Unbounded with Clustering.

Named Entity Recognition

The Broad Twitter Corpus contains tweets annotated with
named entities, collected between the years 2009 and 2014
(Derczynski, Bontcheva, and Roberts 2016). However, as
only a handful of tweets are collected before 2012, we focus
our analysis on the final three years of this period (i.e. two
test years). The corpus includes diverse data, annotated in
part via crowdsourcing and in part by experts. The inventory
of tags in their tag scheme is relatively small, including Per-
son, Location, and Organisation. To the best of our knowl-
edge no one has evaluated on this corpus either in general or
per year, and so we cannot compare with previous work.

In the case of NER, we expect the adaptation step of our
model to capture the fact that named entities may change
their meaning across time (e.g. the example with ”Bert” and
"BERT” in Figure 1). This is related to work showing tem-
poral drift of topics (Wang and McCallum 2006).

Model

Since casing is typically an important feature in NER, we
use the pre-trained BERT-BASE-CASED model as our base
for NER. For each token, we extract its contextualised rep-
resentation from BERT, before applying SSA. As Devlin et
al. achieve state-of-the-art results without conditioning the
predicted tag sequence on surrounding tags (as would be the
case with a CRF, for example), we also opt for this sim-
pler architecture. The resulting contextualised representa-
tions are therefore passed to an MLP with a single hidden
layer (200 hidden units, ReLU activation), before predicting
NER tags. We train the MLP over 5 epochs using the Adam
optimiser (Kingma and Ba 2014).

Experiments & Results

As with previous experiments, we compare unsupervised
and semi-supervised subspace alignment with baselines cor-
responding to using all data, data from the same year as the
evaluation year, and data from the previous year. For each
year, we divide the data into 80/10/10 splits for training, de-
velopment, and test. Results on the two test years 2013 and
2014 are shown in Table 2. In the case of NER, we do not ob-
serve any positive results for unsupervised subspace align-
ment. In the case of semi-supervised alignment, however,
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we find increased performance as compared to training on
the previous year, and compared to training on all data. This
shows that learning an alignment from just a few data points
can help the model to generalise from past data. However,
unlike our previous experiments, results are somewhat bet-
ter when given access to the entire set of training data from
the test year itself in the case of NER. The fact that training
on only 2013 and evaluating on the same year does not work
well can be explained by the fact that the amount of data
available for 2013 is only 10% of that for 2012. The identi-
cal results for the unbounded extension is because aligning
from a single time step renders this irrelevant.

SDQC Stance Classification

The RumourEval-2019 data set consists of roughly 5500
tweets collected for 8 events surrounding well-known inci-
dents, such as the Charlie Hebdo shooting in Paris (Gorrell et
al. 2018).% Since the shared task test set is not available, we
split the training set into a training, dev and test part based on
rumours (one rumour will be training data with a 90/10 split
for development and another rumour will be the test data,
with a few samples labelled). For Subtask A, tweets are an-
notated with stances, denoting whether it is in the category
Support, Deny, Query, or Comment (SDQC).

Each rumour only lasts a couple of days, but the total data
set spans years, from August 2014 to November 2016. We
regard each rumour as a time-step and adapt from the rumour
at time ¢-1 to the rumour at time ¢t. We note that this setting
is more difficult than the previous two due to the irregular
time intervals. We disregard the rumour ebola-essien
as it has too few samples per class.

Model

For this task, we use the same modelling approach as de-
scribed for paper acceptance prediction. This method is also
suitable here, since we simply require a condensed repre-
sentation of a few sentences on which to base our temporal
adaptation and predictions. In the last iteration of the task,
the winning system used hand-crafted features to achieve
a high performance (Kochkina, Liakata, and Augenstein
2017). Including these would complicate SSA, so we opt for

*http://alt.qcri.org/semeval2019/index.php?id=tasks



Test year All' Same Prev | Unsup. Semi-sup. | Unsup. Unb. S.Unb. S. Unb. w/Clst
2013 6295 4224 54.16 42.25 63.82 42.25 63.82 63.95
2014 7277 77776 59.53 50.43 73.67 50.43 73.67 78.75
avg 67.86  60.00 56.85 | 46.34 68.75 | 46.34 68.75 71.35

Table 2: NER (F1 score) on the Broad Twitter Corpus (Derczynski, Bontcheva, and Roberts 2016).

this simpler architecture instead. We use the shorter time-
scale of approximately weeks rather than years as rumours
can change rapidly (Kwon, Cha, and Jung 2017).

Experiments & Results

In this experiment, we start with the earliest rumour and
adapt to the next rumour in time. As before, we run the
following baselines: training on all available labelled data
(i.e. all previous rumours and the labelled data for the cur-
rent rumour), training on the labelled data from the current
rumour (designated as ‘same’) and training on the labelled
data from the previous rumour. We perform both unsuper-
vised and semi-supervised alignment using data from the
previous rumour. We label 5 samples per class for each ru-
mour.

In this data set, there is a large class imbalance, with a
large majority of comment tweets and few support or
deny tweets. To address this, we over-sample the minority
classes. Afterwards, a SVM with RBF is trained and we test
on unlabelled tweets for the current rumour. Table 3 shows
the performance of the baselines and the two alignment pro-
cedures. As with the previous tasks, semi-supervised align-
ment generally helps, except for in the charliehebdo ru-
mour.

Analysis and Discussion

We have shown that sequential subspace alignment is use-
ful across natural language processing tasks. For the Peer-
Read data set we were particularly successful. This might
be explained by the fact that the topic of a paper is a sim-
ple feature for SSA to pick up on, while being predictive
of a paper’s acceptance chances. For NER, on the other
hand, named entities can change in less predictable ways
across time, proving a larger challenge for our approach.
For SDQC, we were successful in cases where the tweets
are nicely clustered by class. For instance, where both ru-
mours are about terrorist attacks, many of the support
tweets were headlines from reputable newspaper agencies.
These agencies structure tweets in a way that is consistently
dissimilar from comments and queries.

The effect of our unbounded time extension boosts results
on the PeerRead data set, as the data stretches across a range
of years. In the case of NER, however, this extension is ex-
cessive as only two time steps are available. In the case of
SDQC, the lack of improvement could be due to the irregu-
lar time intervals, making it hard to learn consistent map-
pings from rumour to rumour. Adding instance similarity
clustering aids alignment, since considering sample similar-
ities across classes is important over longer time scales.
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Example of Aligning Tweets

Finally, we set up the following simplified experiment to in-
vestigate the effect of alignment on SDQC data. First, we
consider the rumour charliehebdo, where we picked the
following tweet:

Support:

France: 10 people dead after shooting
at HQ of satirical weekly newspaper
#CharlieHebdo, according to witnesses
<URL>

It has been labeled to be in support of the veracity of the ru-
mour. We will consider the scenario where we use this tweet
and others involving the charliehebdo incident to pre-
dict author stance in the rumour germanwings—-crash.
Before alignment, the following 2 germanwings-crash
tweets are among the nearest neighbours in the embedding
space:

Query:
@USER @USER if they had, it’s likely
the descent rate would’ve been

steeper and the speed not reduce,
2

no

Comment:

QUSER Praying for the families and
friends of those involved in crash.
I'm so sorry for your loss.

The second tweet is semantically similar (both are on the
topic of tragedy), but the other is unrelated. Note that the
news agency tweet differs from the comment and query
tweets in that it stems from a reputable source, men-
tions details and includes a reference. After alignment, the
charliehebdo tweet has the following 2 nearest neigh-
bours:

Support:

‘“QUSER: 148 passengers were on board
#GermanWings Airbus A320 which has
crashed in the southern French Alps
<URL>""'

Support:

Report: Co-Pilot Locked Out Of
Cockpit Before Fatal Plane Crash
<URL> #Germanwings <URL>

Now, both neighbours are of the support class. This
example shows that semi-supervised alignment maps source
tweets from one class close to target tweets of the same
class.




Test year Al Same Prev | Unsup. Semi-sup. | Unsup. Unb. S.Unb. S.Unb. w/Clst
ottawashooting 31.51  23.67 30.77 30.77 31.88 28.37 30.68 30.88
prince-toronto 36.27 2337 34.46 34.46 40.32 31.36 39.12 39.52
sydney-siege 3234 27.17 41.23 41.23 43.60 33.23 43.50 43.54
charliehebdo 38.51 31.67 35.73 35.73 33.76 33.71 32.70 32.61
putinmissing 28.33 2238 3453 34.53 36.11 31.95 35.10 35.81
germanwings-crash 2938 22.01 44.79 44.79 44.84 40.30 44.88 44.80
illary 29.24 2581 37.53 37.53 40.08 34.10 39.30 38.95
avg 31.13  25.16 37.00 ‘ 37.00 38.65 ‘ 33.29 37.90 38.02

Table 3: F1 score in SDQC task of RumourEval-2019 (Gorrell et al. 2018)

Limitations

A necessary assumption in subspace alignment is that
classes are clustered in the embedding space: most embed-
ded tokens should lie closer to other embedded tokens of
the same class than to embedded tokens of another class. If
this is not the case, then aligning based on a few labelled
samples of class k does not imply that the embedded source
tokens are aligned to other target points of class k. This as-
sumption is violated if, for instance, people only discuss one
aspect of a rumour on day one and discuss several aspects of
a rumour simultaneously on day two. One would observe a
single cluster of token embeddings for supporters of the ru-
mour initially and several clusters at a later time-step. Note
that there is no unique solution for aligning a single cluster
to multiple clusters.

Additionally, if those few samples labeled in the cur-
rent time-step (for semi-supervised alignment) are falsely
labeled or their label is ambiguous (e.g. a tweet that could
equally be labeled as QUERY or DENY), then the source data
could be aligned to the wrong point cloud. It is important
that the few labeled tokens actually represent their classes.
This is a common requirement in semi-supervised learning
and is not specific to sequential alignment of text represen-
tations.

Related Work

The temporal nature of data can have a significant impact
in natural language processing tasks. For instance, Kutu-
zov et al. compare a number of approaches to diachronic
word embeddings, and detection of semantic shifts across
time. For instance, such representations can be used to un-
cover changes of word meanings, or senses of new words
altogether (Gulordava and Baroni 2011; Heyer, Holz, and
Teresniak 2009; Michel et al. 2011; Mitra et al. 2014,
Wijaya and Yeniterzi 2011). Other work has investigated
changes in the usage of parts of speech across time (Mihal-
cea and Nastase 2012). Yao et al. investigate the changing
meanings and associations of words across time, in the per-
spective of language change. By learning time-aware em-
beddings, they are able to outperform standard word repre-
sentation learning algorithms, and can discover, e.g., equiv-
alent technologies through time. Luke$ and Sggaard show
that lexical features can change their polarity across time,
which can have a significant impact in sentiment analysis.
Wang and McCallum show that associating topics with con-
tinuous distributions of timestamps yields substantial im-
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provements in terms of topic prediction and interpretation
of trends. Temporal effects in NLP have also been studied in
the context of scientific journals, for instance in the context
of emerging themes and viewpoints (Blei and Lafferty 2006;
Sipos et al. 2012), and in terms of topic modelling on
news corpora across time (Allan, Gupta, and Khandelwal
2001). Finally, in the context of rumour stance classifica-
tion, Lukasik et al. show that temporal information as a fea-
ture in addition to textual content offers an improvement in
results. While this previous work has highlighted the extent
to which language change across time is relevant for NLP,
we present a concrete approach to taking advantage of this
change. Nonetheless, these results could inspire more spe-
cialised forms of sequential adaptation for specific tasks.
Unsupervised subspace alignment has been used in com-
puter vision to adapt between various types of representa-
tions of objects, such as high-definition photos, online retail
images and illustrations (Fernando et al. 2013).Alignment is
not restricted to linear transformations, but can be made non-
linear through kernelisation (Aljundi et al. 2015). An exten-
sion to semi-supervised alignment has been done for images
(Yao et al. 2015), but not in the context of classification of
text embeddings or domain adaptation on a sequential basis.

Conclusions

In this paper, we introduced sequential subspace alignment
(SSA) for natural language processing (NLP), which allows
for improved generalisation from past to present data. Ex-
perimental evidence shows that this method is useful across
diverse NLP tasks, in various temporal settings ranging from
weeks to years, and for word-level and document-level rep-
resentations. The best-performing SSA method, aligning
sub-spaces in a semi-supervised way, outperforms simply
training on all data with no alignment.
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