
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

COBRA: Context-Aware Bernoulli Neural Networks for Reputation Assessment

Leonit Zeynalvand,1 Tie Luo,2 Jie Zhang1

1School of Computer Science and Engineering, Nanyang Technological University, Singapore
2Department of Computer Science, Missouri University of Science and Technology, USA

leonit001@e.ntu.edu.sg, tluo@mst.edu, zhangj@ntu.edu.sg

Abstract

Trust and reputation management (TRM) plays an increas-
ingly important role in large-scale online environments such
as multi-agent systems (MAS) and the Internet of Things
(IoT). One main objective of TRM is to achieve accurate trust
assessment of entities such as agents or IoT service providers.
However, this encounters an accuracy-privacy dilemma as we
identify in this paper, and we propose a framework called
Context-aware Bernoulli Neural Network based Reputation
Assessment (COBRA) to address this challenge. COBRA en-
capsulates agent interactions or transactions, which are prone
to privacy leak, in machine learning models, and aggregates
multiple such models using a Bernoulli neural network to pre-
dict a trust score for an agent. COBRA preserves agent pri-
vacy and retains interaction contexts via the machine learn-
ing models, and achieves more accurate trust prediction than
a fully-connected neural network alternative. COBRA is also
robust to security attacks by agents who inject fake machine
learning models; notably, it is resistant to the 51-percent at-
tack. The performance of COBRA is validated by our exper-
iments using a real dataset, and by our simulations, where
we also show that COBRA outperforms other state-of-the-art
TRM systems.

1 Introduction

Trust and reputation management (TRM) systems are criti-
cal to large-scale online environments such as multi-agent
systems (MAS) and the Internet of Things (IoT), where
agents1 are more autonomous and tend to have more interac-
tions with each other. Without a reliable TRM system, such
interactions will be significantly hindered due to lack of trust
in services or information provided by other agents. Formal
contracts such as Service Level Agreements (SLA) are hard
to enforce in such open environments because of high cost
and lack of central authorities.

Early TRM systems such as (Josang and Ismail 2002)
rely on first-hand evidence to derive trust scores of agents.
For example, an agent Alice assigns a trust score to another
agent Bob based on the outcome of her previous interactions
with Bob. However, as the scale of the systems grows (e.g.,

Copyright © 2020, Association for the Advancement of Artificial
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1Throughout this paper, we use the term agents in a broader
sense which is not limited to agents in MAS, but also includes IoT
service providers and consumers as well as other similar cases.

IoT), first-hand evidence becomes too sparse to support reli-
able trust evaluation. Hence, second-hand evidence was ex-
ploited by researchers to supplement first-hand evidence. In
that case, Alice would assign a trust score to Bob based not
only on her own interactions with Bob but also on what other
agents advise about Bob.

However, what form the second-hand evidence should
take has been largely overlooked. This engenders an im-
portant issue which we refer to as the accuracy-privacy
dilemma. To illustrate this, suppose Alice consults another
agent Judy about how trustworthy Bob is. One way is to
let Judy give a trust score or rating about Bob (Yu et al.
2013), which is the approach commonly adopted in the trust
research community. This approach is simple but loses the
context information of the interactions between agents. For
example, the context could be the transaction time and loca-
tion, and service provided by an agent during off-peak hours
could have higher quality (more SLA-conformant) than dur-
ing peak hours. Without such context information, trust as-
sessment based on just ratings or scores would have lower
accuracy. On the other hand, another method is to let Judy
reveal her entire interaction history with Bob (e.g., in the
form of a detailed review), which is the approach commonly
used in recommender systems. Although the information
disclosed as such is helpful for trust assessment of Bob, it
is likely to expose substantial privacy of Bob and Judy to
Alice and possibly the public.2

To address this accuracy-privacy dilemma, and in the
meantime avoid relying on a trusted third-party which is of-
ten not available in practice, we propose a framework called
Context-aware Bernoulli Neural Network based Reputation
Assessment (COBRA). It encapsulates the detailed second-
hand evidence using machine learning models, and then ag-
gregate these model using a Bernoulli neural network (BNN)
to predict the trustworthiness of an agent of interest (e.g., an
IoT service provider). The encapsulation protects agent pri-
vacy and retains the context information to enable more ac-
curate trust assessment, and the BNN accepts the outputs of
those ML models and the information-seeking agent’s (Al-
ice’ as in the above example) first-hand evidence as input, to
make more accurate trustworthiness prediction (of Bob as in

2Recommender systems can take this approach because they
are generally considered trusted intermediaries, and they focus on
preference modeling rather than trust and reputation modelling.

7317



the above example).
The contributions of this paper are summarized below:

• We identify the accuracy-privacy dilemma and propose
COBRA to solve this problem using a model encapsula-
tion technique and a Bernoulli neural network. COBRA
preserves privacy by encapsulating second-hand evidence
using ML models, and makes accurate trust predictions
using BNN which fuses both first-hand and second-hand
evidence, where the valuable context information was
preserved by the ML models.

• The proposed BNN yields more accurate predictions than
the standard fully-connected feed-forward neutral net-
works, and trains significantly faster. In addition, it is also
general enough to be applied to similar tasks when the
input is a set of probabilities associated with Bernoulli
random variables.

• The design of COBRA takes security into consideration
and it is robust to fake ML models; in particular, it is re-
sistant to the 51-percent attack, where the majority of the
models are compromised.

• We evaluate the performance of COBRA using both ex-
periments based on a real dataset, and simulations. The re-
sults validate the above performance claims and also show
that COBRA outperforms other state-of-the-art TRM sys-
tems.

2 Related Work

A large strand of literature has attempted to address TRM
in multi-agent systems. The earliest line of research had a
focus on first-hand evidence (Yu et al. 2013), using it as
the main source of trustworthiness calculation. For exam-
ple, Beta reputation system (Josang and Ismail 2002) pro-
poses a formula to aggregate first-hand evidence represented
by binary values indicating positive or negative outcomes of
interaction. Concurrently with the spike in popularity of rec-
ommender systems in late 2004 (GoogleTrends 2018; Fang,
Guo, and Zhang 2015), the alternative usage of TRM in pref-
erence and rating management gained much research atten-
tion. However, the binary nature of trust definition presents
a barrier because recommender systems conventionally use
non-binary numerical ratings. To this end, Dirichlet reputa-
tion systems (Josang and Haller 2007) generalize the bi-
nomial nature of beta reputation systems to accommodate
multinomial values.

A different line of research focuses on second-hand evi-
dence (Yu et al. 2013) as a supplementary source of trust-
worthiness calculation. These works calculate a trust score
by aggregating second-hand evidence and a separate trust
score by aggregating first-hand evidence, and then a final
score by aggregating these two scores. Some early trust
models such as (Josang and Ismail 2002) are also applica-
ble to second-hand evidence. The challenges in this line of
research are (Zhang and Cohen 2008): (i) How to determine
which second-hand evidence is less reliable, since second-
hand evidence is provided by other agents? (ii) How much
to rely on trust scores that are derived from second-hand evi-
dence compared to scores derived from first-hand evidence?

To address the first challenge, the Regret model (Sabater
and Sierra 2001) assumes the existence of social relation-
ships among agents (and owners of agents), and assigns
weights to second-hand evidence based on the type and the
closeness of these social relationships. These weights are
then used in the aggregation of second-hand evidence. More
sophisticated approaches like Blade (Regan, Poupart, and
Cohen 2006) and Habit (Teacy et al. 2012) tackle this is-
sue with a statistical approach using Bayesian networks and
hence do not rely on heuristics. To address the second chal-
lenge, (Fullam and Barber 2007) uses a Q-learning tech-
nique to calculate a weight which determines the extent to
which the score derived from second-hand evidence affects
the final trust score.

A separate thread of research relies solely on stereo-
typical intrinsic properties of the agents and the environ-
ment in which they operate, to derive a likelihood of trust-
worthiness without using any evidence. These approaches
(Zhou et al. 2015; Noorian, Marsh, and Fleming 2011;
Singh 2011; Liu and Datta 2012) are considered a comple-
ment to evidence-based trust and are beneficial when there
is no enough evidence available.

Our proposed approach does not fall under any of these
categories; instead, we introduce model encapsulation as a
new way of incorporating evidence into TRM. We make
no assumptions on the existence of stereotypical or socio-
cognitive information, as opposed to (Zhou et al. 2015;
Noorian, Marsh, and Fleming 2011; Singh 2011; Liu and
Datta 2012; Sabater and Sierra 2001)). Our approach has
minimal privacy exposure, which is unlike (Regan, Poupart,
and Cohen 2006; Teacy et al. 2012), and preserves important
context information.

3 Model Encapsulation

COBRA encapsulates second-hand evidence in ML mod-
els, which achieves two purposes: (i) it preserves privacy of
agents who are involved in the past interactions; (ii) it retains
context information which will help more accurate trust pre-
diction later (described in the next section).

In this technique, each agent trains a ML model using its
past interaction records with other agents in different con-
texts. Specifically, an agent u ∈ A (the set of all the agents)
trains a modelMz

u(ζ) = p based on its past direct interac-
tion (i.e., first-hand evidence) with an agent z. The input to
the model is a set ζ of context features (e.g., date, time, lo-
cation), and the output is a predicted conditional probability
p indicating how trustworthy z is for a given context ζ.

To build this model, the agent u maintains a dataset that
records its past interactions with each other agent, where
each record includes the context ζ and the outcome t ∈
Z2 = {0, 1} with 0 and 1 meaning a negative and a posi-
tive outcome respectively (e.g., whether the SLA is met or
not). For non-binary outcomes, they can be handled by using
the common method of converting a multi-class classifica-
tion problem into multiple binary classification problems (so
there will be multiple models for each agent). Then, agent u
trains a machine learning model for each agent, say z, using
the corresponding dataset to obtainMz

u(ζ) = p.
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Figure 1: The COBRA framework.

COBRA does not restrict the choice of ML models and
this is up to the application and the agents. For example,
agents hosted on mobile phones can choose simple models
such as decision trees and Naive Bayes, while those on desk-
top computers or in the cloud can use more complex models
such as random forests and AdaBoost. Furthermore, agents
can choose different models in the same application, mean-
ing that Mz

u1
may not be the same type as Mz

u2
. On the

other hand, the context feature set ζ needs to be fixed for the
same application.

Model Sharing. Whenever an agent, say a, seeks ad-
vice (i.e., second-hand evidence) from another agent, say u,
about an agent of interest, say z, the agent u can share its
modelMz

u(ζ) with a. This avoids exposing second-hand ev-
idence directly and thereby preserves privacy of both u and
z. It also retains context information as compared to u pro-
viding a with just a single trust score of z, and hence helps
more informed decision making in the subsequent step (de-
scribed in Section 4).

Note that the information we seek to keep private is
the contextual details of the interactions between u and z,
whereas concealing the identities of u and z is not the focus
of this work.

Sharing a model is as straightforward as transferring the
model parameters to the soliciting agent (i.e., a in the above
example), or making it accessible to all the agents (in a read-
only mode). This sharing process does not require a trusted
intermediary because the model does not present a risk of
privacy leaking about u and z. The required storage is also
very low as compared to storing the original evidence.

Moreover, COBRA does not assume that all or most mod-
els are accurate. Unlike many existing work assuming honest
majority and hence being vulnerable to 51-percent attack,
COBRA use a novel neural network architecture (Section
4) that is more robust to model inaccuracy and even malice
(e.g., models that give opposite outputs).

4 Bernoulli Neural Network

After model encapsulation which allows for a compressed
transfer of context-aware second-hand evidence with pri-
vacy preservation, the next question is how to aggregate
these models to achieve an accurate prediction of the trust-
worthiness of a target agent. Using common measures of
central tendency such as mean, mode, etc. will yield mis-

leading results because an adviser agent’s (u’s) model was
trained on a dataset with likely different contexts than the
advisee agent’s (a’s) context. In a sense, this problem is akin
to the problem found in transfer learning. Besides, COBRA
aims to relax the assumption of honest majority and give ac-
curate predictions even when the majority of the models are
inaccurate or malicious.

In this section, we propose a solution based on artificial
neural networks (ANN). The reasons for choosing ANN
are two. First, the task of predicting trustworthiness in a
specific context given other agents’ models, is a linearly
non-separable task with high dimensional input space (de-
tailed in Section 4.1). Such tasks can specifically benefit
from ANN’s capability of discovering intrinsic relationships
hidden in data samples (Zhang 2010). Second, the models
are non-ideal due to the possibly noisy agent datasets, but
ANN is highly noise tolerant and sometimes can even be
positively affected by noise (Madić and Marinković 2010;
Luo and Yang 2014).

Therefore, we propose a Bernoulli Neural Network
(BNN) as our solution. BNN specializes in processing data
that is a set of probabilities associated with random variables
of Bernoulli distribution, which perfectly matches our input
space which is a set of predicted trust scores between zero
and one indicating the probability of an agent being trust-
worthy in a given context. In contrast to the widely used
Convolutional Neural Network (CNN), BNN does not re-
quire data to have a grid-like or structured topology, and
hence matches well with trust or reputation scores. Specif-
ically, unlike CNN which uses the hierarchical pattern in
data, BNN uses information entropy, to determine the con-
nections in the network.

Fig. 1 provides an overview of COBRA, where the models
on the left hand side are from the encapsulation technique
described in Section 3, and the right hand side is the BNN
described in this section. In the following, we explain the
architectural design of BNN in Section 4.1-3 and assemble
the data required for training the BNN in Section 4.4.

4.1 Topology

We propose a (N + 1)-layer network architecture for the
BNN, where the input layer is denoted by L0, the out-
put layer by LN , and the hidden layers by Lk where k =
1, ..., N − 1. The weight of an edge (i, j) is denoted as wij

where i ∈ Lk−1 and j ∈ Lk, k = 1, 2, ..., N . The bias at
layer Lk−1 is bk−1. Thus, the entire network can be com-
piled from Eq. 1 where the output of any node j ∈ Lk is
given by yj . The inputs xj of the network in Eq. 1 are assem-
bled from (1) the models explained in Section 3 and (2) the
context features, where the assembling process is explained
in Section 4.4. The former are values between zero and one
which indicate the predicted trustworthiness probability of
an entity in the given context sourced from different predic-
tors.

The probabilistic nature of the inputs, enables us to calcu-
late how informative an input is, by calculating the entropy
of the predicted trustworthiness for which the input indicates
the probability. This is used in Eq. 1 to ensure that the num-
ber of neural units an input connects to is inversely propor-
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yj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
fk

⎛
⎜⎜⎝bk−1 +

∑
i∈Lk−1

sgn

⎛
⎜⎜⎝
⎢⎢⎢⎢⎢⎣ |Lk| − h(yi)|Lk|∣∣∣∣

{
yt| ∂yt

∂yi
�= 0 , t ∈ Lk

}∣∣∣∣+ 1

⎥⎥⎥⎥⎥⎦
⎞
⎟⎟⎠wijyi

⎞
⎟⎟⎠ , j ∈ Lk : k = 1, 2, ..., N

xj , j ∈ L0

(1)

tional to the average of information entropy calculated for
input samples. Each sample of an input in the training data-
set (exclusive of context features) is a probability (sourced
prediction) associated with a random variable with Bernoulli
distribution (trustworthiness). Hence, h(.) is defined recur-
sively by Eq. 2 where H(xj) is the average entropy of xj

in the training data-set. For context features H(xj) = 0 be-
cause the values of these features are not probabilities of
Bernoulli random variables and hence the notion of entropy
can only be applied to their entire feature space not individ-
ual values which is what is used in Eq. 1.

Moreover, fk(.) in Eq. 1 is the activation function of layer
k. The design choice of the activation functions is explained
in Section 4.3.

h(yj) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
i∈I

h(yi)

|I| , j ∈ Lk : I = {i ∈ Lk−1|∂yj
∂yi
�= 0}

H(xj), j ∈ L0

(2)

4.2 Depth and width

The depth of BNN is N since the input layer is not counted
by convention. A feed-forward network with two hidden lay-
ers can be trained to represent any arbitrary function, given
sufficient width and density (number of edges) (Heaton
2008). Our goal is to find the function which most accurately
weights the predictions sourced from multiple predictors
(i.e. high dimensional input space). Many of such sources
can be unreliable or misleading either unintentionally (e.g.
malfunction) or deliberately (e.g. malicious). There often
does not exist a single source which is always reliable and
some sources are more reliable in some contexts. Moreover
the malicious sources sometimes collude with each other to
make the attack harder to detect. Therefore, the function that
we aim to estimate in this linearly non-separable task can
have any arbitrary shape. Hence, we choose N = 3 in our
design to benefit from two hidden layers which suffice to
estimate the aforementioned function as we demonstrate by
our experiment results in Section 5.

The width of a layer is the number of units (nodes) in that
layer, and accordingly we denote the width of a layer k by
|Lk|. Determining the width is largely an empirical task, and
there are many rule-of-thumb methods used by the practi-
tioners. For instance, (Heaton 2008) suggests that the width
of a hidden layer be 2/3 the width of the previous layer plus
the width of the next layer. Inspired by this method we pro-
pose a measure called output gain defined as the summation
of the information gain of the inputs of a node and determine

|Lk| by Eq. 3. The width |LN | is set to 1 because the network
has only a single output which is the trust score (probability
of being trustworthy). And the width |L0| is set to the total
number of input nodes denoted by n.

|Lk| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n, k = 0

⎡
⎢⎢⎢
∑
j∈L0

2

3

(
1−H(xj)

)⎤⎥⎥⎥+ |L2|, k = 1

⌈
2

3
|L1|

⌉
+ |L3|, k = 2

1, k = 3

(3)

4.3 Activation and loss functions

Let us recall the activation function fk(.) from Eq. 1 in Sec-
tion 4.1. Since we choose N = 3 as explained in Section 4.2,
we need to specify three activation functions f1(.), f2(.),
and f3(.) for the first hidden layer, second hidden layer, and
the output layer, respectively.

For the output layer, we choose the sigmoid logistic func-
tion f3(z) = 1/(1 + e−z) because we aim to output a trust
score (the probability that the outcome of interacting with a
certain agent is positive for a given context). For the hidden
layers, we choose the rectified linear unit (ReLU) (LeCun,
Bengio, and Hinton 2015) function as f1,2(z) = max(0, z),
because the focus of hidden layers is to exploit the com-
positional hierarchy of the inputs to compose higher level
(combinatoric) features so that data become more separable
in the next layer, and hence the speed of convergence is a
main consideration.

The weights in the BNN are computed using gradient de-
scent back propagation during the training process. How-
ever, sigmoid activation functions, as we choose, have a sat-
uration effect which will result in small gradients, while gra-
dients need to be large enough for weight updates to be prop-
agated back into all the layers. Hence, we use cross-entropy
H(p, q) = −∑

x p(x) log(q(x)) as the loss function to mit-
igate the saturation effect of the sigmoid function. Specifi-
cally, the log(.) component in the loss function counteracts
the exp(.) component in the sigmoid activation function,
thereby enabling gradient-based learning process.

4.4 Assembling training data

Having explained the architectural design aspects of our
Bernoulli neural network, now we explain its computational
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Algorithm 1 Training data initialization
Input: First-hand evidence of agent a:
Ea = {(z, ς1, ς2, ..., ςk, t) |z ∈ Sa ⊆ S, k = |ζ|, t ∈ {0, 1}}
where S is the set of target agents (whose reputation is to be pre-
dicted), Ra = {Mz

u |x ∈ Xa⊆A , z ∈ S}
Output: Training dataset (Features and Label)

1: Features, Label, temp
set←− ∅

2: i, j
set←− 0

3: for each (z, ς1, ς2, ..., ςk, t) in Ea do
4: for each u in Xa do

5: tmp[i]
set←− Ga(x, z, ς1, ς2, ..., ςk)

6: i
set←− i+ 1

7: end for
8: Features[j]

set←− (ς1, ς2, ..., ςk, tmp[0], ..., tmp[|Xa|])
9: Label[j]

set←− t

10: j
set←− j + 1

11: end for
12: return Features, Label

aspects.
The output of the neural network is a predicted probability

that a target agent z is trustworthy (e.g., meets SLA) in a
certain context ζ, which (the probability) is what an agent
a tries to find out. The input of the network consists of (1)
all the context features ς ∈ ζ and (2) all the probabilities
predicted by modelsMz

u(ζ) shared by all the u ∈ Xa where
Xa ⊆ A is the agents a is seeking advice from. In the case
that some agents u ∈ Xa do not share their models with
agent a, the corresponding input probability will be set to
0.5 to represent absolute no information. Formally, the input
from the models to the neural network is given by

Ga(x, z, ζ) =

{Mz
x(ζ) Mz

x ∈ Ra

0.5 Mz
x �∈ Ra

(4)

where Ra is the set of models available to a. Most precisely,
each input variable (to layer L0) is specified by

xj =

{
ςj j = 1, 2, ..., |ζ|
Ga(X

j−|ζ|
a , z, ζ) j = |ζ|+ 1, ..., |ζ|+ |Xa|

(5)

which also gives the number of input nodes (i.e. input di-
mension)

n = |Xa|+ |ζ|.
Thus, we transform the recursive Eq. 3 into a system of

linear equations:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
|L1| = 2

3

⎛
⎝
⎡
⎢⎢⎢
∑
j∈L0

(
1−H(xj)

)⎤⎥⎥⎥
⎞
⎠+ |L2|

|L2| = 2
3 (|L1|) + 1

(6)

Solving Eq. 6 yields the widths of all the layers of our neural

Algorithm 2 Update training data vertically
Input: A new first-hand evidence (z, ς1, ς2, ..., ςk, t) where
z ∈ Sa ⊆ S, k = |ζ|, t ∈ {0, 1}}
Current training dataset: Features and Label
Model repository: Ra = {Mz

u |x ∈ Xa⊆A , z ∈ S}.
Output: Updated training data-set (new Features and
Label).

1: i
set←− 0

2: for each u in Xa do

3: tmp[i]
set←− Ga(x, z, ς1, ς2, ..., ςk)

4: i
set←− i+ 1

5: end for

6: Features[j]
append←−−−(ς1, ς2, ..., ςk, tmp[0], ..., tmp[|Xa|])

7: Label[j]
append←−−− t

8: return Features, Label

Algorithm 3 Update training data horizontally

Input: A new modelMz′
u′ where u′ ∈ A and z′ ∈ S

Current training data-set: Features (no need for Label)
First-hand evidence of agent a:
Ea = {(z, ς1, ς2, ..., ςk, t) |z ∈ Sa ⊆ S, k = |ζ|, t ∈
{0, 1}}
Output: Updated training data-set (new Features).

1: i
set←− 0

2: for each (z, ς1, ς2, ..., ςk, t) in Ea do
3: if z = z′ then
4: Features[i].u′ set←−Mz′

u′(ς1, ς2, ..., ςk)

5: end if
6: i

set←− i+ 1

7: end for
8: return Features

network:

|L1| = 2

⎛
⎝
⎡
⎢⎢⎢
∑
j∈L0

(
1−H(xj)

)⎤⎥⎥⎥
⎞
⎠+ 3,

|L2| =
⎢⎢⎢⎣4

3

⎛
⎝
⎡
⎢⎢⎢
∑
j∈L0

(
1−H(xj)

)⎤⎥⎥⎥
⎞
⎠
⎥⎥⎥⎦+ 3,

|L3| = 1.

(7)

The weights are calculated using gradient descent back
propagation based on training data. The training data is ini-
tialized once using Algorithm 1 and updated vertically upon
acquiring new first-hand evidence using Algorithm 2 and up-
dated horizontally upon acquiring a new model using Algo-
rithm 3.

In Algorithm 1, the training data - which consists of
Features as given by Eq. 4 and Label - is first initialized
to ∅. Then, the first-hand evidence Ea is being iterated over
(line 3) to find out historical information about the agent z,
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(a) (c) (e)

(b) (d) (f)

Figure 2: Experiment results: (a,b) ACC and RMSE of different approaches; (c,d) Moving average of prediction and training
time for BNN compared to Dense; (e,f) Convergence of validation accuracy and loss for BNN compared to Dense.

i.e., the outcome t and context ς1, ..., ςk of each interaction.
This information is then supplied to Ga(.) (Eq. 4) to obtain
the predicted conditional probability P (t = 1 |ς1, ..., ςk ).
The probabilities and the corresponding labels are then
added to Features to form the training data (lines 8-12).

After initialization, all the subsequent updates are per-
formed using Algorithm 2 and 3, where Algorithm 2 is ex-
ecuted when a new first-hand evidence is available at a and
Algorithm 3 is executed when a receives a new model from
a new advisor agent or an updated model from an existing
advisor agent.
Proposition 1. The time complexity of Algorithm 1 is
O(|Ea| × |Xa|).
Proposition 2. The time complexity of Algorithm 2 and 3 is
O(|Xa|) and O(|Ea|), respectively.

The training and retraining of the neural network using
the above training dataset can be either performed by the
agent itself or outsourced to fog computing (Yousefpour et
al. 2019). Similarly is the storage of the neural network.

5 Evaluation

We evaluate COBRA using both experiments and simula-
tions.

5.1 Experiment setup

Dataset. We use a public dataset obtained from (Zheng,
Zhang, and Lyu 2014) which contains the response-time val-
ues of 4, 532 web services invoked by 142 service users over
64 time slices. The dataset contains 30, 287, 611 records of
data in total, which translates to a data sparsity of 26.5%.
Following (Nielsen 1994), we assume a standard SLA which

specifies that 1 second is the limit that keeps a user’s flow of
thought uninterrupted. Hence, response time above 1 second
is considered violation of SLA and assigned a False label,
while response time below or equal to 1 second is assigned
a True label which indicates that the SLA is met.

Platform. All measurements are conducted using the
same Linux workstation with 12 CPU cores and 32GB of
RAM. The functional API of Keras is used for the im-
plementation of the neural network architectures on top of
TensorFlow backend while scikit-learn is used for
the implementation of Gaussian process, decision tree, and
Gaussian Naive Bayes models.

Benchmark methods. We use the following benchmarks
for comparison:

• Trust and Reputation using Hierarchical Bayesian Mod-
elling (HABIT) : This probabilistic trust model is pro-
posed by (Teacy et al. 2012) and uses Bayesian modelling
in a hierarchical fashion to infer the probability of trust-
worthiness based on direct and third-party information
and outperforms other existing probabilistic trust models.

• Trust Management in Social IoT (TMSIoT): This model is
proposed by (Nitti, Girau, and Atzori 2014), in which the
trustworthiness of a service provider is a weighted sum of
a node’s own experience and the opinions of other nodes
that have interacted with the service provider.

• Beta Reputation System (BRS): This well-known model as
proposed by (Josang and Ismail 2002) uses the beta prob-
ability density function to combine feedback from various
agents to calculate a trust score.

Evaluation metrics. We employ two commonly used
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metrics. One is the accuracy defined as

ACC =
TP + TN

TP + TN + FP + FN

where TP = True Positive, FP = False Positive, TN = True
Negative, and FN = False Negative. The other metric is the
root mean squared error (RMSE) defined by

RMSE(T, T̂ ) =

√
1

m
Σm

i=1(Ti − T̂i)2

Where T is the ground-truth trustworthiness and T̂ is the
predicted probability of trustworthiness and m is the total
number of predictions.

5.2 Experiment procedure and results

We run COBRA for each of the 142 web-service clients to
predict whether a web-service provider z can be trusted to
meet SLA, given a context ζ which is the time slice dur-
ing which the service was consumed. We experiment on
800, 000 random samples of the dataset due to two main
considerations: (1) COBRA is a multi-agent approach but
in the experiment we build all the models and BNNs on one
machine, (2) the significantly high time and space complex-
ity of the Gaussian process used in HABIT restricts us to
work with a sample of the dataset. We employ 10-fold cross
validation and compare the performance of COBRA with the
benchmark methods described in Section 5.1. In COBRA-
DT, decision tree is used for model encapsulation for all
142 agents, in COBRA-GNB, Gaussian Naive Bayes is used
for the encapsulation for all 142 agents, and in a hybrid ap-
proach, COBRA-Hyb, decision tree is used for 71 randomly
selected agents while Gaussian Naive Bayes is used for the
rest. In HABIT the reputation model is instantiated using
Gaussian process with a combination of dot product + white
kernel co-variance functions. In COBRA-DT/GNB/Hyb-
B, our proposed neural network architecture in Section 4
(BNN) is used, while in COBRA-DT/GNB/Hyb-D, a fully
connected feed-forward architecture (Dense) is used instead.

The results, as illustrated in Fig. 2(a) and Fig. 2b, indicate
that all the versions of COBRA with Bernoulli neural engine
outperform the benchmark methods, while without our pro-
posed Bernoulli neural architecture, HABIT is competent to
Dense version of COBRA-GNB. The choice of the encapsu-
lation model only slightly affects the performance in hybrid
mode, which suggests that the performance of COBRA is
stable.

Furthermore, we present the moving average of prediction
and training time for BNN versions of COBRA compared to
Dense versions of COBRA respectively in Fig. 2c and Fig.
2d. The results indicate that our proposed BNN architecture
significantly reduces the time required for training and mak-
ing predictions.

Moreover, as illustrated in Fig. 2e, the divergence between
training accuracy and validation accuracy of BNN is signif-
icantly smaller than that of Dense. Similarly, Fig. 2f depicts
a smaller divergence between training loss and validation
loss of BNN compared to that of Dense. These results in-
dicate that Dense is more prone to overfitting as the epochs
increase.

(a)

(b)

Figure 3: Simulation results: (a) Accuracy of COBRA (in
percentage) versus different distributions of Φ parameter-
ized by α and β (in log scale). (b) Contour plot of (a); The
color spectrum from dark to light represents accuracy from
low to high.

5.3 Simulation setup

For a more extensive evaluation of COBRA, especially with
respect to extreme scenarios which may not be observed of-
ten in the real world, we also conduct simulations.

We simulate a multi-agent system with 51 malicious
agents and 49 legitimate agents, in consideration of the 51
percent attack. The attack model used for malicious agents
consists of fake and misleading testimonies which is a com-
mon attack in TRM systems. Specifically, a model shared by
a malicious agent provides opposite prediction of the trust-
worthiness of a target agent, i.e., it outputs 1 − p when the
model would predict p if it were not malicious.

Denote by Φ the probability that an arbitrary agent inter-
acts with an arbitrary target agent, which we treat as a ran-
dom variable with beta distribution parameterized by α and
β. We run 100 simulations each with a different distribution
of Φ. For example, α = β = 0.5 means that one group of
agents interact with the target agent frequently while another
group seldom interact with the target agent; α = β = 2
means that most of the agents have half chance to interact
with the target agent; α = 5, β = 1 means that most of the
agents interact with the target agent frequently, while α = 1
and β = 3 means that most of the agents seldom interact
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with the target agent.
We use 4 synthesized context features randomly dis-

tributed in the range [−1, 1], and generate 100 different tar-
get agents that violates SLA with a probability following the
normal distribution on condition of each context feature.

5.4 Simulation results

The simulation results are shown in Fig. 3(a)-3(b), where the
key observations are:

• COBRA is able to predict accurate trust scores (probabil-
ity of being trustworthiness) for the majority of the cases.
Particularly, in 90 out of 100 simulated distributions of Φ
an accuracy greater than or equal to 85% is achieved.

• It is crucial to note that these results are achieved when
51% of the agents are malicious. This shows that COBRA
is resistant to the 51 percent attack.

6 Conclusion

This paper proposes COBRA, a context-aware trust assess-
ment framework for large-scale online environments (e.g.,
MAS and IoT) without a trusted intermediary. The main
issue it addresses is an accuracy-privacy dilemma. Specifi-
cally, COBRA uses model encapsulation to preserve privacy
that could otherwise be exposed by second-hand evidence,
and in the meantime to retain context information as well.
It then uses our proposed Bernoulli neural network (BNN)
to aggregate the encapsulated models and first-hand evi-
dence to make an accurate prediction of the trustworthiness
of a target agent. Our experiments and simulations demon-
strate that COBRA achieves higher prediction accuracy than
state-of-the-art TRM systems, and is robust to 51 percent
attack in which the majority of agents are malicious. It is
also shown that the proposed BNN trains much faster than a
standard fully-connected feed-forward neural network, and
is less prone to overfitting.
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