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Abstract

Neural network based approaches to automated story plot
generation attempt to learn how to generate novel plots from
a corpus of natural language plot summaries. Prior work has
shown that a semantic abstraction of sentences called events
improves neural plot generation and and allows one to de-
compose the problem into: (1) the generation of a sequence
of events (event-to-event) and (2) the transformation of these
events into natural language sentences (event-to-sentence).
However, typical neural language generation approaches to
event-to-sentence can ignore the event details and produce
grammatically-correct but semantically-unrelated sentences.
We present an ensemble-based model that generates natural
language guided by events. We provide results—including a
human subjects study—for a full end-to-end automated story
generation system showing that our method generates more
coherent and plausible stories than baseline approaches 1.

1 Introduction

Automated story plot generation is the problem of creat-
ing a sequence of main plot points for a story in a given
domain. Generated plots must remain consistent across the
entire story, preserve long-term dependencies, and make
use of commonsense and schematic knowledge (Wiseman,
Shieber, and Rush 2017). Early work focused on sym-
bolic planning and case-based reasoning (Meehan 1977;
Turner and Dyer 1986; Lebowitz 1987; Pérez y Pérez and
Sharples 2001; Gervás et al. 2005; Porteous and Cavazza
2009; Riedl and Young 2010; Ware and Young 2011; Far-
rell, Ware, and Baker 2019) at the expense of manually-
engineering world domain knowledge.

In contrast, neural-based approaches to story and plot gen-
eration train a neural language model on a corpus of sto-
ries to predict the next character, word, or sentence in a
sequence based on a history of tokens (Jain et al. 2017;
Clark, Ji, and Smith 2018; Fan, Lewis, and Dauphin 2018;
Martin et al. 2018; Peng et al. 2018; Roemmele 2018). The
advantage of neural-based approaches is that there is no need
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1Code to reproduce our experiments is available at https://
github.com/rajammanabrolu/StoryRealization

for explicit domain modeling beyond providing a corpus
of example stories. The primary pitfall of neural language
model approaches for story generation is that the space of
stories that can be generated is huge, which in turn, implies
that, in a textual story corpora, any given sentence will likely
only be seen once.

Martin et al. (2018) propose the use of a semantic abstrac-
tion called an event, reducing the sparsity in a dataset that
comes from an abundance of unique sentences. They define
an event to be a unit of a story that creates a change in the
story world’s state. Technically, an event is a tuple contain-
ing a subject, verb, direct object, and some additional dis-
ambiguation token(s).

The event representation enables the decomposition of
the plot generation task into two sub-problems: event-to-
event and event-to-sentence. Event-to-event is broadly the
problem of generating the sequence of events that together
comprise a plot. Models used to address this problem are
also responsible for maintaining plot coherence and consis-
tency. Once new events are generated, however, they are still
not human-readable. Thus the second sub-problem, event-
to-sentence, focuses on transforming these events into natu-
ral language sentences.

Martin et al. (2017; 2018) further propose that this latter,
event-to-sentence problem can be thought of as a translation
task—translating from the language of events into natural
language. We find, however, that the sequence-to-sequence
LSTM networks (Sutskever, Vinyals, and Le 2014) that they
used frequently ignore the input event and only generate text
based on the original corpus, overwriting the plot-based de-
cisions made during event-to-event. There are two contribut-
ing factors. Firstly, event-to-event models tend to produce
previously-unseen events, which, when fed into the event-
to-sentence model result in unpredictable behavior. A basic
sequence-to-sequence model is unable to learn how to map
these unseen events to sentences. Secondly, sentences are
often only seen once in the entire corpus. Despite the con-
version into events, the sparsity of the data means that each
event is still likely seen a limited number of times. For these
reasons, we framed the event-to-sentence task as guided lan-
guage generation, using a generated event as a guide.

The contributions of this paper are twofold. We present an
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Figure 1: The full automated story generation pipeline, illus-
trating an example where the event-to-event module gener-
ates only a single following event.

ensemble-based system for the event-to-sentence problem
that balances between retaining the event’s original seman-
tic meaning, while being an interesting continuation of the
story. We demonstrate that our system for guided language
generation outperforms a baseline sequence-to-sequence ap-
proach. Additionally, we present the results of a full end-to-
end story generation pipeline (Figure 1), showing how all of
the sub-systems can be integrated.

2 Related Work and Background

2.1 Story Generation via Machine Learning

Machine learning approaches to story and plot generation
attempt to learn domain information from a corpus of story
examples (Swanson and Gordon 2012; Li et al. 2013). Re-
cent work has looked at using recurrent neural networks
(RNNs) for story and plot generation. Roemmele and Gor-
don (2018) use LSTMs with skip-though vector embed-
dings (Kiros et al. 2015) to generate stories. Khalifa, Barros,
and Togelius (2017) train an RNN on a highly-specialized
corpus, such as work from a single author. Fan, Lewis, and
Dauphin (2018) introduce a form of hierarchical story gen-
eration in which a premise is first generated by the model
and then transformed into a passage. This last example is
a form of guided generation wherein a single sentence pro-
vides guidance. Similarly, Yao et al. (2019) decompose story
generation into planning out a storyline and then generating
a story from it. Our work differs in that we use the event-
to-event process to provide guidance to event-to-sentence.
Ammanabrolu et al. (2019) look at narrative generation as
a form of quest generation in interactive fiction and use a
knowledge graph to ground their generative models.

2.2 Event Representation and Generation

Martin et al. (2018) showed that the performance on
both event-to-event and event-to-sentence problems improve
when using an abstraction—known as an event—instead of

natural language sentences. We use a variation of this event
structure. In our work, events are defined as a 5-tuple of
〈s, v, o, p,m〉 as opposed to the 4-tuples used in Martin et
al. (2018). Here v is a verb, s is the subject of the verb, o
is the object, p is the corresponding preposition, and m can
be a modifier, prepositional object, or indirect object. Any
of these elements can be ∅, denoting the absence of the el-
ement. All elements are stemmed and generalized with the
exception of the preposition.

The generalization process involves finding the Verb-
Net (Schuler and Kipper-Schuler 2005) v3.3 class of the
verb and finding the WordNet (Miller 1995) v3.1 Synset
that is two levels higher in the hypernym tree for all of
the nouns in the event. This process also includes the iden-
tification of named entities in the event tuple, extracting
people, organizations, locations, etc. through named entity
recognition (NER) and numbering them as the story goes
on. For example “PERSON” names are replaced by the tag
<PERSON>n where n indicates the n-th “PERSON” in
the story. Similarly, the other NER categories are replaced
with tags that indicate their category and their number within
the story. This maintains consistency in named entities for a
given story in the corpora.

We further process the corpus by “splitting” sentences
akin to the “split-and-prune” methodology of Martin et
al. (2018). This is done to decrease the number of events
generated from a single sentence—reducing the number of
mappings of a single sentence to multiple events. The split-
ting process starts with extracting the parse trees of each sen-
tence using the Stanford Parser. Sentences are then split on
S’s (SBARs) and conjunctions before nested sentences. This
process can result in incomplete sentences where the S-bar
phrase is nested inside of a sentence, acting as the direct ob-
ject. For example, when it sees a sentence like “She says
that he is upset.” it becomes “She says. He is upset.” Then
the split sentences are sorted to reflect the original ordering
of subjects or phrases as closely as possible.

For this paper, the event-to-event system is the policy
gradient deep reinforcement learner from Tambwekar et
al. (2019). This system has been tested to ensure that the
resulting events are of high quality to minimize error in that
portion of the pipeline. Our event-to-sentence system is ag-
nostic to the choice of the event-to-event system, all it re-
quires is a sequence of events to turn into sentences. The
event-to-event network is placed into the pipeline as the
“Event2Event” module, seen in Figure 1, and its output is
fed into the event-to-sentence models during testing.

3 Event-to-Sentence
We define event-to-sentence to be the problem of select-
ing a sequence of words st = st0 , st1 , ..., stk—that form
a sentence—given the current input event et, i.e. the cur-
rent sentence is generated based on maximizing Pr(st|et; θ)
where θ refers to the parameters of the generative sys-
tem. The eventification in Section 2.2 is a lossy process in
which some of the information from the original sentence
is dropped. Thus, the task of event-to-sentence involves fill-
ing in this missing information. There is also no guarantee
that the event-to-event process will produce an event that is
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part of the event-to-sentence training corpus, simply due to
the fact that the space of potentially-generated events is very
large; the correct mapping from the generated event to a nat-
ural language sentence would be unknown.

In prior work, Martin et al. (2018) use a sequence-to-
sequence LSTM neural network to translate events into sen-
tences. We observe that “vanilla” sequence-to-sequence net-
works end up operating as simple language models, often
ignoring the input event when generating a sentence. The
generated sentence is usually grammatically correct but re-
tains little of the semantic meaning given by the event.

We thus look for other forms of guided neural language
generation, with the goals of preserving the semantic mean-
ing from the event in addition to keeping the generated
sentences interesting. We propose four different models—
optimized towards a different point in the spectrum be-
tween the two objectives, and a baseline fifth model that
is used as a fallthrough. The task of each model is to
translate events into “generalized” sentences, wherein nouns
are replaced by WordNet Synsets. If a model does not
pass a specific threshold (determined individually for each
model), the system continues onto the next model in the
ensemble. In order, the models are: (1) a retrieve-and-edit
model based on Hashimoto et al. (2018); (2) template fill-
ing; (3) sequence-to-sequence with Monte Carlo beam de-
coding; (4) sequence-to-sequence with a finite state ma-
chine decoder; and (5) vanilla (beam-decoding) sequence-
to-sequence. We find that none of these models by them-
selves can successfully find a balance between the goals
of retaining all of the event tokens and generating interest-
ing output. However, each of the models possess their own
strengths and weaknesses—each model is essentially opti-
mized towards a different point on the spectrum between the
two goals. We combine these models into an ensemble in
an attempt to minimize the weaknesses of each individual
model and to achieve a balance.

3.1 Retrieve-and-Edit

The first model is based on the retrieve-and-edit RetEdit
framework for predicting structured outputs (Hashimoto et
al. 2018). We first learn a task-specific similarity between
event tuples by training an encoder-decoder to map each
event onto an embedding that can reconstruct the output
sentence; this is our retriever model. Next, we train an edi-
tor model which maximizes the likelihood of generating the
target sentence given both the input event and a retrieved
event-sentence example pair. We used a standard sequence-
to-sequence model with attention and copying (Gu et al.
2016) to stand in as our editor architecture. Although this
framework was initially applied to the generation of GitHub
Python code and Hearthstone cards, we extend this tech-
nique to generate sentences from our event tuples. Specif-
ically, we first initialize a new set of GLoVe word embed-
dings (Pennington, Socher, and Manning 2014), using ran-
dom initialization for out-of-vocabulary words. We use our
training set to learn weights for the retriever and editor mod-
els, set confidence thresholds for the model with the valida-
tion set, and evaluate performance using the test set.

In order to generate a sentence from a given input event,

there are two key phases: “retrieve” phase and “edit” phase.
With respect to the input event, we first retrieve the nearest-
neighbor event and its corresponding sentence in the train-
ing set using the retriever model. Passing both the retrieved
event-sentence pair and the input event as inputs, we use the
editor model to generate a sentence using beam search.

Many of the successes produced by the model stem from
its ability to retain the complex sentence structures that ap-
pear in our training corpus and thus attempts to balance be-
tween maintaining coherence and being interesting. How-
ever, this interaction with the training data can also prove
to be a major drawback of the method; target events that
are distant in the embedding space from training examples
typically result in poor sentence quality. Since RetEdit re-
lies heavily on having good examples, we set the confi-
dence of the retrieve-and-edit model to be proportional to 1 –
retrieval distance when generating sentences, as a lower
retrieval distance implies greater confidence. However, the
mapping from event to sentence is not a one-to-one func-
tion. There are occasionally multiple sentences that map to
a single event, resulting in retrieval distance of 0, in which
case the example sentence is returned without modifications.

3.2 Sentence Templating

As mentioned earlier, the baseline sequence-to-sequence
network operates as a simple language model and can often
ignore the input event when generating a sentence. However,
we know that our inputs, an event tuple will have known
parts of speech.We created a simplified grammar for the syn-
tax of sentences generated from events:

S → NP v (NP ) (PP )

NP → d n

PP → p NP

where d is a determiner that will be added and the rest of
the terminal symbols correspond to an argument in the event,
with n being s, o, or m, depending on its position in the sen-
tence. The resulting sentence would be [ s]{v [ o] [p m]}
where blanks indicate where words should be added to make
a complete sentence.

First, our algorithm predicts the most likely VerbNet
frame based on the contents of the input event (how many
and which arguments are filled). VerbNet provides a num-
ber of syntactic structures for different verb classes based on
how the verb is being used. For example, if the input event
contains 2 nouns and a verb without a preposition, we as-
sume that the output sentence takes the form of [NP V NP],
but if it has 2 nouns, a verb, and a proposition, then it should
be [NP V PP].

Second, we apply a Bidirectional LSTM language model
trained on the generalized sentences in our training cor-
pus. Given a word, we can generate words before and af-
ter it, within a particular phrase as given by some of the
rules above, and concatenate the generated sentence frag-
ments together. Specifically, we use the AWD-LSTM (Mer-
ity, Keskar, and Socher 2018) architecture as our language
model since it is currently state-of-the-art.

At decode time, we continue to generate words in each
phrase until we reach a stopping condition: (1) reaching a
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maximum length (to prevent run-on sentences); or (2) gen-
erating a token that is indicative of an element in the next
phrase, for example seeing a verb being generated in a noun
phrase. When picking words from the language model, we
noticed that the words “the” and “and” were extremely com-
mon. To increase the variety of the sentences, we sample
from the top k most-likely next words and enforce a number
of grammar-related rules in order to keep the coherence of
the sentence. For example, we do not allow two determiners
nor two nouns to be generated next to each other.

One can expect that many of the results will look struc-
turally similar. However, we can guarantee that the provided
tokens in the event will appear in the generated sentence—
this model is optimized towards maintaining coherence. To
determine the confidence of the model for each sentence, we
sum the loss after each generated token, normalize to sen-
tence length, and subtract from 1 as higher loss translates to
lower confidence.

3.3 Monte-Carlo Beam Search

Our third method is an adaptation of Monte Carlo Beam
Search (Cazenave 2012) for event-to-sentence. We train a
sequence-to-sequence model on pairs of events & general-
ized sentences and run Monte Carlo beam search at decode
time. This method differs from traditional beam search in
that it introduces another scoring term that is used to re-
weight all the beams at each timestep.

After top-scoring words are outputted by the model at
each timestep, playouts are done from each word, or node. A
node is the final token of the partially-generated sequences
on the beam currently and the start of a new playout. Dur-
ing each playout, one word is sampled from the current
step’s softmax over all words in the vocabulary. The decoder
network is unrolled until it reaches the “end-of-story” tag.
Then, the previously-generated sequence and the sequence
generated from the current playout are concatenated together
and passed into a scoring function that computes the current
playout’s score.

The scoring function is a combination of (1) BLEU scores
up to 4-grams between the input event and generated sen-
tence, as well as (2) a weighted 1-gram BLEU score be-
tween each item in the input event and generated sentence.
The weights combining the 1-gram BLEU scores are learned
during validation time where the weight for each word in the
event that does not appear in the final generated sequence
gets bumped up. Multiple playouts are done from each word
and the score s for the current word is computed as:

st = α ∗ st−1 + (1− α) ∗AV G(playoutt) (1)

where α is a constant.
In the end, the k partial sequences with the highest playout

scores are kept as the current beam. For the ensemble, this
model’s confidence score is the final score of the highest-
scoring end node. Monte Carlo beam search excels at cre-
ating diverse output—i.e. it skews towards generating inter-
esting sentences. Since the score for each word is based on
playouts that sample based on weights at each timestep, it
is possible for the output to be different across runs. The

Monte Carlo beam decoder has been shown to generate bet-
ter sentences that are more grammatically-correct than the
other techniques in our ensemble, while sticking more to the
input than a traditional beam decoder. However, there is no
guarantee that all input event tokens will be included in the
final output sentence.

3.4 Finite State Machine Constrained Beams

Various forms of beam search, including Monte Carlo play-
outs, cannot ensure that the tokens from an input event ap-
pear in the outputted sentence. As such, we adapted the al-
gorithm to fit such lexical constraints, similar to Anderson
et al. (2017) who adapted beam search to fit captions for
images, with the lexical constraints coming from sets of im-
age tags. The Constrained Beam Search used finite state ma-
chines to guide the beam search toward generating the de-
sired tokens. Their approach, which we have co-opted for
event-to-sentence, attempts to achieve a balance between the
flexibility and sentence quality typical of a beam search ap-
proach, while also adhering to the context and story encoded
in the input events that more direct approaches (e.g. Section
3.2) would achieve.

The algorithm works on a per-event basis, beginning by
generating a finite state machine. This finite state machine
consists of states that enforce the presence of input tokens
in the generated sentence. As an example, assume we have
an n-token input event, {t1, t2, t3, ..., tn}. The correspond-
ing machine consists of 2n states. Each state maintains a
search beam of size Bs with at most b output sequences,
corresponding to the configured beam size s. At each time
step, every state (barring the initial state) receives from pre-
decessor states those output sequences whose last generated
token matches an input event token. The state then adds to
its beam the b most likely output sequences from those re-
ceived. Generating token t1 moves the current state from the
initial state to the state corresponding to t1, t3 to a state for
t3, and so on. The states t1 and t3 then, after generating to-
kens t1 and t3 respectively, transmit said sequences to the
state t1,3. The states and transitions proceed as such until
reaching the final state, wherein they have matched every
token in the input event. Completed sequences in the final
state contain all input event tokens, thus providing us with
the ability to retain the semantic meaning of the event.

As much as the algorithm is based around balancing gen-
erating good sentences with satisfying lexical constraints, it
does not perform particularly well at either. It is entirely pos-
sible, if not at all frequent, for generated sentences to contain
all input tokens but lose proper grammar and syntax, or even
fail to reach the final state within a fixed time horizon. This is
exacerbated by larger tuples of tokens, seen even at just five
tokens per tuple. To compensate, we relax our constraint to
permit output sequences that have matched at least three out
of five tokens from the input event.

3.5 Ensemble

The entire event-to-sentence ensemble is designed as a cas-
cading sequence of models: (1) retrieve-and-edit, (2) sen-
tence templating, (3) Monte Carlo beam search, (4) finite
state constrained beam search, and (5) standard beam search.
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We use the confidence scores generated by each of the mod-
els in order to re-rank the outputs of the individual models.
This is done by setting a confidence threshold for each of
the models such that if a confidence threshold fails, the next
model in the ensemble is tried. The thresholds are tuned on
the confidence scores generated from the individual models
on the validation set of the corpus. This ensemble saves on
computation as it sequentially queries each model, terminat-
ing early and returning an output sentence if the confidence
threshold for any of the individual models are met.

An event first goes through the retrieve-and-edit frame-
work, which generates a sentence and corresponding confi-
dence score. This framework performs well when it is able to
retrieve a sample from the training set that is relatively close
in terms of retrieval distance to the input. Given the sparsity
of the dataset, this happens with a relatively low probability,
and so we place this model first in the sequence.

The next two models are each optimized towards one of
our two main goals. The sentence templating approach re-
tains all of the tokens within the event and so loses none of
its semantic meaning, at the expense of generating a more in-
teresting sentence. The Monte-Carlo approach, on the other
hand, makes no guarantees regarding retaining the original
tokens within the event but is capable of generating a di-
verse set of sentences. We thus cascade first to the sentence
templating model and then the Monte-Carlo approach, im-
plicitly placing greater importance on the goal of retaining
the semantic meaning of the event.

The final model queried is the finite-state-machine–
constrained beam search. This model has no confidence
score; either the model is successful in producing a sentence
within the given length with the event tokens or not. In the
case that the finite state machine based model is unsuccess-
ful in producing a sentence, the final fallthrough model—the
baseline sequence-to-sequence model with standard beam
search decoding—is used.

4 Dataset

To aid in the performance of our story generation, we select
a single genre: science fiction. We scraped long-running sci-
ence fiction TV show plot summaries from the fandom wiki
service wikia.com. This dataset contains longer and more
detailed plot summaries than the dataset used in Martin et
al. (2018) and Tambwekar et al. (2019), which we believe
to be important for the overall story generation process. The
corpus contains 2,276 stories in total, each story an episode
of a TV show. The average story length is 89.23 sentences.
There are stories from 11 shows, with an average of 207 sto-
ries per show, from shows like Doctor Who, Futurama, and
The X-Files. The data was pre-processed to simplify alien
names in order to aid the parser. Then the sentences were
split, partially following the “split-and-pruned” methodol-
ogy of Martin et al. (2018) as described in 2.2.

Once the sentences were split, they were “eventified” as
described in Section 2.2. One benefit of having split sen-
tences is that there is a higher chance of having a 1:1 cor-
respondence between a sentence and an event, instead of a
single sentence becoming multiple events. After the data is

fully prepared, it is split in a 8:1:1 ratio to create the training,
validation, and testing sets, respectively.

5 Experiments

We perform two sets of experiments, one set evaluating
our models on the event-to-sentence problem by itself,
and another set intended to evaluate the full storytelling
pipeline. Each of the models in the event-to-sentence en-
semble are trained on the training set in the sci-fi corpus.
The training details for each of the models are as described
above. All of the models in the ensemble slot-fill the verb
automatically—filling a VerbNet class with a verb of ap-
propriate conjugation—except for the sentence templating
model which does verb slot-filling during post-processing.

After the models are trained, we pick the cascading
thresholds for the ensemble by running the validation set
through each of the models and generating confidence
scores. This is done by running a grid search through a
limited set of thresholds such that the overall BLEU-4
score (Papineni et al. 2002) of the generated sentences in
the validation set is maximized. These thresholds are then
frozen when running the final set of evaluations on the test
set. For the baseline sequence-to-sequence method, we de-
code our output with a beam size of 5. We report perplexity,
BLEU-4, and ROUGE-4 scores, comparing against the gold
standard from the test set.

Perplexity = 2−
∑

x p(x) log2 p(x) (2)

where x is a token in the text, and

p(x) =
count(x)

∑
v∈V count(V )

(3)

where V is the vocabulary. Our BLEU-4 scores are naturally
low (where higher is better) because of the creative nature of
the task—good sentences may not use any of the ground-
truth n-grams. Even though we frame Event2Sentence as
a translation task, BLEU-4 and ROUGE-4 are not reliable
metrics for creative generation tasks.

The first experiment takes plots in the in the test set, even-
tifies them, and then uses our event-to-sentence ensemble to
convert them back to sentences. In addition to using the full
ensemble, we further experiment with using different combi-
nations of models along the spectrum between maintaining
coherence and being interesting. We then evaluate the gen-
erated sentences, using the original sentences from the test
set as a gold standard.

The second experiment uses event sequences generated by
an event-to-event system such as Tambwekar et al. (2019)
and is designed to demonstrate how our system integrates
into the larger pipeline described in Figure 1. We then
transform these generated event sequences into general-
ized sentences using both the ensemble and the baseline
sequence-to-sequence approach. As the last step, the gen-
eralized sentences are passed into the “slot filler” (see Fig-
ure 1) such that the categories are filled. As the story goes
on, the “memory” maintains a dynamic graph that keeps
track of what entities (e.g. people, items) are mentioned at
which event and what their tag was (e.g. <PERSON>5,
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Table 1: Event-to-sentence examples for each model. ∅ represents an empty parameter; <PRP> is a pronoun.
Input Event RetEdit Templates Monte Carlo FSM Gold Standard

〈<PRP>, act-114-1-
1, to, ∅, event.n.01〉

<PRP> and
<PERSON>0 move
to the event.n.01 of the
natural object.n.01.

<PRP> act-114-1-1
to event.n.01.

<PRP> moves to
the nearest natu-
ral object.n.01.

physical entity.n.01
move back to the
phenomenon.n.01 of
the craft.n.02...

<PRP> move to the
event.n.01.

〈<PERSON>2,
send-11.1, through,
<PERSON>6,
<LOCATION>1〉

<PERSON>2 sends
<PERSON>6
through the
<LOCATION>1.

The <PERSON>2
send-11.1 the
<PERSON>6
through
<LOCATION>1.

<PERSON>2
passes this un-
dercover in the
body part.n.01 and
collapses.

∅ In activity.n.01 to
avoid <PRP> out.n.01
<PERSON>2 would trans-
port <PERSON>6 through
the <LOCATION>1.

Table 2: End-to-end pipeline examples on previously-unseen input data. The Event-to-Sentence model used is the full ensemble.
Sentences are generated using both the extracted and generated events.

Input Sent. Extracted event Generated Events (Event-to-
Event)

Generated Sentences (Event-to-Sentence) Slot-filled Sentences

On Tatooine,
Jabba the Hutt
inspects the drone
barge recently
delivered to him.

〈<ORG>0,
assessment-34.1,
∅, vessel.n.02,
∅〉

〈<PERSON>1, settle-36.1.2,
∅, indicator.n.03, indicator.n.03
〉 ; 〈music.n.01, escape-51.1-
1, from, ∅, ∅〉; 〈<PRP>,
discover-84, to, run-51.3.2,
progenitor.n.01〉

The <ORG>0 can not scan the vessel.n.02
of the <VESSEL>0. <PERSON>1 de-
cides to be a little person.n.01 at the
structure.n.01. the music.n.01 arrives.
<PRP> finds a lonely person.n.01 on the
upper one of the craft.n.02 which is not a
personal letter.n.01 but does not respond to
hails .

The Jabba the Hutt can not scan the
bareboat of the Uss Lakota. O Yani
decides to be a little mailer at the air-
dock. The Music arrives. She finds a
lonely mailer on the upper one of the
bareboat which is not a love letter but
does not respond to hails.

Boba Fett has
just chased down
another bounty, a
Rodian art dealer
who sold fake
works to Gebbu
the Hutt.

〈<PERSON>0,
chase-51.6, ∅,
bounty.n.04, ∅〉

〈<PERSON>0, chase-
51.6, to, magnitude.n.01,
∅〉; 〈magnitude.n.01,
comprehend-87.2, off,
craft.n.02, magnitude.n.01〉;
〈<PERSON>2, amuse-
31.1, off, ∅, ∅〉;
〈<PERSON>2, discover-84,
off, change of integrity.n.01, ∅〉

<PERSON>0 enters the bounty.n.04 and
tells <PRP>. <PERSON>0 attaches the
explosive.a.01 to the person.n.01 who is
trying to fix the device.n.01. the magni-
tude.n.01 doesn’t know the craft.n.02 off the
craft.n.02. <PERSON>2 is surprised when
<PRP> learns that the person.n.01 is actu-
ally <PERSON>7. <PERSON>2 sees the
change of integrity.n.01 and tells <PRP>.

Boba Fett enters the bounty and tells
it. Boba Fett attaches the explosive
to the peer who is trying to fix the
toy. The multiplicity doesn’t know
the bounty off the bounty. Dark Jedi
Lomi Plo is surprised when it learns
that the peer is actually Mrs Conners.
Dark Jedi Lomi Plo sees the combi-
nation off the Orbs and tells them.

Table 3: Test set perplexity, BLEU, & ROUGE (F1) scores,
with average sentence lengths for event-to-sentence models.

Model Perplexity BLEU ROUGE Length

RetEdit 71.354 0.041 11.25 9.27
Templates 203.629 0.0034 6.21 5.43
Monte Carlo 71.385 0.0453 10.01 7.91
FSM 104.775 0.0125 1.29 10.98
Seq2seq 83.410 0.040 10.66 6.59
RetEdit+MC 72.441 0.0468 10.97 9.41
Templ.+MC 79.295 0.0409 10.10 6.92
Templ.+FSM 79.238 0.0296 6.36 9.09
RE+Tmpl.+MC 73.637 0.0462 10.96 9.35
Full Ensemble 70.179 0.0481 11.18 9.22

Synset(‘instrument.n.01’)) When the slot filler sees a new
sentence, it first tries to see if it can fill it in with an entity it
as seen before. This includes if the current Synset it is look-
ing at is a descendent of a Synset already stored in memory.
If a new word has to be selected, named entities are ran-
domly chosen from a list collected from the original science
fiction corpus, with entities paired with their respective tags
(PERSON, ORG, NUMBER, etc.). Synsets are selected by
finding a descendent 1 or 2 levels down. The word is cur-
rently selected randomly, but this will soon be improved by
the addition of a language model guiding it. To fill a pro-
noun (<PRP>), the slot filler refers to the memory to select
a recently-mentioned entity. Person names are run through
US Census data to determine the “gender” of the name in
order to select an appropriate pronoun. If no pronoun can be

found, it defaults to they/them, and if no previous entity can
be found, it defaults to it. Organizations are always they. For
the purpose of this study, stories that came from the same
events (story pairs across both conditions) were filled with
the same entities.

Once the sentences from both experiments were com-
plete, we conducted a human participant study on Amazon
Mechanical Turk. Each participant was presented a single
story and given the list of 5-point Likert scale questions,
validated by Purdy et al. (2018) and used by Tambwekar et
al. (2019) in their evaluation. We exclude categories assess-
ing the long-term coherence of a story as these categories are
designed to evaluate an event-to-event system and not event-
to-sentence, which is conditioned to map an event to a single
sentence at a time. Participants were also asked to provide a
summary of the story and which of the attributes from the
Likert questions thought to be most important for stories. If
the participants’ English was not deemed fluent enough in
the open-ended questions, their data was discarded. This left
us with 64 in the ensemble and 58 in the baseline condition.

6 Results and Discussion

Table 3 shows the perplexity, BLEU-4 scores, ROUGE-4
scores, and average sentence length for event-to-sentence
on the testing set for each of the models, ensemble, and
baseline. Note that some of the models, such as the sen-
tence templates, make no use of gold standard sentences
and are thus poorly optimized to use perplexity, BLEU, and
ROUGE scores. In addition to running each model in the en-
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Table 4: Utilization percentages for each model combination on both events from the test set and from the full pipeline.
RetEdit Templates Monte Carlo FSM Seq2seq

Test Pipeline Test Pipeline Test Pipeline Test Pipeline Test Pipeline
RetEdit+MC 82.58 31.74 - - 9.95 48.4 - - 7.46 19.86
Templates+MC - - 6.14 5.48 65.7 66.67 - - 28.16 27.85
Templates+FSM - - 6.14 5.48 - - 56.77 32.65 37.09 61.87
RetEdit+Templates+MC 82.58 31.74 1.49 3.88 9.1 45.21 - - 6.82 19.18
Full Ensemble 94.91 55.71 0.22 0.91 4.29 41.10 0.15 0.68 0.43 1.60

Figure 2: Human participant study results, where a higher
score is better (scale of 1-5). Confidence values are 00.29
and 0.32, for genre and enjoyability respectively; α=0.1. The
confidence values for other metrics lie between 0.27-0.35.

semble individually, we experiment with multiple combina-
tions of the models to assess which combination makes the
most effective ensemble. The full ensemble performs better
than any of the individual models with regard to perplexity,
as it is designed to combine the models such that each of
their weaknesses is minimized. The average sentence length
metric highlights the differences between the models, with
the templates producing the shortest sentences and the finite
state machine taking longer to generate sentences due to the
constraints it needs to satisfy.

We also noted how often each model in the ensemble is
used, shown in Table 4, when generating sentences from the
eventified testing corpus or from the event-to-event model
within the pipeline, across different combinations of ensem-
bles. Utilization percentages show us how often each model
was picked in the respective ensembles based on the corre-
sponding confidence score thresholds. RedEdit was heavily
used on the test set, likely due the train and test sets having
a similar distribution of data. On the pipeline events, RetE-
dit is used much less—events generated by event-to-event
are often very different from those in the training set. A ma-
jority of the events that fall through RetEdit are caught by
our Monte Carlo beam search, irrespective of the fact that
RetEdit—and sentence templates—are most likely to honor
the event tokens. This is partially due to the fact that satis-
fying the constraint of maintaining the events tokens makes
it difficult for these models to meet the required threshold.
The small portion of remaining events are transformed using

the templates and the finite state machine.
Table 1 shows examples of generalized sentence outputs

of each of the event-to-sentence models, illustrating some of
the trends we alluded to in Section 3. Retrieve-and-edit fo-
cuses on semantics at the expense of sentence quality. The
sentence templates produce output that matches the input
event but is very formulaic. Monte Carlo generates enter-
taining and grammatically-correct sentences but occasion-
ally loses the semantics of the input event. The finite state
machine attempts to achieve a balance between semantics
and generating entertaining output, however it sometimes
fails to produce an output given the constraints of the state
machine itself. All of these can be compared to the original
next event from the testing set. We also provide examples of
the entire pipeline in Table 2, which demonstrates our en-
semble’s ability to work with an existing plot generator.

For the human participants study comparing a seq-to-seq
baseline to our full ensemble (Figure 2), most metrics were
similar in score, which is understandable given that both
conditions produced stories that were at times confusing.
However, the ensemble consistently outperformed the base-
line in terms of quality, maintaining the genre (space opera),
grammar, and enjoyablity. Enjoyability and genre were sig-
nificant at p < .10 using a two-tailed independent t-test.

7 Conclusions

Event representations improve the performance of plot gen-
eration and allow for planning toward plot points. However,
they are unreadable and abstract, needing to be translated
into syntactically- and semantically-sound sentences that
can both keep the meaning of the original event and be an
interesting continuation of the story. We present an ensem-
ble of four event-to-sentence models, in addition to a simple
beam search model, that balance between these two prob-
lems. Each of the models in the ensemble is calibrated to-
ward different points in the spectrum between the two issues
and are thus designed to cover each other’s weaknesses. The
ensemble is integrated into a full story generation pipeline,
demonstrating that our ensemble can work with generated
events drawn from a realistic distribution.
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