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Abstract

Coordination is one of the essential problems in multi-
agent systems. Typically multi-agent reinforcement learning
(MARL) methods treat agents equally and the goal is to solve
the Markov game to an arbitrary Nash equilibrium (NE) when
multiple equilibra exist, thus lacking a solution for NE selec-
tion. In this paper, we treat agents unequally and consider
Stackelberg equilibrium as a potentially better convergence
point than Nash equilibrium in terms of Pareto superiority, es-
pecially in cooperative environments. Under Markov games,
we formally define the bi-level reinforcement learning prob-
lem in finding Stackelberg equilibrium. We propose a novel
bi-level actor-critic learning method that allows agents to
have different knowledge base (thus intelligent), while their
actions still can be executed simultaneously and distributedly.
The convergence proof is given, while the resulting learning
algorithm is tested against the state of the arts. We found that
the proposed bi-level actor-critic algorithm successfully con-
verged to the Stackelberg equilibria in matrix games and find
a asymmetric solution in a highway merge environment.

Introduction

In a multi-agent system, the effect of any agent’s action on
the environment also depends on the actions taken by other
agents and coordination is needed to consistently break ties
between equally good actions or strategies (Bu et al. 2008).
This problem is essential especially in the circumstances
where the agents are not able to communicate. In game the-
ory, coordination game is defined as the game with multi-
ple Nash equilibria. Various criteria for Nash equilibrium
selection were proposed in the game theory literature such
as salience (Vanderschraaf 1995) and fairness (Rabin 1993),
where the agents are assumed to know the game model be-
fore applying these criteria. For the environments where
agents are not able to know the game model but can learn
it through interactions with the environments, multi-agent
reinforcement learning approaches were proposed to find a
Nash equilibrium, including Nash Q-learning (Hu and Well-
man 2003), MADDPG (Lowe et al. 2017) and the Mean-
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Field Q-learning (Yang et al. 2018). These model-free ap-
proaches train the agents centrally to converge to a Nash
equilibrium and then execute the agents distributively. How-
ever, these approaches can not guarantee a particular con-
verged Nash equilibrium, which leads to uncertainty and
sub-optimality.

To tackle this problem, we reconsider the coordination
problem from an asymmetric angle. Although the original
game model is symmetric that agents make decisions simul-
taneously, we are still able to define a priority of decision
making for the agents in the training phase and keep si-
multaneous decision making in the execution phase. In this
asymmetric game model, the Stackelberg equilibrium (SE)
(Von Stackelberg 2010) is naturally set up as the learning
objective rather than the Nash equilibrium (NE). The SE
optimizes the leader’s policy given that the follower always
plays the best-response policy. Despite its discrimination on
the follower, we surprisingly find the SE is Pareto superior
than the NE in a wide range of environments. For example,
in the cooperative games, the SE is guaranteed to be Pareto
optimal, whereas only one of the NEs achieves this point, as
Table 1a shows. In a non-cooperative case shown in Table
1b, the SE is not included in the set of the NEs and is Pareto
superior to any NE. In general, our empirical study shows
the SE is likely to be Pareto superior to the average NE in
games with high cooperation level.

For solving the SE, a wide variety of bi-level optimization
methods were proposed (Dempe 2018). However, our prob-
lem setting differs from the traditional bi-level optimization
problem in two aspects: 1) we consider a multi-state envi-
ronment where the objective function is a summation of the
sequential discounted rewards; 2) our game model is un-
known and can only be learned through interactions. Ac-
tually, the traditional bi-level optimization problem can be
regarded as a stateless model-based version of our problem.
We formally define our problem as the bi-level reinforce-
ment learning problem and propose a novel bi-level actor-
critic algorithm to solve it. We train the actor of the follower
and the critics of both agents centrally to find an SE and
then execute the agents distributively. Our experiments in
the small environments and a simulated highway merge en-
vironment demonstrate the efficiency of our algorithm, out-
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X Y Z
A 15, 15 10, 10 0, 0
B 10, 10 10, 10 0, 0
C 0, 0 0, 0 30, 30

(a)

X Y Z
A 20, 15 0, 0 0, 0
B 30, 0 10, 5 0, 0
C 0, 0 0, 0 5, 10

(b)

Table 1: Coordination games. (a) A cooperative game where
A-X and C-Z are the NE. C-Z is also the SE and the Perato
optimality point. (b) A non-cooperative game where A-X is
the SE, B-Y and C-Z are the NE. The SE is Pareto superior
to any NE in this game.

performing the state-of-the-art algorithms.

Preliminaries

Markov Game

In an n-player Markov game (Littman 1994) (or stochastic
game) 〈S,Ai, P,Ri, γ〉, S denotes the state space, Ai de-
notes agent i’s action space and A denotes the joint action
space, P : S × A → PD(S) 1 denotes the transition func-
tion, Ri : S × Ai → R denotes the reward function for
agent i, and γ denotes the discount factor. Agents take ac-
tions simultaneously in each state following their policies
πi : S → PD(Ai). The objective of agent i is to maximize
its discounted cumulative reward

∑
t γ

trti , where rti is the
reward agent i receives in time-step t. We also call Markov
games as multi-agent reinforcement learning (MARL) prob-
lems.

Related MARL Solutions

For a Markov game, we have Bellman equations that char-
acterize the optimal state-values V ∗

i (s) and action-values
Q∗

i (s, a):

Q∗
i (s,�a) = R(s,�a) + γ

∑
s′

P (s,�a, s′)V ∗
i (s

′). (1)

The Minimax-Q method (Littman 1994) attempts to find
the highest worst case values in zero-sum games whose
state-values are computed as:

V ∗
1 (s) = max

π1∈Π1

min
a2∈A2

Q∗
1(s, π1, a2) = −V ∗

2 (s), (2)

where Q∗
1(s, π1, a2) =

∑
a1∈A1

π1(s, a1)Q
∗
1(s, a1, a2) and

Π1 denotes the policy space of agent 1. Our bi-level method
generalizes the minimax method from zero-sum games to
general-sum games.

The Nash-Q method (Hu and Wellman 2003) attempts to
find the Nash equilibrium whose state-values are computed
as:

V ∗
i (s) = NASHi

(
Q∗

1(s), Q
∗
2(s), ..., Q

∗
n(s)

)
(3)

where NASHi(�x1, �x2, ..., �xn) denotes the i-th agent’s pay-
off in a Nash equilibrium of the matrix game formed by

1In this paper, PD(X) denotes the probability distribution space
over discrete set X .

�x1, �x2, ..., �xn. The Nash-Q method also generalizes the min-
imax method to general-sum games, but in a different direc-
tion compared to our method. Our bi-level method attempts
to find Stackelberg Equilibrium rather than Nash equilib-
rium.

Bi-level Optimization

In this paper, we assume the agents in a two-player Markov
game are asymmetric that the following agent observes the
actions of the leading agent, which results in solving a bi-
level optimization problem for a Markov game. The original
bi-level optimization problem is formulated as below:

min
x1

f1(x1, x2)

s.t. g1(x1, x2) ≤ 0 (4)
min
x2

f2(x1, x2)

s.t. g2(x1, x2) ≤ 0

where fi, i = 1, 2 are the objective functions and gi, i = 1, 2
are the constraint functions in each level.

The bi-level optimization problem can be equivalently de-
scribed as a Stackelberg game where the upper-level opti-
mizer is the leader and the lower-level optimizer is the fol-
lower and the solution of the bi-level optimization problem
is the Stackelberg equilibrium.

Bi-level Reinforcement Learning

Problem Formulation

Connecting bi-level optimization with Markov game, xi in
Eq. (4) corresponds to agent i’s policy πi, fi corresponds to
agent i’s cumulative reward and gi corresponds to the con-
straint of action space. Assuming Agent 1 as the leader and
Agent 2 as the follower, our problem is formulated as:

max
π1

Er11 ,r
2
1 ...∼π1,π2

∞∑
t=1

γtrt1

s.t. π1 ∈ Π1 (5)

max
π2

Er12 ,r
2
2 ...∼π1,π2

∞∑
t=1

γtrt2

s.t. π2 ∈ Π2.

We call this problem bi-level reinforcement learning (BiRL).
BiRL can be viewed as a multi-state version of the Stackel-
berg game (Von Stackelberg 2010) and extends the standard
bi-level optimization problem in two dimensions: 1) the ob-
jective is a summation of the discounted rewards in sequen-
tial states; 2) the form of the objective function is unknown
and can only be learned through interactions with the en-
vironment in a model-free way. The standard bi-level opti-
mization problem can be viewed as a stateless model-based
version of our problem.

Stackelberg Equilibrium vs. Nash equilibrium

We formulate BiRL to tackle the coordination problem in
MARL. In game theory, coordination game is defined as
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a game with multiple Nash equilibria and the coordination
problem can be regarded as a Nash equilibrium selection
problem. In this paper, we consider Stackelberg equilibria
as a potentially better solution for coordination games. Fig. 1
is an example demonstrating the difference between NE and
SE in a Markov game. We figure out two advantages of the
SE over the NE.

The first advantage of SE is the certainty or uniqueness.
Multiple NEs may exist in a game while multiple SEs only
exist under very strict conditions. 2 Existing MARL methods
mainly converge to an arbitrary NE, which leads to uncer-
tainty. Since the SE is unique in most games, it is more clear
and stable to be a learning objective. By setting the SE as
the objective, we actually attempt to avoid the coordination
problem (or the NE selection problem) rather than solving
it.

The second advantage of SE is the performance. The SE
may achieve better payoff than the average NE in coordi-
nation environments in terms of Pareto superiority. An ex-
treme example is the cooperative games. The SE always
achieves the Pareto optimality point in a cooperative game
while only the best NE achieves so, as we showed in Table
1b and Fig. 1. In other words, both the leader and the fol-
lower achieve higher payoffs in the SE than in the average
NE. We intuitively believe that this result would still hold in
games with less (but still high) cooperation levels.

For demonstrating our belief, we formally define the co-
operation level of two-player Markov games as the correla-
tion between the cumulative rewards of the agents:

CL =

∑
�π(V

�π
1 − V̄1)(V

�π
2 − V̄2)√∑

�π(V
�π
1 − V̄1)2

∑
�π(V

�π
2 − V̄2)2

(6)

where V �π
i is short for V �π

i (s0) denoting the average dis-
counted cumulative reward for agent i from the start state
s0 following the joint policy �π and V̄i =

1
|�π|

∑
�π V

�π
i . Under

this definition, the cooperation levels of a cooperative game
and a zero-sum game are 1 and -1 respectively.

We empirically study the relationship between the coop-
eration level of a game and the average payoff achieved
by the agents in the average NE and the SE. The results
in Fig. 2 demonstrate that both the leader and the follower
achieve higher payoff in the SE not only in fully cooperative
games but also in the games with high cooperation level. We
also find that the number of Nash equilibiria in a game is
positively correlated with the cooperation level, which sug-
gests that the coordination problem is more likely to occur
in games with high cooperation level. Hence, we argue that
the SE may in general be Pareto superior to the average NE
in coordination problems, especially in highly cooperative
games.

Bi-level Tabular Q-learning

Similar to the minimax-Q and Nash-Q, we can define the bi-
level Bellman equation by specifying the calculation method

2Multiple SEs only exist when given the policy of the leader,
multiple policies of the follower achieve the maximal payoff, or
given the best response of the follower, multiple policies of the
leader achieve the maximal payoff.

Figure 1: A cooperative game example for BiRL. Agent A
and B move simultaneously in the grid and receive the com-
mon reward only when they are both in the 10 or 20 square.
Joint policies lead both agents to 10 or 20 are Nash equilib-
ria, but only joint policies lead both agents to 20 are Stack-
elberg equilibria and are the solutions for BiRL.

Figure 2: SE vs. NE. We sample the payoffs for a 10 × 10
matrix game using the multivariate normal distribution with
0 for mean, 1 for variance and various parameters for covari-
ance, which represents the cooperation level of the generated
matrix game. When the covariance equals to 1, the game is
fully cooperative. The result for each covariance parameter
is averaged from 2000 independent trials. Similar results are
found in matrix games with different sizes ranging from 5×5
to 100× 100, which is omitted due to the space limit.

for the optimal state-values in Eq. (1):
V ∗
i (s) = Stackelbergi(Q

∗
1(s), Q

∗
2(s)), (7)

where Stackelbergi(�x1, �x2) denotes the i-th agent’s payoff
in the Stackerberg Equilibrium of the matrix game formed
by �x1, �x2.

Based on the bi-level Bellman equation, we are able to
update the Q-values iteratively by Eq. (1) and (7). Formally,
We have the update rules for Q1 and Q2 tables given a trans-
action 〈s, a1, a2, s′, r1, r2〉 with learning rate αi:

a′1 ← argmax
a1

Q1(s
′, a1, argmax

a2

Q2(s
′, a1, a2)), (8)

a′2 ← argmax
a2

Q2(s
′, a′1, a2), (9)

Q1(s, a1, a2)← (1− α1)Q1(s, a1, a2)

+ α1(r1 + γQ1(s
′, a′1, a

′
2)), (10)

Q2(s, a1, a2)← (1− α2)Q2(s, a1, a2)

+ α2(r2 + γQ2(s
′, a′1, a

′
2)). (11)

This tabular method was also studied in (Littman and Stone
2001) and (Könönen 2004). However, these works mainly
focused on solving asymmetric problems while our motiva-
tion is to solve symmetric coordination problems using an
asymmetric method.
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Figure 3: Structure of bi-level actor-critic. In the training
phase, the joint action in the next state is computed firstly,
then the three models are updated accordingly. In the exe-
cution phase, both agents have the leader critic and the fol-
lower actor models and perform Stackelberg equilibria inde-
pendently.

Bi-level Actor-Critic

In Eq. (8), we need to enumerate the actions in both levels
to select action a′1, which leads to |A1| · |A2| visits to the Q2

table. When Q2 is modeled by an approximation function,
i.e. a neural network, the calculations of Eq. (8) could be
time-consuming. Furthermore, if we extend the bi-level Q-
learning methods to multi-level, the computation complex-
ity of a′1 would increase in exponential w.r.t. the number of
level.

For solving this problem, we propose the bi-level actor-
critic (Bi-AC) method which introduces an actor for the fol-
lower while keeping the leader as a Q-learner. Formally, let
π2(s, a1;φ2) ∈ PD(A2) denote the policy model (or actor)
of agent 2, which takes agent 1’s action as its input in addi-
tion to the current state. We also model the two critics using
approximation functions for both agents. We have the fol-
lowing update rules given a transaction 〈s, a1, a2, s′, r1, r2〉
with learning rate αi, β:

a′1 ← argmax
a1

Q1(s
′, a1, π2(s

′, a1;φ2); θ1), (12)

a′2 ← π2(s
′, a′1;φ2), (13)

δi ← ri + γQi(s
′,�a′; θi)−Qi(s,�a; θi), i = 1, 2, (14)

θi ← θ1 + αiδi∇θiQi(s,�a; θi), i = 1, 2, (15)
φ2 ← φ2 + β∇φ2 logπ2(s,�a;φ2)Q2(s,�a; θ2). (16)

where π′
2(s, a1;φ2) is modeled by a Gumbel-Softmax esti-

mator (Jang, Gu, and Poole 2016) which computes a′2 di-
rectly.

For the environments with continuous action space,
we model agent 2’s policy using a deterministic model
μ2(s, a1;φ2) ∈ A2 which is updated by the deterministic
policy gradient method (Silver et al. 2014). The Q-network
of agent 1 can be updated by the soft Q-learning (Haarnoja
et al. 2017) method.

Bi-AC is a centralized-training-decentralized-execution
method as Fig. 3 shows. The three models are trained to-
gether given off-policy episodes. In execution, the trained

leader critic model and follower actor model are both allo-
cated to and executed by the leader and the follower. In such
way, the two agents are able to achieve the Stackelberg equi-
librium distributively.

In the partially observable environments, we train two ad-
ditional actors π′

i(oi) as the approximators for each agent,
where the corresponding critics are the trained leader and
follower critics. The approximators allow the two agents
play joint actions forming Stackerberg equilibria based on
their own observations.

Bi-AC can be naturally extended to n-level actor-critic. In
the case of continuous action space, we define deterministic
policy models:

μi(s, a1, a2, ...ai−1; θi), i = 1..n. (17)

We also model the Q-functions for each agent as:

Qi(s, a1, a2, ...an;φi), i = 1..n. (18)

In each training step, the actions in the next step are deter-
mined one by one from the upper-level agent to the lower-
level agent and the models are updated accordingly:

a′i ← μi(s
′, a′1..i−1; θi), (19)

δi ← ri + γQi(s
′,�a′;φi)−Qi(s,�a;φi), (20)

θi ← θi + αδi∇θiQi(s,�a; θi), (21)
φi ← φi + α∇φi

μi(s, a1..i−1;φi) · ∇ai
Qi(s,�a; θi). (22)

In practical problems, the models can be modified slightly
to contain multiple agents in each level, where agents in the
same level take actions simultaneously and the lower-level
agents observe the actions of the upper-level agents.

Convergence and Limitation

Bi-AC will converge to the Stackelberg equilibrium under
the following assumptions:

1. Every stage game (Qt
1(s), Q

t
2(s)) for all t and s, has a

global optimal point , and agents’ payoffs in this point are
selected by the actor function to update the critic functions
with probability 1.

2. The critic learning rates αt for the t-th transaction sat-
isfies

∑∞
t=0 α

t(s,�a) = ∞,
∑∞

t=0[α
t(s,�a)]2 < ∞ hold

uniformly and with probability 1.
3. Every stage game (Qt

1(s), Q
t
2(s)) for all t and s has a

global optimal point, and the agents’ payoffs in this point
are selected by Bi-AC to update the critic functions with
probability 1.

Given these assumptions, we can use the method of Cauchy
sequence convergence to prove the convergence of our algo-
rithm. The detailed proof is omitted due to the space limit.

The assumption 3 above is a strong assumption which
may not be met even in the very start of the training pro-
cess. However, as shown later in the experiment part, our
algorithm does converge in many cases.

Our algorithm is based on the bi-level Bellman equation,
which is a necessary but not sufficient condition of the solu-
tion of BiRL. Therefore, there may exist convergent points
other than the solution of BiRL.
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Related Work

In MARL, various approaches were proposed to tackle the
coordination problem (Bu et al. 2008), especially for the co-
operative environments. A general approach is applying the
social convention which breaks ties by ordering of agents
and actions (Boutilier 1996). Our method is compatible with
social convention in the sense that we find the SE as the
common knowledge of the agents about the game, based
on which they can form social conventions. For coopera-
tive games, the optimistic exploration were proposed (Claus
and Boutilier 1998) for reaching optimal equilibrium. Lauer
and Riedmiller (2000) used maximal estimation to update Q-
value which ensures convergence to the optimal equilibrium
given the reward function is deterministic. For the case of
stochastic reward function, FMQ (Kapetanakis and Kudenko
2002), SOoN (Matignon, Laurent, and Le Fort-Piat 2009)
and LMRL2 (Wei and Luke 2016) were proposed. These
works share the idea of optimistic expectation on the cooper-
ative opponent, which could not be extended to general-sum
games.

Communication is an essential method to facilitate coor-
dination. CommNet (Sukhbaatar, Fergus, and others 2016)
used a centralized network architecture to exchange in-
formation between agents. BicNet (Peng et al. 2017) pro-
posed the bidirectional RNNs to exchange information be-
tween agents in an actor-critic setting. MADDPG (Lowe
et al. 2017) proposed the centralized-training-decentralized-
execution scheme which is also adopted by our method.
Other works in this area include DIAL (Foerster et al. 2016),
COMA (Foerster et al. 2018) and MD-MADDPG (Pesce and
Montana 2019).

Understanding other agents in multi-agent environments
is of vital importance. Opponent modeling methods are
helpful for coordination in many circumstances. ROMMEO
(Tian et al. 2019) applied maximum entropy to model the
opponent. Wen et al. (2019) introduced the idea of recursive
reasoning between two agents. Opponent modeling methods
adopt the decentralized training scheme while our training is
centralized.

Our work tackle the coordination problem from a asym-
metric angle. BiRL is an extension of the bi-level optimiza-
tion (Dempe 2018) or the Stackelberg game (Von Stackel-
berg 2010). For solving the original bi-level problem, state-
less model-based evolutionary algorithms were proposed,
such as BLEAQ (Sinha, Malo, and Deb 2014). Extensively,
a stateless model-free leader-follower problem was studied
(Zhang and Lin 2012) where the objective functions are not
visible. In the other dimension, BiMPC (Mintz et al. 2018)
studied the multi-state model-based Stackelberg game under
the linear-quadratic assumption. In our paper, we formulate
the multi-state model-free problem of BiRL, which extends
the original bi-level problem in both dimensions.

Our Bi-AC method contains critics which are itera-
tively updated by the Bellman equation. There are a se-
ries of MARL methods adopting the similar update scheme.
Minimax-Q (Littman 1994) solved the two-player zero-sum
Markov games. Afterwards, fiend-and-foe learning (Littman
2001), Nash-Q (Hu and Wellman 2003), CE-Q (Greenwald,
Hall, and Serrano 2003), Coco-Q (Sodomka et al. 2013) and

AQL (Könönen 2004) were proposed successively. Among
them, AQL updates the Q-value by solving the Stackelberg
Equilibrium in each iteration, which can be regarded as the
value-based version of Bi-AC. Compared to AQL, Bi-AC is
able to work in multi-level or continuous action space en-
vironments. Another difference between AQL and our work
is the motivation that we propose the Stackelberg Equilib-
rium as a potentially better solution for solving symmetric
coordination problems while AQL focused on asymmetric
problems. Other works applying Stackelberg Equilibrium
to solve asymmetric problems include Bully (Littman and
Stone 2001) and DeDOL (Wang et al. 2019).

Experiment

We performed the experiments in three coordination envi-
ronments comparing Bi-AC with the state-of-the-art MARL
algorithms. 3

Algorithms

We compared Bi-AC with I-DQN, MADDPG, TD3,
Hysteretic-DQN and Lenient-DQN, where I-DQN,
Hysteretic-DQN and Lenient-DQN are decentralized train-
ing algorithms and MADDPG and TD3 are centralized
training algorithms. In each experiment, we fully explored
the actions for 1000 steps in the beginning and then applied
the decaying ε-greedy method for explorations. A three
layer fully connected neural network with ReLU (Nair
and Hinton 2010) activation function was applied for the
models in each algorithm to approximate the actor and
critic functions. We trained the critic models with the replay
buffer and the target network introduced in DQN (Mnih et
al. 2015). We used the Gumbel-Softmax estimator (Jang,
Gu, and Poole 2016) in the actor function when applicable.

Bi-AC We realized the Bi-AC algorithm where the two
critics were modeled by DQN.

I-DQN We tested independent DQN which regards other
agents as a part of the environments. I-DQN is not guaran-
teed to converge and if it converges it will converge to a Nash
equilibrium.

MADDPG We tested MADDPG (Lowe et al. 2017) as the
baseline of the centralized-training-decentralized-execution
algorithm.

TD3 Twin Delayed Deep Deterministic policy gradient
(TD3) (Fujimoto, van Hoof, and Meger 2018) enhances
MADDPG by addressing function approximation error,
which is the state-of-the-art MARL algorithm.

Hysteretic-DQN Hysteretic-DQN (Omidshafiei et al.
2017) is based on hysteretic Q-learning (Matignon, Laurent,
and Fort-Piat 2007) where a smaller learning rate is used
when an update would reduce a Q-value, leading to an opti-
mistic update function which puts more weights on positive
experiences.

3Our experiments are repeatable and the source code is pro-
vided in https://github.com/laonahongchen/Bilevel-Optimization-
in-Coordination-Game.
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Figure 4: Convergence of Bi-AC in Escape game

(a) Bi-AC

(b) MADDPG

Figure 5: Distribution of entry selected by different algo-
rithms while training. Each color represent the possibility in
the recent 100 steps to choose the corresponding entry.

Lenient-DQN Lenient-DQN (Palmer et al. 2018) com-
bines DQNs with leniency, which increases the likelihood
of convergence towards the global optimal solution within
fully cooperative environments that require implicit coordi-
nation strategies.

Matrix Game

We tested two matrix games named Escape and Maintain
whose payoff tables are shown in Table 1a and Table 1b re-
spectively.

We designed the Escape game in Table 1a to show that
our algorithm has the capability to converge to the SE which
is better than the average NE in a cooperative game. We ex-
pected Bi-AC converged to the C-Z point while other algo-
rithms converged to either the A-X or the C-Z point. Note
that the higher-left 2 × 2 part of the matrix will lead to the
sub-optimal A-X point for an NE learner, unless the joint
action C-Z is explored enough for an escape.

We ran each algorithm for 100 times and the results are
provided in Table 2. We see that Bi-AC achieved higher re-

Leader Follower Optimality
Bi-AC 28.5 28.5 90%
I-DQN 20.55 20.55 37%
MADDPG 23.4 23.4 56%
TD3 15.3 15.3 2%
Hysteretic-DQN 13.25 13.25 0%
Lenient-DQN 13.4 13.4 0%

Table 2: Result of Escape game. The first two column means
the average reward while the third column means the per-
centage of converging to C-Z, the global optimal point.

Leader Follower Optimality
Bi-AC 20 15 100%
I-DQN 9.5 5.5 0%
MADDPG 12 4.5 0%
TD3 11.5 5 0%
Hysteretic-DQN 9.1 5.9 0%
Lenient-DQN 8.8 6.2 0%

Table 3: Result of Maintain game.The first two column
means the average reward while the third column means the
percentage of converging to A-X.

wards for both agents than all the baseline algorithms. Also,
Bi-AC converged to the global optimal point C-Z in 90% tri-
als leading the baseline algorithms by a large margin. Note
that Bi-AC did not converge to the optimal point with 100%
probability because of the usage of neural network function
approximations. 4 We also found MADDPG outperformed
Hysteretic-DQN, Lenient-DQN and TD3 in this game. The
reason may be that these three algorithms converges with
lower bias which could also make it more difficult to con-
verge to the isolated optimal point C-Z. The convergence
curve of Bi-AC is provided in Fig. 4. From the very start
of training, the Q-value was trained to the correct estimated
value 30. And once the Q-value of the follower was trained
to make C-Z higher than C-X and C-Y, the follower started
to learn the best response toward action C of the leader. Then
after the follower chose Z as the response with high proba-
bility, the probability for leader to choose action C started
to increase, from about the 100th episode. The reason that
the Q-value of the leader for C-Z converged before the fol-
lower’s Q-value is that the learning rate for Q-function of
the leader is higher than the follower. This asymmetric pa-
rameter setting is because the asymmetric architecture in our
algorithm. We also find that the probability of action C of
leader agent did not converge to 1.0. It was because there
was still exploration.

We designed the Maintain game in Table 1b to show that
Bi-AC algorithm is able to achieve the SE which is Pareto
superior to all the NEs. As discussed, the A-X point is the SE
and Pareto optimality point but not an NE. We expected our
algorithm to converge to the A-X point while other NE learn-
ers converge to B-Y or C-Z. Particularly, NE learners are not
able to maintain in A-X because B-X is a better point for

4We performed the tabular version of Bi-AC to confirm this.
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Leader Follower
Bi-AC 72.2% 25.2%
I-DQN 58.2% 41.3%
MADDPG 37.5% 60.2%
TD3 38.6% 55.1%

Table 4: Result of Traffic Merge. The Leader column shows
the rate that the car goes first is from the main lane. The sum
of the two columns is not 100% due to a small rate of crash.

Figure 6: An illustration of the Traffic Merge environment.

the row player. The result is provided in table 3. We can see
that Bi-AC achieved higher rewards for both agents and con-
verged to the A-X point in all the trials while the baselines
never converged to the optimality. Fig. 5 shows the learning
processes of the joint policies for Bi-AC and MADDPG. Bi-
AC converged to the A-X point smoothly while MADDPG
converged to the B-Y point as expected.

Highway Merge

We also designed a driving environment, where one car
drives on the main lane and another car from the auxiliary
lane wants to merge into the main lane. We used a slightly
modified version of the Highway environment (Leurent
2018), in which an agent can observe the kinematics of the
nearby agent including its position and velocity, and has a
discrete action space of 5 actions including: LANE LEFT,
LANE RIGHT, FASTER, SLOWER and IDLE, where IDLE
means neither changing the current speed nor changing the
LANE it is running on. The agents are rewarded for 50 if
it passes first, rewarded for 10 if it passes second, and re-
warded for −10 if two cars bump together as a penalty. An
example overview of the environment is given in Fig. 6. Note
that if the cars from auxiliary lane do not choose LANE
LEFT before his own lane disappears, the environment will
automatically drive the cars to perform LANE LEFT right
before they step away from the auxiliary lane. For the de-
ployment of our algorithm Bi-AC, we set the car in main
lane to be the leader and the car in auxiliary lane to be the
follower.

We ran our algorithm Bi-AC together with the baselines
for 10 times using 10 random seeds to ensure all the al-
gorithms face the same difficulty in training. The result is
shown in Table 4 and Fig. 7. We found that in our setting,
Bi-AC converged to a situation of going first with high prob-
ability of 70%. Note that the rest 30% probability came to
the situation that the auxiliary lane car started with a much
higher speed which made it impossible to wait for the leader.
We also found that the other baselines failed to choose which
car to go first because they do not have a preference so their
estimation of the main lane car going first is about 50%, as
shown in Table 4. In Fig. 7 we see that from the very begin-
ning Bi-AC has almost the same possibility of three results:
car crush, main lane car going first and auxiliary lane car go-

Figure 7: The training curve of highway merge problem. The
left and right figures are the curve of Bi-AC and MADDPG
respectively. The figures of other baselines are similar with
MADDPG.

ing first. With the training, Bi-AC makes the possibility of
main lane car going first improve steadily until convergence,
which shows that Bi-AC can solve real world problems like
traffic merge on highway.

Conclusion

In this paper, we consider Stackelberg equilibrium as a po-
tentially better learning objective than Nash equilibrium in
coordination environments due to its certainty and optimal-
ity. We formally define the bi-level reinforcement learning
problem as the multi-state model-free Stackelberg equilib-
rium learning problem and empirically study the relation-
ship between the cooperation level and the superiority of
Stackelberg equilibrium to Nash equilibrium. We then pro-
pose a novel bi-level actor-critic algorithm which is trained
centrally and executed decentrally. Our experiments on ma-
trix games and a highway merge environment demonstrate
the effectiveness of our algorithm to find the Stackelberg so-
lutions.
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