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Abstract

Engineering a decentralized multiagent system (MAS) re-
quires realizing interactions modeled as a communica-
tion protocol between autonomous agents. We contribute
Clouseau, an approach that takes a commitment-based spec-
ification of an interaction and generates a communication
protocol amenable to decentralized enactment. We show
that the generated protocol is (1) correct—realizes all and
only the computations that satisfy the input specification;
(2) safe—ensures the agents’ local views remain consistent;
and (3) live—ensures the agents can proceed to completion.

1 Introduction
Any application where stakeholders collaborate or compete
while retaining their autonomy, such as in finance, health-
care, and the Internet of Things, may be naturally understood
as a decentralized multiagent system (MAS). Engineering a
MAS presupposes a means to ensure that the agents interop-
erate even though their internal representations and decision
making are hidden from each other.

This paper unifies two core aspects of interoperation.
One, operational or how the agents realize their interac-
tions. A communication protocol specifies what messages
an agent may send or receive, and when (Bauer, Müller, and
Odell 2000). To reduce coupling, interactions must be asyn-
chronous, i.e., no agent blocks for another except to receive
essential information. Recent MAS platforms (Boissier et
al. 2019) and protocol approaches (Ferrando et al. 2019;
Singh 2011) support asynchrony. Two, meanings or the so-
cial import of an interaction. We must represent the mean-
ings formally and independently of agent construction, such
that the agents can reason about meanings of interactions
and agree on the outcomes upon observing the same events.

Social commitments (Singh 1991; 1999; Fornara and
Colombetti 2003; Marengo et al. 2011; Chesani et al. 2013)
provide high-level meanings to messages, providing an
operations-independent standard of correctness. For exam-
ple, Alice (a merchant), may commit to Bob (a customer)
to send Bob some goods if he pays. Now if Bob pays, the
commitment is discharged only if Alice sends the goods.

Whereas a protocol offers a clear operational interface for
agents, commitments capture the meanings of interactions.
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Current MAS approaches separately specify meanings and
protocols, which (1) creates a burden of maintaining the
consistency of two specifications and (2) leads to inflexible
protocols because manually operationalizing meanings un-
der decentralization is nontrivial.

Clouseau, our approach, provides a new way to opera-
tionalize commitments by compiling meanings into flexible
protocols that can be enacted by agents using asynchronous
messaging over unordered channels. This is a significant ad-
vance over existing approaches, which lack such a capabil-
ity. In particular, Clouseau produces correct and flexible pro-
tocols, thereby avoiding the above limitations.

Contribution: Operationalizing Commitments How
can we automatically generate a communication protocol
based on commitments, thereby bridging the gap between
meanings and protocols that benefit from asynchronous
messaging? A desirable protocol would (1) enable comput-
ing commitment states; (2) ensure alignment of the agents
with respect to the commitments; (3) be flexible, i.e., allow
as many interactions as possible given the commitments and
the capabilities of the agents.

Accordingly, we contribute a specification comprising (1)
a domain information model; (2) roles to be played by the
interacting agents; (3) commitments between these roles in
terms of the information model; (4) capabilities of the roles;
and (5) description of satisfactory completion (an event ex-
pression). This input provides the essential knowledge for
capturing meanings computationally. This language aug-
ments Cupid (Chopra and Singh 2015a) with agent capabili-
ties, which help capture how an agent may enact a protocol.
Crucially, we reformulate the semantics of Cupid to a decen-
tralized model.

We adopt as output information-based protocols (Singh
2011) that express causality and integrity properties in infor-
mation. An output protocol captures all legitimate decentral-
ized enactments, thereby offering flexible agent interaction.

Our overarching contribution is a method to generate a
protocol from a commitment specification. We show that a
generated protocol is (1) correct, that is, it supports exactly
the computations of the specification, (2) safe, in the sense
that local views of agents remain consistent despite decen-
tralization and asynchronous enactment, and (3) live, ensur-
ing that agents can proceed to completion.
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Figure 1: Finite state machine representations of NetBill.
The solid lines describe the original NetBill. The dashed
lines show some possible generalizations that follow triv-
ially from commitments.

2 NetBill and Commitments

We adopt NetBill (Sirbu 1997), a protocol for trading digi-
tal media, as a familiar running example (Yolum and Singh
2002a; Winikoff, Liu, and Harland 2005). Figure 1 shows
NetBill as a finite state machine (FSM) whose transitions
are labeled with messages (SENDER, RECEIVER: content).

NetBill begins with an rfq (request for quotes) message
from BUYER to SELLER for an item (transition from s0 to
s1), who responds to BUYER with a quote including the price
of item (transition from s1 to s2). If BUYER sends a reject in
response (transition from s2 to s3), the protocol ends, indi-
cated by the double circle on s3. Otherwise, if BUYER sends
an accept (transition from s2 to s4), SELLER sends a deliver
to BUYER, including item in an encrypted format (transition
from s4 to s5). After receiving deliver, BUYER sends pay
(i.e., an electronic cheque) to SELLER (transition from s5 to
s6). After receiving pay, SELLER sends a receipt to BUYER
including cipher to decrypt the item (transition from s6 to
s7), and the protocol ends.

3 Specifying Interactions using Clouseau

NetBill includes only two (i.e., accept and reject) branches.
We could enhance its flexibility by including, e.g., the
dashed edges in Figure 1 whereby SELLER may send an un-
solicited quote and BUYER may pay in advance.

But how would we establish that any path, original or
added, is legitimate? The idea behind using commitments
(Yolum and Singh 2002b) is to express the meaning of an
interaction formally and thereby to ensure that all and only
the legitimate interactions are realized. Given commitments,
paths where the commitments are not violated can be in-
cluded in the protocol without fear of violating a business

Table 1: Syntax of Clouseau’s input specification.

Spec −→ S {roles RR+ Base+ Commit+ Cap+ Comp}
Base −→ event B(�A �opt��+) key A +

Commit −→ commitment C R to R create Ev
�detach Ev� discharge Ev �release Ev�

Cap −→ capability R B �with ��fresh� A �+�
Comp −→ completion Ev
Ev −→ B�[�Time, � Time]� | Life C �[�Time, � Time]�

| Ev and Ev | Ev or Ev | Ev except Ev
Time −→ T | B + T
Life −→ created | detached | discharged

| released | expired | violated| done

requirement. A major benefit is raising the level of abstrac-
tion from operations to meanings. (Clouseau supports event
expressions as completion requirements.)

Clouseau provides a way to generate a protocol that re-
tains the flexibility of a meaning-level specification thus ob-
viating the need for manual design of a protocol.

3.1 Syntax of Clouseau Specifications

A Clouseau specification comprises (1) a set of roles; (2) an
information schema of base events over lists of attributes;
(3) commitments between the roles over the events; (4) each
role’s capabilities, i.e., which events a role can bring about
and attribute bindings it can set; and (5) a completion event
expression. Cupid (Chopra and Singh 2015a) has (2) and (3);
Clouseau adds (1), (4), and (5).

Table 1 shows Clouseau’s surface syntax. Here, −→ indi-
cates a production, and | indicates choice. A + indicates one
or more repetitions. � � indicate optionality. A , B, C , R,
and S are sets of (terminal) attributes, base events, commit-
ments, roles, and specification names. T = N∪∞ is a set of
time instances. ([ ] are terminals that identify time intervals.)
We write �, �, and 	 for and, or, and except, respectively.

Listing 1 specifies NetBill based on Yolum and Singh
(2002b). Lines 4–10 show base event schemas, each a rela-
tion over its attributes. Some attributes form a key. A times-
tamp attribute is implicit. For example, rfq has attributes nID
(its key) and item. Each instance of rfq is a tuple of values
for its attributes that is unique for its value of nID.

Listing 1: Specification of NetBill in Clouseau.
1 N e t B i l l−F l e x i b l e {
2 roles Se l le r , Buyer
3
4 event r f q ( nID , i tem ) key nID
5 event quote ( nID , item , p r i ce ) key nID
6 event accept ( nID , item , pr ice , dec is ion ) key nID
7 event r e j e c t ( nID , item , pr ice , dec is ion ) key nID
8 event pay ( nID , pr ice , dec is ion , cheque ) key nID
9 event d e l i v e r ( nID , dec is ion , i tem ) key nID

10 event r e c e i p t ( nID , item , cheque , c ipher ) key nID
11
12 commitment PromiseGoods S e l l e r to Buyer
13 create quote
14 detach created AcceptQuote
15 discharge d e l i v e r [ accept + 3 ]
16 release r e j e c t
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17
18 commitment PromiseReceipt S e l l e r to Buyer
19 create quote
20 detach created AcceptQuote and pay [ accept + 3 ]
21 discharge r e c e i p t [ pay + 1]
22 release r e j e c t
23
24 commitment AcceptQuote Buyer to S e l l e r
25 create accept [ quote + 5]
26 detach d e l i v e r [ accept + 3 ]
27 discharge pay [ accept + 5 ]
28
29 capability S e l l e r quote with nID , item , p r i ce
30 capability S e l l e r d e l i v e r
31 capability S e l l e r r e c e i p t with c ipher
32 capability Buyer r f q with nID , i tem
33 capability Buyer accept with fresh dec is ion
34 capability Buyer r e j e c t with fresh dec is ion
35 capability Buyer pay with cheque
36
37 completion done PromiseGoods and done PromiseReceipt and

done AcceptGoods
38 }

Only a role who has the capability to bring about a base
event (along with any its attributes) can instantiate it. Line 29
states that SELLER can bring about quote and may produce
bindings for nID, item, and price—indicated by with—that
respect quote’s key. Lines 33–34 state that BUYER must bind
a fresh value—indicated by fresh—for decision in accept
and reject. Therefore, since accept and reject have the same
key, nID, at most one of them can occur for any nID value.

A commitment involves four event expressions: create
and discharge are required but detach and release are op-
tional. AcceptQuote begins on Line 24: BUYER (its debtor)
commits to SELLER (its creditor) upon accept (its create
event) that if deliver occurs within three time units of accept
(its detach event) then pay occurs within five time units of
accept (its discharge event). A created commitment expires
when its detach fails to occur; is violated if it is detached
but fails to discharge; and released (frees the debtor) if its
release event (shown for PromiseReceipt) occurs.

An event expression (Ev in Table 1) is either a base event
or a lifecycle event restricted by time constraints, or a com-
plex event built up from simpler events using and, or, except.
Lifecycle events refer to a commitment’s being created, de-
tached, discharged, expired, violated, or released (the last
four mean the commitment is terminated). A commitment’s
lifecycle events are derived entirely from its specification.

Here, done means if detached then terminated, i.e., (cre-
ated except detached) or discharged or violated or released.
Line 37 means that NetBill completes when for each of its
three commitments, any instance that is created terminates.

Definition 1 states Clouseau’s deep syntax.

Definition 1. A specification S, is a tuple 〈R,B,A,C,Q〉,
where R is a set of two or more roles; B is a nonempty set of
base events; A is a set of capabilities over R and B; C is a
set of commitments over R and B; Q is a completion event.

A base event, e or e(�a,�κ, �q), associates an event named
e with sets of attributes �a ⊆ A, key attributes �κ ⊆ �a, and
optional attributes �q ⊆ (�a \ �κ).

C(x, y, c, r, u, l) is a commitment from debtor x ∈ R to
creditor y ∈ R with create, detach, discharge, and release
events c, r, u, and l, respectively.
A(x, e, �w, �n) denotes a capability of role x ∈ R for base

event e(�a,�κ, �q) ∈ B. It means that role x can bring about
instances of e by supplying values for e’s nonoptional at-
tributes. The attributes �w are those for which x may gener-
ate a value if not already known. The attributes �n (�n ⊆ �w)
are those for which x must produce a fresh value (meaning
those attributes cannot be already known).

3.2 Semantics of Clouseau Specifications

Although we adopt Cupid’s syntax, we reformulate its se-
mantics based on roles. This section provides a synchronous
model of observations by roles. Section 4 provides an asyn-
chronous model based on messages. Section 5 shows how
to generate a asynchronous model (embodied in a protocol)
from the synchronous model. (Below, V is the domain of
values for all attributes.)

Definition 2 states that a base event’s instance provides
bindings for its attributes and a timestamp. An observation
associates an instance with observers, including one doer.

Definition 2. An instance, (e, b, t), of event e(�a,�κ, �q) asso-
ciates a partial function b : �a → V with �a \ �q ⊆ dom(b)
(binds all nonoptional attributes of e), and a timestamp t.

An observation, O(x, �y, e, b, t), associates an instance
(e, b, t) with observer roles �y, where |�y| ≥ 2, and a dis-
tinguished doer x ∈ �y who brings about the instance.

Below, b(a) is the result of evaluating b on a and b(�κ) is a
vector mapping b over each element of �κ.

For brevity, we omit the obvious components of
O(x, �y, e, b, t) and abbreviate it as o, oi, and so on.

Definition 3 states that in a run for role r, (1) r makes each
observation and (2) the sequence respects timestamp order.

Definition 3. A run for r, τ r, is a sequence of observations
o1o2 . . ., where ∀oi, oj : (1) r ∈ �yi and (2) i < j iff ti < tj .

At most one instance occurs at a time: if O(xi, �yi, ei, bi, t)
and O(xj , �yj , ej , bj , t), then and xi = xj , �yi = �yj , ei = ej ,
and bi = bj . Definition 4 captures synchrony: if a role makes
an observation in a run vector, all roles mentioned in that
observation also make that observation.

Definition 4. A run vector, Γ = [τ1 . . . τ |R|], is one where
∀r ∈ R, (1) τ r is a run, and (2) ∀oi ∈ τ r, ∀y ∈ �yi : oi ∈ τy .

An observation o ∈ Γ iff it appears in some run in Γ.

Definition 5 states that a run for role r is viable iff for any
observation of which r is the doer: (1) r has the capability
for the observed event; (2) r previously observes each at-
tribute that is not part of the capability; and (3) r does not
previously observe any of e’s fresh attributes.

Definition 5. A run of role r, τ r, is viable iff
∀O(r, �y, e, b, t) ∈ τ r: (1) ∃A(r, e, �w, �n) ∈ A; (2) ∀a ∈
�a \ �w : (∃oi : ti < t, a ∈ �ai, �κi ⊆ �κ, b(�κi) = bi(�κi), and
b(a) = bi(a)); (3) ∀n ∈ �n : �oi : ti < t, n ∈ �ai, and �κi ⊆ �κ.
A run vector is viable iff each of its runs is viable.

[〈S〉] denotes the set of viable runs in S.

7246



Seller Buyer

rfq(1, cot)

quote(2, bed, 10)

(a) Viable

Seller Buyer

rfq(1, cot)

quote(1, bed, 10)

(b) Unviable.

Seller Buyer

quote(1, cot, 10)

accept(1, cot, 10, OK)

(c) Viable.

Seller Buyer

quote(1, bed, 10)

accept(1, cot, 10, OK)

reject(1, cot, 10, OK)

(d) Unviable.

Figure 2: Some run vectors for Listing 1. Each vertical line
shows a role’s run comprising a sequence of its observations.
Each horizontal line is an observation of an event linking its
observer roles with the doer shown with a solid circle.

Figures 2a–2d show example run vectors based on List-
ing 1. Figure 2a is viable because BUYER has the capability
to bring about an rfq by generating values for nID and item
(bound to 1 and cot, respectively), and SELLER has the ca-
pability to bring about a quote by generating values for nID,
item, and price (bound to 2, bed, and 10 respectively). Fig-
ure 2b is unviable because it violates clause (2) of Defini-
tion 5; specifically, rfq and quote supply different values for
item for the same value of nID. Figure 2c is viable as SELLER
has the capability to bring about a quote by generating val-
ues for nID, item, and price, and BUYER has the capability
to bring about an accept by supplying known values for nID,
item, and price and generating a value for decision. Figure 2d
is unviable because clause (3) of Definition 5; specifically,
reject requires generating a value for decision; however a
prior accept has already generated the value for decision.

Consistency A run vector is consistent iff any two obser-
vations in it respect key integrity, i.e., if they agree on their
common key attributes, they agree on all common attributes.

Definition 6. Let oi and oj be observations. Let �κ = �κi∩�κj

and �a = �ai ∩ �aj . Then, oi and oj are consistent iff bi(�κ) =
bj(�κ) ⇒ bi(�a) = bj(�a).

A run vector Γ is consistent iff for any roles i, j, any oi ∈
τ i and oj ∈ τ j are consistent. Specification S is consistent
iff every run vector in [〈S〉] is consistent.

Inconsistency may occur only if the agents have over-
lapping capabilities. Listing 2 modifies NetBill-Flexible:
deliver includes cheque and SELLER can do deliver with
cheque. Upon accept, SELLER and BUYER can bring
about deliver and pay, respectively. Since both SELLER and
BUYER control cheque, they can set different bindings for it
for the same nID, producing an inconsistency.

Listing 2: An inconsistent variant of NetBill (Listing 1).
1 N e t B i l l−I n c o n s i s t e n t { / / Modi fy ing N e t B i l l−F l e x i b l e
2 / / Showing only the elements t h a t are modi f ied

3 event accept ( nID , item , pr ice , dec is ion )
4 event pay ( nID , dec is ion , item , pr ice , cheque )
5 event d e l i v e r ( nID , dec is ion , item , cheque ) key nID
6
7 capability S e l l e r d e l i v e r with cheque
8 capability Buyer pay with cheque
9 }

Overlapping capabilities need not cause inconsistency. As
Listing 1 shows, SELLER and BUYER can bind item but at
most one of them can do so for any binding of nID.

In the rest of this paper, all specifications are consistent.

Intensions The intension of an event gives all the run vec-
tors in which instances of the event, including commitment
events, occur. We develop this idea below.

Two instances cohere iff they bind their common key at-
tributes to the same values.

Definition 7. Two instances, 〈ei, bi, ti〉 and 〈ej , bj , tj〉, co-
here iff bi(�κ) = bj(�κ), where �κ = �κi ∪ �κj . Two sets of
instances cohere iff each pair of their members coheres.

A chain is a set (ordered by time) of instances drawn from
one consistent run vector that are (pairwise) coherent and
implicitly ordered by timestamp. The mix of two chains ig-
nores coherence so the result is not a chain. The merge of
two chains is their mix restricted by coherence.

Definition 8. A chain in a run vector Γ is a set of instances
{〈(e0, b0, t0)(e1, b1, t1) . . .〉} iff ∀i, j : (ei, bi, ti) ∈ Γ and
〈ei, bi, ti〉 and 〈ej , bj , tj〉 are coherent.

The mix of two sets of chains is their element-wise union:
σ1 � σ2 = {u1 ∪ u2|u1 ∈ σ1, u2 ∈ σ2}

The merge of two sets of chains is their mix restricted by
coherence: σ1 � σ2 = {u|u ∈ σ1 � σ2 and u is coherent}.

The certificate for an event expression is a chain that
makes the expression true. Let Γ ∈ [〈S〉] for specification
S. In Definitions D1–D17, e is a base event, E, F , and G
are base or lifecycle events, and X and Y are event expres-
sions. last and ts give the last instance of a chain and the
timestamp of an instance respectively.

D1 �e�Γ = {〈(e, b, t)〉 | O(x, �y, e, b, t) ∈ Γ}
D2 �E[c, d]�Γ = {σ|σ ∈ �E�Γ and c � ts(last(σ)) < d}
D3 �E[F + c, d]�Γ = {σ|σ ∈ �E�Γ �

�F �Γ and ts(last(F, σ)) + c � ts(last(E, σ)) < d}
D4 �E[c,G + d]�Γ = {σ|σ ∈ �E�Γ � �G�Γ and c �

ts(last(E, σ)) < ts(last(G, σ)) + d}
D5 �E[F + c,G + d]�Γ = {σ|σ ∈ �E[F + c,∞]�Γ �

�E[0, G+ d]�Γ}
D6 �X � Y �Γ = �X�Γ � �Y �Γ

D7 �X � Y �Γ = �X�Γ∪ �Y �Γ

D8 �X 	 (Y � Z)�Γ = �(X 	 Y ) � (X 	 Z)�Γ

D9 �X 	 (Y � Z)�Γ = �(X 	 Y ) � (X 	 Z)�Γ

D10 �X 	 (Y 	 Z)�Γ = �(X 	 Y ) � (X � Z)�Γ

D11 �X 	 ET �Γ = (�X�Γ � �ET �Γ) \ (�X�Γ � �ET �Γ) (T
is a time expression)
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Table 2: Syntax of protocols generated by Clouseau.

Prot −→ S {roles R+�parameters �Param �key��+�+ Msg+}
Msg −→ R �→ R+ : M [Param+]
Param −→ inX | outX | nilX

For brevity, let k = C(x, y, c, r, u, l) be a commitment.

D12 �created(k)�Γ = �c�Γ

D13 �detached(k)�Γ = �created(k) � r�Γ

D14 �expired(k)�Γ = �created(k)	 r�Γ

D15 �discharged(k)�Γ = �created(k) � u�Γ

D16 �violated(k)�Γ = �detached(k)	 (u � l)�Γ

D17 �released(k)�Γ = �created(k) � l�Γ

The intension of an event X is {Γ|Γ ∈ [〈S〉] and �X�Γ �=
∅}. The intension of an specification is the intension of its
completion event (Q), computed via the above semantics.
Definition 9. The intension of specification S, �S� = �Q�.

4 Communication Protocols

We express protocols in a variant of BSPL (Singh 2011),
which specifies protocols via causality and integrity con-
straints. Our variant includes (1) multicast messages and (2)
multiple protocol parameter lines, each a list of parameters
needed for one alternative completion. Table 2 shows the
syntax using M , R, S , and X as sets of (terminal) mes-
sages, roles, protocols, and parameter names, respectively.
Listing 3 shows a protocol generated from Listing 1. Sec-
tion 5 shows how to do so automatically.

Listing 3: Protocol generated by Clouseau for NetBill.
Clouseau adorns all protocol parameters �out�—omitted
here for readability.
1 N e t B i l l−F lex ib l e−Pro toco l {
2 roles Se l le r , Buyer
3 parameters nID key , i tem , pr ice , quoteP
4 parameters nID key , i tem , pr ice , rfqP , quoteP
5 parameters nID key , i tem , pr ice , dec is ion , rfqP ,

quoteP , re j ec tP
6 parameters nID key , i tem , pr ice , dec is ion , rfqP ,

quoteP , acceptP
7 parameters nID key , i tem , pr ice , dec is ion , cheque ,

rfqP , quoteP , acceptP , payP
8 parameters nID key , i tem , pr ice , dec is ion , rfqP ,

quoteP , acceptP , de l i ve rP
9 parameters nID key , i tem , pr ice , dec is ion , cheque ,

rfqP , quoteP , acceptP , payP , de l i ve rP
10 parameters nID key , i tem , pr ice , dec is ion , cheque ,

rfqP , c ipher , quoteP , acceptP , payP , rece ip tP
11 parameters nID key , i tem , pr ice , dec is ion , cheque ,

rfqP , c ipher , quoteP , acceptP , payP , de l iverP ,
rece ip tP

12
13 Buyer �→ S e l l e r : rfqM [ out nID , out i tem , out r fqP ]
14 S e l l e r �→ Buyer : quoteM [ in nID , in i tem , out pr ice , out

quoteP ]
15 S e l l e r �→ Buyer : quoteM [ out nID , out i tem , out pr ice ,

out quoteP ]

16 Buyer �→ S e l l e r : acceptM [ in nID , in i tem , in pr ice , out

dec is ion , out acceptP ]
17 Buyer �→ S e l l e r : re jec tM [ in nID , in i tem , in pr ice , out

dec is ion , out r e j ec tP ]
18 Buyer �→ S e l l e r : payM [ in nID , in pr ice , in dec is ion , out

cheque , out payP ]
19 S e l l e r �→ Buyer : de l iverM [ in nID , in i tem , in dec is ion ,

out de l i ve rP ]
20 S e l l e r �→ Buyer : receiptM [ in nID , in i tem , in cheque ,

out c ipher , out rece ip tP ]
21 }

Each message morph has a sender, a receiver, a name, and
a set of parameters (subset of the protocol’s parameters),
some of which form a key. Each parameter has an adorn-
ment, which captures the sender’s knowledge of a binding
of that parameter: �in� means the sender knows it prior to
sending; �out� means the sender doesn’t know it prior but
produces it when sending; �nil� means the sender doesn’t
know it prior and doesn’t produce it. For example, Line 14
shows quoteM with sender SELLER and receiver BUYER; nID
is the key (inherited from the protocol); SELLER must have
observed nID and item (for the specified key) before sending;
must not know price before; but produce price when sending.

The adornments capture causal dependencies. For exam-
ple, rfqM of Line 13, which produces nID and item, must pre-
cede quoteM of Line 14, which uses those parameters. Cap-
turing causality explicitly offers flexibility: the constraints
are causally essential; every compatible order is correct.
Thus, deliverM and payM may be sent in any mutual order.

Message morphs encode alternative enactments. Morphs
of the same name have the same sender and receiver but
their parameters and parameter adornments can differ. For
example, quoteM has two morphs: Line 14 adorns nID and
item �in�; and Line 15 has only �out� parameters. We as-
sume the message name, λ, includes an identifier to dis-
tinguish different morphs of the same name. Below, W =
{�in�, �out�, �nil�} is the set of adornments.
Definition 10. A message (morph), M(λ, x, �y, �p, α,�κ), com-
prises a name λ, a sender role x, a set of receiver roles �y,
a function α : �p → W assigning an adornment to each pa-
rameter, and a list of key parameters �κ ⊆ �p.

A protocol consists of a set of roles, a set of protocol pa-
rameter lines each with the same key (subset of parameters),
and a set of messages (morphs). A protocol completes if
all parameters on any parameter line are bound. We extend
BSPL with multiple parameter lines because each line cap-
tures one alternative completion of the protocol while avoid-
ing the need for giving a null binding to any parameter.
Definition 11. A protocol, 〈λ, �x, �p, �π,�κ, F 〉, comprises a
name λ, a list of roles �x, a list of parameters �p, a set �π
of parameter lines (each a pair [�q, α], where �q ⊆ �p and
α : �q → W ), a set of key parameters �κ ⊆ �p, and a set of
message morphs F .

An instance of a message binds its parameters. A role’s
history is a sequence of message instances that a role views.
We overload b from attribute to parameter bindings.
Definition 12. N(λ, b) is an instance of a message
M(λ, x, �y, �p, α,�κ) iff �p = dom(b). The history of role x, hx,
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is a sequence of message instances m0m1 . . ., emitted or re-
ceived by x. N(λ, b) appears in hx when emitted by x and,
for all y ∈ �y, in hy when received by y.

A message instance m is viable for emission by role x at
its history hx iff (1) the bindings of m’s �in� parameters are
set earlier in the history and the bindings of m’s �out� or
�nil� parameters are not set earlier in the history.

Definition 13. For integer i, let N(λi, bi) be an instance
of message M(λi, x,�yi, �pi, αi, �κi) that occurs at index i in
history hx. Then, N(λj , bj) is viable in hx iff it is a re-
ception, or (1) ∀p ∈ �p, α(p) = �in� : ∃i < j : κi ⊆ κj ,
p ∈ dom(αi), and bj(p) = bi(p); and (2) ∀p ∈ �p, α(p) ∈
{�out�, �nil�} : �i < j : κi ⊆ κj and p ∈ dom(αi).

A history vector H progresses to H ′, H ≺ H ′, based on
a message emission or reception, capturing asynchrony.

Definition 14. H = [h1 . . . h|R|] is viable iff (1) all its his-
tories are empty, or (2) it progresses a viable history vector
through the emission or reception of a viable message. 〈〈P 〉〉
is the set of viable history vectors for protocol P .

A safe protocol guarantees integrity of information, i.e.,
no parameter may obtain conflicting bindings.

Definition 15. Messages N(λi, bi) and N(λj , bj) are consis-
tent iff, for �κ = �κi ∩ �κj and �a = �ai ∩ �aj , bi(�κ) = bj(�κ) ⇒
bi(�a) = bj(�a). A history vector is safe iff all pairs of mes-
sages in it are consistent. A protocol P is safe if and only if
each vector in 〈〈P 〉〉 is safe.

Definition 16. A history vector H is complete for param-
eters �p iff (∀p ∈ �p : ∃N(λ, b) ∈ H and p ∈ dom(b)). A
protocol P is live iff ∀H ∈ 〈〈P 〉〉: ∃H ′ : H ≺ H ′ where
H ′ ∈ 〈〈P 〉〉and H ′ is complete for a parameter line �p of P .

5 Generating a Communication Protocol

The correctness of a generated protocol requires that its set
of history vectors matches the intension (i.e., the set of run
vectors) of the specification. Clouseau uses commitments
and capabilities for determining senders and receivers of
messages, and capabilities for determining the operational
constraints expressed via adornments. We demonstrate this
method by generating Listing 3 from Listing 1.

Information integrity requires that (1) if two messages
share a parameter, their keys must overlap and (2) instances
determined by the same key bindings must be equal.

Definition 17 captures the intuition that when a parameter
is �in�, its binding in an instance with respect to its key must
be known before the instance is produced. That is, the pa-
rameter must be accompanied by sufficient key parameters
to be meaningful. The determinant of a parameter p, Δp, is
the intersection of keys of all message morphs in which p
appears. A message is well-determined iff when a parameter
is �in� so is each parameter in its determinant.

Definition 17. M(λ, x, �y, �p, α,�κ) is well-determined iff
(∀p ∈ �p : α(p) = �in�⇒ ∀p′ ∈ Δp ⇒ α(p′) = �in�).
Generating Message Parameters and Adornments
Clouseau generates message morphs to capture alternatives.
Listing 3 captures two paths in Figure 1 via two morphs

Table 3: The adornments for a parameter based on attribute a
depend on whether a is optional (a ∈ �q), whether the sender
can produce a (a ∈ �w), and whether it must produce a (a ∈
�n). Rows 2 and 6 are ill-formed because a must be produced
by the sender, but it cannot be; row 8 because a must be
produced but is optional.

# a ∈ �q a ∈ �w a ∈ �n α(a) (Possible adornments)

1 No No No �in�
2 No No Yes Ill-formed: no output
3 No Yes No �in�, �out�
4 No Yes Yes �out�
5 Yes No No �in�, �nil�
6 Yes No Yes Ill-formed: no output
7 Yes Yes No �in�, �out�, �nil�
8 Yes Yes Yes Ill-formed: no output

of quoteM (Lines 14–15). Line 14 adorns nID and item
�in� to capture the interaction in which SELLER receives
an rfqM, which binds nID and item, before sending a quote.
Conversely, Line 15 adorns nID and item �out� to capture
that SELLER can send quote without receiving rfqM.

Table 3 captures the possible adornments for each param-
eter in a message.

Generating Message Senders and Receivers Senders are
those roles with a capability for bringing about an event from
which a morph is generated. In Listing 1, SELLER can bring
about quote, so it would be a sender for quoteM.

For receivers, we have some choices. The simplest is to
multicast the message to everyone: those to whom it matters
will read it. However, we can avoid generating superfluous
messages through the following criteria.

First, include receivers to ensure commitment alignment
(Chopra and Singh 2015b). In Listing 1, quote features
in the creates of PromiseGoods and PromiseReceipt, of
which SELLER is debtor and BUYER is creditor. Thus, make
SELLER the sender and BUYER the receiver of quoteM.

Second, include receivers to enable a stated capability,
i.e., if a role needs an attribute binding to exercise a capa-
bility. If so, we make that role a receiver of any message
arising from an event that includes that attribute.

Generating Autonomy Parameters Each generated mes-
sage includes an �out� autonomy parameter to make the
sender’s exercising of its autonomy explicit in the informa-
tion model. Doing so is essential to reflect the social mean-
ing of communications. A suffix “P” indicates such a pa-
rameter, e.g., quoteP for quoteM. This representation makes
the performative nature (Austin 1962) of each communica-
tion explicit. Specifically, even if a role sends a message that
merely relays information from other sources, the sending
of that message is its autonomous action and no one else’s.

Generating Protocol Parameters Clouseau generates pa-
rameter lines. The connection with events is enforced
through the inclusion of relevant autonomy parameters in
a parameter line. In Listing 3, Line 4 includes rfqP and
quoteP and omits acceptP: thus, it is one of the complete
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vectors when PromiseGoods and PromiseReceipt expire be-
cause AcceptQuote is not created.

To select the appropriate parameter lines, we begin from
the completion event in the specification. We convert it to
a quasi disjunctive normal form (DNF) by applying the se-
mantics of Section 3.2 to eliminate the commitment lifecycle
events and to remove any � from within the scope of � or
	. Then, we produce one parameter line for each disjunct,
including the parameters of messages derived from events
that appear positively in the disjunct and excluding the au-
tonomy parameter of any message derived from an event that
appears as the second argument of 	.

Generating a Protocol Definition 18 consolidates the
foregoing intuitions to identify (the, in general, multiple)
message morphs with distinct parameter adornments that
each capability yields, and thus the messages that a speci-
fication yields. This definition adopts the simple approach
of setting the receivers to all roles other than the sender. For
convenience, we use the same name for each message morph
that a capability for an event yields, specifically, appending
“M” to the event name.

Definition 18. Let S = 〈R,B,A,C,Q〉 be a specification.
Let e(�a,�κ, �q) ∈ B and χ = A(x, e, �w, �n) ∈ A. Then, χ
yields message M(λ, x, �y, �p, α,�κ) iff �y = R \ x, �p = �a ∪
{eP} and ∀a ∈ �a : α(a) ∈ α(a) as specified in the column
of Table 3 in the matching row, and α(eP ) = �out�.

Let Mχ be the set of messages that χ yields. The set of
messages that S yields, MS =

⋃
χ∈A Mχ.

Algorithm 1: Protocol Generation
input : Specification S = 〈R,B,A,C,Q〉
output: Protocol G(S) generated from S

1 The name of the protocol is the name of the
specification;

2 The roles of the protocol are the roles of the
specification;

3 Let Completion = DNF of Q;
4 for each disjunct D in Completion
5 output parameter line for D;
6 Output MS , the set of messages that S yields

(Definition 18);

6 Correctness of Protocol Generation

To establish correctness of a protocol generated via Algo-
rithm 1, we first define how the run vectors of a specification
yield the history vectors of a protocol.

We give a series of definitions, including (1) of an obser-
vation of an event instance yielding a message instance; (2)
a run yielding a history; (3) a run vector yielding a history
vector; and (4) a specification yielding a protocol.

Definition 19. Let O(x, �y, e, b, t) be an observation and
μ = N(λ, bμ) be a well-determined instance of a morph
M(λ, xμ, �yμ, �pμ, αμ, �κμ). Then, e yields λ, e � λ, iff λ =
eM , x = xμ, �y = �yμ, and b = bμ.

Run vectors progress in a lockstep manner in their global
timestamp order whereas history vectors progress in asyn-
chrony. The message emissions in a role’s history anchor
the desired correspondence with the events brought about.

Write a role r’s run τ as μ1β1μ2 . . . where each μi is a
possibly empty list of observations O(x, �y, e, b, t), r �= x,
and each βi is an observation O(r, �y, e, b, t) whose doer is r.

Write a role r’s history h as ν0δ0ν1 . . . where each νi is
a possibly empty set of message receptions and each δi is a
single message emission. Then, h is canonical for τ iff (1)
|τ | = |h|; (2) ∀μi : μi � νi; and (3) ∀βi : βi � δi.

Let h′ = μ0δ0μ1 . . .. Then, h′ causally permutes h iff the
δi are unmoved and each μi is a permutation of νi.

Definition 20. A run τ yields a history h, τ � h, iff ∃h′
where h′ causally permutes h, and h′ is canonical for τ .

A run vector Γ yields a history vector H , Γ� H , iff their
respective members correspond: ∀r ∈ R : τ r � hr.

Definition 21. Let S and P be a specification and proto-
col, respectively. S yields P , S � P , iff ∀Γ ∈ [〈S〉]∃H ∈
〈〈P 〉〉 : Γ� H and ∀H ∈ 〈〈P 〉〉∃Γ ∈ [〈S〉] : Γ� H .

Theorem 1 establishes correctness of protocol generation.

Theorem 1. S � G(S).

Proof sketch. First, show by induction on run vectors that for
every ∀Γ ∈ [〈S〉] : ∃H ∈ 〈〈G(S)〉〉such that Γ� H . For the
base case, consider a run vector Γ with a single observation
O(x, �y, e, b, t). This means that A(x, e, �w, �n) ∈ A for base
event e(�a,�κ, �q) ∈ B such that �a = �w (all values must be
generated in this observation). According to Definition 18
m = M(eM, x, �y,�a, α,�κ) where ∀a ∈ �a : α(a) = �out�
is in G(S). Therefore, there exists a history vector H in
which the only message instance sent instantiates m as de-
fined above. Therefore, Γ� H .

For the inductive step, assume for each Γi that is a run
vector over i observations, Γi � Hi. Let O(x, �y, e, b, t) be
the (i+1)st observation. This means that A(x, e, �w, �n) ∈ A
for e(�a,�κ, �q) ∈ B. Let �a′ ⊆ �a be known from Γi. This
means that �a′ ∩ �n = ∅ and �w \ �a′ are the bindings pro-
duced in the observation. Let m′ = M(eM, x, �y, �p, α,�κ)
where �a′ ⊆ �p and ∀a′ ∈ �a′ : α(a′) = �in� and ∀w ∈
�w \ �a′ : α(w) = �out�. From clause (2) of Definition 5, if
some attribute is new for x (not previously observed), then x
cannot previously have observed any of its nonkey attributes
whose determinant includes the new key attribute. Thus m′
is well-determined, as in Definition 17. According to Defi-
nition 18, m′ is in G(S). Therefore, there exists Γi+1 such
that Γi+1 � Hi+1.

Now we show the converse, that is, ∀H ∈ 〈〈G(S)〉〉: ∃Γ ∈
[〈S〉]. The argument is by induction on history vectors. The
empty run vector yields the empty history vector. Let H be
a history vector such that for all strictly shorter H ′, there ex-
ists Γ′ such that Γ′ � H ′. Going from H ′ to H may have
either involved a reception or emission by r of an instance
of M(eM, x, �y, �p, α,�κ). In either case, there exists capabil-
ity A(x, e, �w, �n) ∈ A for base event e(�a,�κ, �q) ∈ B, which
would guarantee that there exists Γ such that Γ� H .

Theorem 2 relates the consistency of a specification and
the safety of a generated protocol.
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Theorem 2. If S is consistent, then protocol G(S) is safe.
Proof sketch. The empty run vector is in [〈S〉] and is con-
sistent. The empty run vector yields the empty history vec-
tor in G(S), which is safe. Assume S is consistent. Let
Γ,Γ′ ∈ [〈S〉] such that that Γ′ extends Γ by one observation
O(x, �y, e, b, t) of instance (e, b, t), of event e(�a,�κ, �q). Fur-
ther, let the observation be effected by x exercising its capa-
bility A(x, e, �w, �n). By Theorem 1, ∃H,H ′ ∈ 〈〈P 〉〉such that
Γ� H and Γ′ � H ′. Therefore, H ′ differs from H in hav-
ing one extra emission—of a message instance m yielded by
observation O. Assume that H is safe. Let �v ⊆ �w such that
each v ∈ �v is not bound in Γ but bound in Γ′, meaning that
O produces the bindings for �v. From Γ� H , we see that no
v ∈ �v is bound in H . By Definition 18, we know that m is an
instance of morph M for A where exactly the �v are �out�.
Hence, H ′ is safe.
Theorem 3. If S is consistent, then protocol G(S) is live.
Proof sketch. Let Γ ∈ [〈S〉] be a run vector. Then Γ satis-
fies S’s completion event Q. Viewing Q in DNF, therefore,
Γ must satisfy at least one disjunct of Q. By construction
of protocol G(S), each parameter line of G(S) yields one
disjunct of Q as well. Let H ∈ 〈〈G(S)〉〉 such that Γ � H .
Since Γ would have bound each attribute in one disjunct of
Q, H would bind the corresponding parameter as well as the
autonomy parameter for each message, thereby completing
the relevant parameter line.

7 Discussion

Our contribution bridges the gap between meaning-based
and operational specifications via a method for generating a
protocol given a Clouseau specification. Clouseau is higher
level than operational languages since it works from mean-
ing abstractions, especially commitments, events, and capa-
bilities. But whereas events in Clouseau are synchronous
(occurring simultaneously for all observers), messaging in
BSPL is asynchronous (the emission of a message is decou-
pled from its reception).

What makes Clouseau significant is that a flexible pro-
tocol supporting asynchrony is in general difficult to con-
struct and maintain by hand. By modeling the meanings pre-
cisely using Clouseau, a designer can avoid that overhead.
Winikoff (2007) and Desai and Singh (2008) highlight the
challenges of computing commitments in asynchronous set-
tings. Although our focus here is on commitments, Clouseau
could be extended to cover other kinds of norms (Chopra
and Singh 2016). Further, although our approach generates
BSPL protocols, it could be adapted to generate protocols
in other languages, e.g., trace expressions (Ferrando et al.
2019) or HAPN (Winikoff, Yadav, and Padgham 2018).

A general and major value proposition of multiagent sys-
tems is to enable sound and secure collaboration between au-
tonomous, heterogeneous parties. The interactions of agents
reflect the autonomy of the principals they represent with-
out divulging the implementation details of the agents and,
importantly, keeping the decision making of the principals
confidential, except as it is revealed through the communica-
tions. Clouseau in this way advances the view of sociotech-
nical systems, e.g., as Chopra and Singh (2016) describe.

Specifically, Clouseau could be applied to model and en-
act meaning-based interactions in virtually any sociotech-
nical setting, especially when extended to additional norm
types (Chopra and Singh 2016). Important problem domains
within its reach include foreign exchange trades based on
commitments (Desai et al. 2007) and health information
governance based on norms (Chopra and Singh 2016). No-
tably, Clouseau could naturally support an alternative to
smart contracts for the purposes of specifying business con-
tracts on blockchain (Singh and Chopra 2019).

Yolum and Singh (2002a) introduced the idea of com-
puting directly with commitments, leading to enhanced
languages and tooling (Winikoff, Liu, and Harland 2005;
Chopra and Singh 2006; Baldoni et al. 2014), and work on
reasoning patterns (Yolum and Singh 2002b; Fornara and
Colombetti 2003; Chopra and Singh 2015a). This body of
work formalizes commitment reasoning in the context of
a conceptually unitary machine and does not tackle asyn-
chrony. Our contribution builds upon the core idea of these
approaches, namely, that messages carry meanings, by sup-
porting decentralized enactments.

Recent work on monitoring commitments (Chesani et al.
2013; Kafalı and Torroni 2018) or norms (Alechina, Dastani,
and Logan 2014; Dastani, Torroni, and Yorke-Smith 2018)
assumes a unitary model with synchronous state changes.
Conceptually, these works are closer to Cupid, which too is
based on a unitary model, and which our contribution ex-
tends to decentralized settings. El-Menshawy et al. (2018)
address the problem of model checking commitments with
real-time constraints. Baldoni et al. (2018) give an approach
for verifying agents against commitments. Such techniques
would be valuable for Clouseau specifications.

MAS programming frameworks, e.g., JaCaMo (Boissier
et al. 2019), address complementary concerns to ours. Ja-
CaMo supports asynchronous messaging, and can support
agents that enact protocols generated by Clouseau. Boissier
et al. (2019) point out that interaction between agents in Ja-
CaMo could be based on direct messaging between them or
via shared artifacts. Indeed, Baldoni et al. (2014) show how
to program agents using a shared JaCaMo artifact to coordi-
nate commitment-based interactions.

In brief, Clouseau is unique in that it unifies the meaning-
based and operational aspects of interaction with respect to
asynchronous communication. Clouseau is motivated with
the expectation that the use of a high-level specification can
enhance productivity and quality in producing and maintain-
ing a protocol that is maximally flexible given a meaning
specification and correct. Previous empirical studies, e.g.,
(Telang, Kalia, and Singh 2015), lend credence to that ex-
pectation. We defer an empirical study of Clouseau’s bene-
fits in a practical setting to future work.
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