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Abstract

Knowledge distillation is typically conducted by training a
small model (the student) to mimic a large and cumbersome
model (the teacher). The idea is to compress the knowledge
from the teacher by using its output probabilities as soft-
labels to optimize the student. However, when the teacher
is considerably large, there is no guarantee that the internal
knowledge of the teacher will be transferred into the student;
even if the student closely matches the soft-labels, its inter-
nal representations may be considerably different. This inter-
nal mismatch can undermine the generalization capabilities
originally intended to be transferred from the teacher to the
student. In this paper, we propose to distill the internal rep-
resentations of a large model such as BERT into a simplified
version of it. We formulate two ways to distill such repre-
sentations and various algorithms to conduct the distillation.
We experiment with datasets from the GLUE benchmark and
consistently show that adding knowledge distillation from in-
ternal representations is a more powerful method than only
using soft-label distillation.

Introduction

Transformer-based models have significantly advanced the
field of natural language processing by establishing new
state-of-the-art results in a large variety of tasks. Specifi-
cally, BERT (Devlin et al. 2018), GPT (Radford et al. 2018),
GPT-2 (Radford et al. 2019), XLLM (Lample and Conneau
2019), XLNet (Yang et al. 2019), and RoBERTa (Liu et al.
2019c) lead tasks such as text classification, sentiment anal-
ysis, semantic role labeling, question answering, among oth-
ers. However, most of the models have hundreds of millions
of parameters, which significantly slows down the training
process and inference time. Besides, the large number of
parameters demands a lot of memory consumption, mak-
ing such models hard to adopt in production environments
where computational resources are strictly limited.

Due to these limitations, many approaches have been pro-
posed to reduce the size of the models while still providing
similar performance. One of the most effective techniques
is knowledge distillation (KD) in a teacher-student setting
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(Hinton, Vinyals, and Dean 2015), where a cumbersome
already-optimized model (i.e., the teacher) produces output
probabilities that are used to train a simplified model (i.e.,
the student). Unlike training with one-hot labels where the
classes are mutually exclusive, using a probability distribu-
tion provides more information about the similarities of the
samples, which is the key part of the teacher-student distil-
lation.

Even though the student requires fewer parameters while
still performing similar to the teacher, recent work shows
the difficulty of distilling information from a huge model.
Mirzadeh et al. (2019) state that, when the gap in between
the teacher and the student is large (e.g., shallow vs. deep
neural networks), the student struggles to approximate the
teacher. They propose to use an intermediate teaching assis-
tant (TA) model to distill the information from the teacher
and then use the TA model to distill information towards the
student. However, we argue that the abstraction captured by
a large teacher is only exposed through the output probabil-
ities, which makes the internal knowledge from the teacher
(or the TA model) hard to infer by the student. This can po-
tentially take the student to very different internal represen-
tations undermining the generalization capabilities initially
intended to be transferred from the teacher.

In this paper, we propose to apply KD to internal repre-
sentations. Our approach allows the student to internally be-
have as the teacher by effectively transferring its linguistic
properties. We perform the distillation at different internal
points across the teacher, which allows the student to learn
and compress the abstraction in the hidden layers of the large
model systematically. By including internal representations,
we show that our student outperforms its homologous mod-
els trained on ground-truth labels, soft-labels, or both.

Related Work

Knowledge distillation has become one of the most effective
and simple techniques to compress huge models into simpler
and faster models. The versatility of this framework has al-
lowed the extension of KD to scenarios where a set of expert
models in different tasks distill their knowledge into a uni-
fied multi-task learning network (Clark et al. 2019b), as well
as the opposite scenario where an ensemble of multi-task



models are distilled into a task-specific network (Liu et al.
2019a; 2019b). We extend the knowledge distillation frame-
work with a different formulation by applying the same prin-
ciple to internal representations.

Using internal representations to guide the training of
a student model was initially explored by Romero et al.
(2014). They proposed FITNET, a convolutional student net-
work that is thinner and deeper than the teacher while using
significantly fewer parameters. In their work, they establish
a middle point in both the teacher and the student models
to compare internal representations. Since the dimension-
ality between the teacher and the student differs, they use
a convolutional regressor model to map such vectors into
the same space, which adds a significant number of parame-
ters to learn. Additionally, they mainly focus on providing
a deeper student network than the teacher, exploiting the
particular benefits of depth in convolutional networks. Our
work differs from theirs in different aspects: 1) using a single
point-wise loss on the middle layers has mainly a regulariza-
tion effect, but it does not guarantee to transfer the internal
knowledge from the teacher; 2) our distillation method is
applied across all the student layers, which effectively com-
press groups of layers from the teacher into a single layer
of the student; 3) we use the internal representations as-is
instead of relying on additional parameters to perform the
distillation; 4) we do not focus on deeper models than the
teacher as this can slow down the inference time, and it is
not necessarily an advantage on transformer-based models.

Concurrent to this work, similar transformer-based dis-
tillation techniques have been studied. Sanh et al. (2019)
propose DistilBERT, which compresses BERT during pre-
training to provide a smaller general-purpose model. They
pre-train their model using a masked language modeling
loss, a cosine embedding loss at the hidden states, and
the teacher-student distillation loss. Conversely, Sun et al.
(2019) distill their model during task-specific fine-tuning
using a MSE loss at the hidden states and cross-entropy
losses from soft- and hard-labels. While our work is simi-
lar to theirs, the most relevant differences are 1) the use of
KL-divergence loss at the self-attention probabilities, which
have been shown to capture linguistic knowledge (Clark et
al. 2019a), and 2) the introduction of new algorithms to dis-
till the internal knowledge from the teacher (i.e., progressive
and stacked knowledge distillation).

Curriculum learning (CL) (Bengio 2009) is another line
of research that focuses on teaching complex tasks by build-
ing upon simple concepts. Although the goal is similar to
ours, CL is conducted by stages focusing on simple tasks
first and progressively moving to more complicated tasks.
However, this method requires annotations among the pre-
liminary tasks, and they have to be carefully picked so that
the order and relation among the build-up tasks are helpful
for the model. Unlike CL, we focus on teaching the internal
representations of an optimized complex model, which are
assumed to have the preliminary build-up knowledge for the
task of interest.

Other model compression techniques include quantiza-
tion (Hubara et al. 2017; He et al. 2016; Courbariaux et
al. 2016) and weights pruning (Han, Mao, and Dally 2015).
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The first one focuses on approximating a large model into a
smaller one by reducing the precision of each of the parame-
ters. The second one focuses on removing weights in the net-
work that do not have a substantial impact on model perfor-
mance. These techniques are complementary to the method
we propose in this paper, which can potentially lead to a
more effective overall compression approach.

Methodology

In this section, we detail the process of distilling knowl-
edge from internal representations. First, we describe the
standard KD framework (Hinton, Vinyals, and Dean 2015),
which is an essential part of our method. Then, we formal-
ize the objective functions to distill the internal knowledge
of transformer-based models. Lastly, we propose various al-
gorithms to conduct the internal distillation process.

Knowledge Distillation

Hinton, Vinyals, and Dean (2015) proposed knowledge dis-
tillation (KD) as a framework to compress a large model into
a simplified model that achieves similar results. The frame-
work uses a teacher-student setting where the student learns
from both the ground-truth labels (if available) and the soft-
labels provided by the teacher. The probability mass asso-
ciated with each class in the soft-labels allows the student
to learn more information about the label similarities for a
given sample. The formulation of KD considering both soft
and hard labels is given as follows:

N 1 N
> p(ilei, 0)log () — A D wilog (i)

)

where Op represents the parameters of the teacher, and
p(yi|zi, O7) are its soft-labels; ¢; is the student prediction
given by p(y;|x;,0s) where g denotes its parameters, and
A is a small scalar that weights down the hard-label loss.
Since the soft-labels often present high entropy, the gradient
tends to be smaller than the one from the hard-labels. Thus,
A balances the terms by reducing the impact of the hard loss.

1
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Matching Internal Representations

In order to make the student model behave as the teacher
model, the student is optimized by the soft-labels from
teacher’s output. In addition, the student also acquires the
abstraction hidden in the teacher by matching its internal
representations. That is, we want to teach the student how to
internally behave by compressing the knowledge of multiple
layers from the teacher into a single layer of the student. Fig-
ure 1 shows a teacher with twice the number of layers of the
student, where the colored boxes denote the layers where the
student is taught the internal representation of the teacher. In
this case, the student compresses two layers into one while
preserving the linguistic behavior across the teacher layers.
We study the internal KD of transformer-based models,
specifically the case of BERT and simplified versions of it
(i.e., fewer transformer layers). We define the internal KD
by using two terms in the loss function. Given a pair of
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Figure 1: Knowledge distillation from internal representa-
tions. We show the internal layers that the teacher (left) dis-
tills into the student (right).

transformer layers to match (see Figure 1), we calculate (1)
the Kullback-Leibler (KL) divergence loss across the self-
attention probabilities of all the transformer heads', and (2)
the cosine similarity loss between the [CLS] activation vec-
tors for the given layers.

KL-divergence loss. Consider A as the self-attention ma-
trix that contains row-wise probability distributions per to-
ken in a sequence given by A = softmax(d;°QKT)
(Vaswani et al. 2017). For a given head in a transformer
layer, we use the KL-divergence loss as follows:

Ar,
Ag,

L
1
Lu=7 Z Ar,log 2

where L is the length of a sequence, Ay, and Ag, describe
the ¢-th row of the self-attention matrix for the teacher and
student, respectively. The motivation of applying this loss
function to the self-attention matrices comes from recent re-
search that documents the linguistic patterns captured by the
attention probabilities of BERT (Clark et al. 2019a). Forcing
the divergence between the self-attention probability distri-
butions to be as small as possible preserves the linguistic
behavior in the student.

Cosine similarity loss. For the second term of our inter-
nal distillation loss, we use cosine similarity2 as follows:

Leos =1 —cos(hr,hg) 3)

where hr and hg are the hidden vector representations for
the [CLS] token for the teacher and student, respectively.
We include this term in our internal KD formulation to con-
sider a similar behavior in the activation going through the
network. That is, while KL-divergence focuses on the self-
attention matrix, it is the weighted hidden vectors that finally

"We are interested in a loss function that considers the proba-
bility distribution as a whole, and not point-wise errors.
2L loss could be used as well without impacting generality.
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pass to the upper layers, not the probabilities. Even if we
force the self-attention probabilities to be similar, there is no
guarantee that the final activation passed to the upper layers
is similar. Thus, using this extra term, we can regularize the
context representation of the sample to be similar to the one
from the teacher.?

Algorithm 1 Stacked Internal Distillation (SID)

: procedure HEADLOSS(TS, batch, layer,, layers)

for sample < batch;init L < 0; do
P < cONCATHEADS(TS.teacher, sample, layer,)
Q <+ CONCATHEADS(TS.student, sample, layers)
L« L+ mean(sum(P x log(P/Q), axis=2))

return L/size(batch)

: procedure STACKINTDISTILL(TS, batch)
L‘fcoS7 ['kl — 07 0
for layery, layers <— MATCH(O . .. TS.nextLocked)) do
CLS: + GETCLS(TS.teacher, batch, layer:)
CLSs < GETCLS(TS.student, batch, layers)
Leos + Leos + mean(1l — cos(CLS, CLSy))
L1 < Lii + HEADLOSS(TS, batch, layer:, layers)
return L.os, Lr;
15: TS < INITIALIZETSMODEL()

VRN D NRL

16: repeat:

17: for e < 0, epochs do

18: if TS.nxtLockedLay < TS.student.nLayers then

19: > Perform internal distillation

20: for batch < data; init 7 < 0; do

21: Lecos, Lri < STACKINTDISTILL(TS, batch)
22: backprop(TS, Leos + L)

23: T4 T+ Leos > Accumulate for threshold
24: if 7 < 7 OR e > lim(TS.nxtLockedLay, ¢) then
25: TS.nextLockedLay < TS.nxtLockedLay + 1
26: else

27: > Perform standard distillation

28: for batch < data do

29: backprop(TS, xentropy(TS, batch))

30: until convergence

How to Distill the Internal Knowledge?

Different layers across the teacher capture different linguis-
tic concepts. Recent research shows that BERT builds lin-
guistic properties that become more complex as we move
from the bottom to the top of the network (Clark et al.
2019a). Since the model builds upon bottom representations,
in addition to distilling all the internal layers simultaneously,
we also consider distilling knowledge progressively match-
ing internal representation in a bottom-up fashion. More
specifically, we consider the following scenarios:

1. Internal distillation of all layers. All the layers of the
student are optimized to match the ones from the teacher
in every epoch. In Figure 1, the distillation simultane-
ously occurs on the circled numbers @D, @), B), and @.

2. Progressive internal distillation (PID). We distill the
knowledge from lower layers first (close to the input)

3We only use the context vector instead of all the hidden token
vectors to avoid over-regularizing the model (Romero et al. 2014).



and progressively move to upper layers until the model
focuses only on the classification distillation. Only one
layer is optimized at a time. In Figure 1, the loss will be
given by the transition 1) — Q) — @) — @.

3. Stacked internal distillation (SID). We distill the
knowledge from lower layers first, but instead of moving
from one layer to another exclusively, we keep the loss
produced by previous layers stacking them as we move
to the top. Once at the top, we only perform classification
(see Algorithm 1). In Figure 1, the loss is determined by

the transition D) - D+ Q2 —- D+ 2+ QB — @.

For the last two scenarios, to move to upper layers, the
student either reaches a limited number of epochs per layer
or a cosine loss threshold, whatever happens first (see line
24 in Algorithm 1). Additionally, these two scenarios can be
combined with the classification loss at all times, not only
until the model reaches the top layer.

Experiments and Results
Datasets

We conduct experiments on four datasets of the GLUE
benchmark (Wang et al. 2018), which we describe briefly:

1. CoLA. The Corpus of Linguistic Acceptability
(Warstadt, Singh, and Bowman 2018) is part of the
single sentence tasks, and it requires to determine
whether an English text is grammatically correct. It uses
the Matthews Correlation Coefficient (MCC) to measure
the performance.

2. QQP. The Quora Question Pairs* is a semantic similarity
dataset, where the task is to determine whether two ques-
tions are semantically equivalent or not. It uses accuracy
and F1 as metrics.

3. MRPC. The Microsoft Research Paraphrase Corpus
(Dolan and Brockett 2005) contains pairs of sentences
whose annotations describe whether the sentences are se-
mantically equivalent or not. Similar to QQP, it uses ac-
curacy and F1 as metrics.

4. RTE. The Recognizing Textual Entailment (Wang et al.
2018) has a collection of sentence pairs whose annota-
tions describe entitlement or not entitlement between the
sentences (formerly annotated with labels entitlement,
contradiction or neutral). It uses accuracy as a metric.

For the MRPC and QQP datasets, the metrics are accuracy
and F1, but we optimize the models on F1 only.

Parameter Initialization

We experiment with BERT, (Devlin et al. 2018) and sim-
plified versions of it. In the case of BERT with 6 transformer
layers, we initialize the parameters using different layers of
the original BERT},,. model, which has 12 transformer lay-
ers. Since our goal is to compress the behavior of a subset of
layers into one layer, we initialize a layer of the simplified
BERT model with the upper layer of the subset. For exam-
ple, Figure 1 shows the compression of groups of two layers

4data.quora,corn/F irst-Quora-Dataset-Release- Question-Pairs
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into one layer, hence, the first layer of the student model
is initialized with the parameters of the second layer of the
BERT},s. model.’

Experimental Setup

Table 1 shows the results on the development set across four
datasets. We define the experiments as follows:

e Expl.0: BERT}. This is the standard BERT},, model
that is fine-tuned on task-specific data without any KD
technique. Once optimized, we use this model as a teacher
for the KD experiments.

e Expl.1: BERTg. This is a simplified version of BER T,
where we use 6 transformer layers instead of 12. The layer
selection for initialization is described in the previous sec-
tion. We do not use any KD for this experiment. The KD
experiments described below use this architecture as the
student model.

o Exp2.0: BERT{ soft. The model is trained with soft-
labels produced by the fine-tuned BERTy,. teacher from
experiment 1.0. This scenario corresponds to Equation 1
with A = 0 to ignore the one-hot loss.

e Exp3.0: BERTj soft + kl. The model uses both the soft-
label and the KL-divergence losses from Equations 1
and 2. The KL-divergence loss is averaged across all the
self-attention matrices from the student (i.e., 12 attention
heads per transformer layer per 12 transformer layers).

e Exp3.1: BERT soft + cos. The model uses both the soft-
label and the cosine similarity losses from Equations 1
and 3. The cosine similarity loss is computed from the
[CLS] vector from all matching layers.

e Exp3.2: BERTj soft + Kkl + cos. The model uses all the
losses from all layers every epoch. This experiment com-
bines experiments 3.0 and 3.1.

e Exp3.3: BERT( [PID] Kkl + cos — soft. The model only
uses progressive internal distillation until it reaches the
classification layer. Once there, only soft-labels are used.

e Exp3.4: BERT( [SID] Kl + cos — soft. The model uses
stacked internal distillation until it reaches the classifica-
tion layer. Once there, only soft-labels are used.

e Exp3.5: BERT¢ [SID] Kl + cos + soft. The model uses
stacked internal distillation and soft-labels distillation all
the time during training.

e Exp3.6: BERT, [SID] Kkl + cos + soft + hard. Same as
Exp3.5, but it includes the hard-labels in the Equation 1
with A = 0.1.

We optimize our models using Adam with an initial learn-
ing rate of 2e-5 and a learning rate scheduler as described by
Devlin et al. (2018). We fine-tune BERT},,5. for 10 epochs,
and the simplified BERT models for 50 epochs both with a
batch size of 32 samples and a maximum sequence length
of 64 tokens. We evaluate the statistical significant of our

SNote that the initialization does not take the parameters of the
fine-tuned teacher. Instead, we use the parameters of the general-
purpose BERTp,s model.



. . L. CoLA [8.5k] QQP[364k] MRPC [3.7k] RTE [2.5Kk]
Experiment  Description MCC Acuracy /F1 Acuracy/F1 Acuracy
Fine-tuning BERT 5. and BERTs without KD
Expl.0 BERT}. 60.16 91.44/91.45 83.09/82.96 67.51
Expl.1 BERT¢ 44.56 90.58/90.62  76.23/73.72 59.93
Fine-tuning BERTs with different KD techniques using BERT 5. (Exp1.0) as teacher
Exp2.0 BERT soft 41.72 90.61/90.65 77.21/75.74 62.46
Exp3.0 BERT soft + kil 43.70 91.32/91.32  83.58/82.46 67.15
Exp3.1 BERTj soft + cos 42.64 91.08/91.10  79.66/78.35 57.04
Exp3.2 BERT soft + kl + cos 42.07 91.37/91.38 83.09/81.39 66.43
Exp3.3 BERT¢ [PID] kI + cos — soft 45.54 91.22/91.24  81.62/80.12 64.98
Exp3.4 BERT¢ [SID] kl + cos — soft 46.09 91.25/91.27  82.35/81.39 64.62
Exp3.5 BERT( [SID] kI + cos + soft 43.93 91.21/91.22 81.37/79.16 66.43
Exp3.6 BERT¢ [SID] kI + cos + soft + hard 42.55 91.20/91.21  70.10/69.68 67.51

Table 1: The development results across four datasets. Experiments 1.0 and 1.1 are trained without any distillation method,
whereas experiments 2.0 and 3.X use a different combination of algorithms to distill information. Experiment 2.0 only uses
standard knowledge distillation, and it can be considered as baseline.

Ex CoLA  QQP MRPC  RTE

p- MCC Acc./F1  Acc./F1  Acc.
Expl0 514 713/892 849/799 664
Exp2.0 383 69.1/88.0 81.6/73.9 59.7
Exp3.X 414 70.9/89.1 83.8/77.1 622

Table 2: The test results from the best models according to
the development set. We add Expl.0 (BERTy,) for refer-
ence. Exp2.0 uses BERT¢ with standard distillation (soft-
labels only), and Exp3.X uses the best internal KD technique
with BERTj as student according to the development set.

models using t-tests as described by Dror et al. (2018). All
the internal KD results have shown statistical significance
with a p-value less than le-3 with respect to the standard
KD method across the datasets.

Development and Evaluation Results

As shown in Table 1, we perform extensive experiments
for BERT¢ as a student, where we evaluate different train-
ing techniques with or without knowledge distillation. In
general, the first thing to notice is that the distillation
techniques outperforms BERTj trained without distillation
(Expl.1). While it is not always the case for standard dis-
tillation (Exp1.1 vs. Exp2.0 for CoLA), the internal distilla-
tion method proposed in this work consistently outperforms
both Expl.1 and Exp2.0 across all datasets. Nevertheless,
the gap between the results substantially depends on the size
of the data. Intuitively, this is expected behavior since the
more data we provide to the teacher, the more knowledge
is exposed, and hence, the student reaches a more accurate
approximation of the teacher.

Additionally, our internal distillation results are consis-
tently better than the standard soft-label distillation in the
test set, as described in Table .
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Performance vs Parameters - QQP [364k]
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Figure 2: Performance vs. parameters trade-off. The points
along the lines denote the number of layers used in BERT,
which is reflected by the number of parameters in the x-axis.

Analysis
This section provides more insights into our algorithm based

on parameter reduction, data size impact, model conver-
gence, self-attention behavior, and error analysis.

Performance vs. Parameters

We analyze the parameter reduction capabilities of our
method. Figure 2 shows that BERT can easily achieve sim-
ilar results than the original BERT},,sc model with 12 trans-
former layers. Note that BERT,s has around 109.4M pa-
rameters, which can be broken down into 23.8M parameters
related to embeddings and around 85.6M parameters related
to transformer layers. The BERT¢ student, however, has
43.1M parameters in the transformer layers, which means
that the parameter reduction is about 50%, while still per-
forming very similar to the teacher (91.38 F1 vs. 91.45 F1
for QQP, see Table 1). Also, note that the 0.73% F1 drop
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Figure 3: The impact of training size for standard vs. internal
KD. We experiment with sizes between 1K and +350K.

is statistical significant between the student only trained on
soft-labels and the student trained with our method.

Moreover, if we keep reducing the number of layers, the
performance decays for both student models (see Figure 2).
However, the internal distillation method is more resilient to
keep a higher performance. Eventually, with one transformer
layer to distill internally, the compression rate is too high for
the model to account for an additional boost when we com-
pare BERT] students with standard and internal distillation
methods.

The Impact of Data Size

We also evaluate the impact of the data size. For this anal-
ysis, we fix the student architecture to the BERT¢, and we
only modify the size of the training data. We compare the
standard and the internal distillation techniques for the QQP
dataset, as shown in Figure 3. Consistently, the internal dis-
tillation outperforms the soft-label KD method. However,
the gap between the two methods is small when the data
size is large, but it tends to increase in favor of the internal
KD method when the data size decreases.

Student Convergence

We analyze the convergence behavior during training by
comparing the performance of the internal distillation algo-
rithms across epochs. We conduct the experiments on the
QQP dataset as described in Figure 4. We control over the
student architecture, which is BERTg, and exclusively ex-
periment with different internal KD algorithms. The fig-
ure shows three experiments: progressive internal distilla-
tion (Exp3.3), stacked internal distillation (Exp3.4), and
stacked internal distillation using soft-labels all the time
(Exp3.5). Importantly, note that Exp3.3 and Exp3.4 do not
update the classification layer until around epoch 40 when
all the transformer layers have been optimized. Neverthe-
less, the internal distillation by itself allows the students to
reach higher performance across epochs eventually. In fact,
Exp3.3 reaches its highest value when the 6th transformer
layer is being optimized while the classification layer re-
mains as it was initialized (see epoch 38 in Figure 4). This
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Figure 4: Comparing algorithm convergences across epochs.
The annotations along the lines denote the layers that have
been completely optimized. After the L6 point, only the clas-
sification layer is trained.

Teacher Right Teacher Wrong
Method ‘ (36,967) ‘ (3,463)
Standard KD (Exp2.0) | 35,401 v 1,566 X | 1,232/ 2,231 X
Internal KD (Exp3.2) [36,191v 776 X |750v 2,713 X

Table 3: Right and wrong predictions on the QQP devel-
opment dataset. Based on the teacher results, we show the
number of right (v') and wrong (X) predictions by the stu-
dents from standard KD (Exp2.0) and internal KD (Exp3.2).

serves as strong evidence that the internal knowledge of the
model can be taught and compress without even considering
the classification layer.

Inspecting the Attention Behavior

We inspect the internal representations learned by the stu-
dents from standard and internal KD and compare their be-
haviors against the ones from the teacher. The goal of this
experiment is to get a sense of how much the student can
compress from the teacher, and how different such represen-
tations are from a student trained on soft-label in a standard
KD setting. For this experiment, we use the QQP dataset
and BERTj as a student. The internally-distilled student cor-
responds to experiment 3.2, and the soft-label student comes
from experiment 2.0 (see Table 1). Figure 5 shows the com-
pression effectiveness of the internally distilled student with
respect to the teacher. Even though the model is skipping one
layer for every two layers of the teacher, the student is still
able to replicate the behavior taught from the teacher. While
the internal representations from the student with standard
KD mainly serve to a general-purpose (i.e., attending to the
separation token while spotting connections with the word
college), the representations are not the ones intended to be
transferred from the teacher. This means that the original
goal of compressing a model does not hold entirely since
its internal behavior is quite different than the one from the
teacher (see Figure 5 for the KL divergence on each student).
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[SEP] 4
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—A[SEP]
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Figure 5: Attention comparison for head 8 in layer 5, each student with its corresponding head KL-divergence loss. The KL-
divergence loss for the given example across all matching layers between the students and the teacher is 2.229 and 0.085 for

the standard KD and internal KD students, respectively.

No. QQP Development Samples

Class Teacher Std KD Int KD

1 L :
force claiming the election was fraudulent?

Q2:

QI1: if donald trump loses the general election, will he attempt to seize power by

1 1(0.9999) 1(0.9999) 0 (0.4221)

how will donald trump react if and when he loses the election?

Ql:
Z Qo

can depression lead to insanity?
does stress or depression lead to mental illness?

0 0(0.0429) 0(1.2e-4) 1(0.9987)

Ql:
3 Q2:

how do youtube channels make money?

can i make money by uploading videos on youtube (if i have subscribers)?

1 1(0.9998) 0(0.0017) 1 (0.8868)

Ql:
4 Q2

what are narendra modi’s educational qualifications?
why is pmo hiding narendra modi’s educational qualifications?

0 0(0.0203) 1(0.9999) 0(0.2158)

Table 4: Samples where the teacher predictions are right and only one of the students is wrong. We show the predicted label
along with the probability for such prediction in parenthesis. We also provide the ground-truth label in the class column.

Error Analysis

In our internal KD method, the generalization capabilities of
the teacher are replicated in the student model. This also im-
plies that the student will potentially make the mistakes of
the teacher. In fact, when we compare a student only trained
on soft-labels (Exp2.0) against a student trained with our
method (Exp3.2), we can see in Table 3 that the numbers
of the latter align better with the teacher numbers for both
wrong and right predictions. For instance, when the teacher
is right (36,967), our method is right 97.9% of the same sam-
ples (36,191), whereas the standard distillation provides a
rate of 95.7% (35,401) with more than twice the number
of mistakes than our method (1,566 vs. 776). On the other
hand, when the teacher is wrong (3,463), the student in our
method makes more mistakes and provides less correct pre-
dictions than the student from standard KD. Nevertheless,
the overall score of the student in our method significantly
exceeds the score from the student trained in a standard KD
setting.

We also inspect the samples where the teacher and only
one of the students are right. The QQP samples 1 and 2 in
Table 4 show wrong predictions by the internally-distilled
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student (Exp3.2) that are not consistent with the teacher. For
sample 1, although the prediction is 0, the probability output
(0.4221) is very close to the threshold (0.5). Our intuition
is that the internal distillation method had a regularization
effect on the student such that, considering that question 2
is much more specific than question 1, it does not allow the
student to tell whether is similar or not confidently. Also, it
is worth noting that standard KD student is extremely confi-
dent about the prediction (0.9999), which may not be ideal
since this can be a sign of over-fitting or memorization. For
sample 2, although the internally-distilled student is wrong
(according to ground-truth annotation and the teacher), the
questions are actually related which suggests that the student
model is capable of disagreeing with the teacher while still
generalizing well. Samples 3 and 4 show successful cases
for the internally-distilled student, while the standard KD
student fails.

Conclusions

We propose a new extension of the KD method that effec-
tively compresses a large model into a smaller one, while
still preserving a similar performance from the original



model. Unlike the standard KD method, where a student
only learns from the output probabilities of the teacher, we
teach our smaller models by also revealing the internal rep-
resentations of the teacher. Besides preserving a similar per-
formance, our method effectively compresses the internal
behavior of the teacher into the student. This is not guaran-
teed in the standard KD method, which can potentially affect
the generalization capabilities initially intended to be trans-
ferred from the teacher. Finally, we validate the effectiveness
of our method by consistently outperforming the standard
KD technique in four datasets of the GLUE benchmark.
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