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Abstract

Learning by experience in Multi-Agent Systems (MAS) is
a difficult and exciting task, due to the lack of stationarity
of the environment, whose dynamics evolves as the popula-
tion learns. In order to design scalable algorithms for systems
with a large population of interacting agents (e.g., swarms),
this paper focuses on Mean Field MAS, where the number
of agents is asymptotically infinite. Recently, a very active
burgeoning field studies the effects of diverse reinforcement
learning algorithms for agents with no prior information on
a stationary Mean Field Game (MFG) and learn their policy
through repeated experience. We adopt a high perspective on
this problem and analyze in full generality the convergence of
a fictitious iterative scheme using any single agent learning
algorithm at each step. We quantify the quality of the com-
puted approximate Nash equilibrium, in terms of the accu-
mulated errors arising at each learning iteration step. Notably,
we show for the first time convergence of model free learn-
ing algorithms towards non-stationary MFG equilibria, rely-
ing only on classical assumptions on the MFG dynamics. We
illustrate our theoretical results with a numerical experiment
in a continuous action-space environment, where the approx-
imate best response of the iterative fictitious play scheme is
computed with a deep RL algorithm.

1 Introduction

In Multi-agent systems (MAS), several autonomous robots
or agents interact and cooperate, compete or coordinate in
order to complete their task. The difficult nature of the task
at hand combined with the large number of possible situa-
tions imply that the agents have to learn by experience. In
comparison to the single-agent case, the derivation of effi-
cient learning algorithms in this context is difficult due to
the lack of stationarity of the environment, whose dynam-
ics evolves as the population learns (Bu et al. 2008). This
gives rise to research topics lying at the intersection of game
theory and reinforcement learning. Nevertheless, in typical
examples, the number of interacting agents can be very large
(e.g., swarm systems) and defies the scalability properties of
most learning algorithms. For anonymous identical agents,
a key simplification in game theory is the introduction of
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the asymptotic limit where the number of agents is infinite,
leading to the modeling intuition behind the theory of Mean
Field Games (MFG). This calls for an analysis of model free
learning scheme for MAS in terms of MFG.

MFG were introduced by Lasry and Lions (2006a; 2006b)
and Huang, Malhamé, and Caines (2006) in order to model
the dynamic equilibrium between a large number of anony-
mous identical agents in interactions. Such systems encom-
pass the modeling of numerous applications such as traffic
jam dynamics, swarm systems, financial market equilibrium,
crowd evacuation, smart grid control, web advertising auc-
tion, vaccination dynamics, rumor spreading on social me-
dia, among others. In a sequential game theory setting, each
player needs to take into account his impact on the strategies
of the other players. Studying games with an infinite num-
ber of players is easier from this point of view, as the impact
of one single player on the others can be neglected. Hereby,
the asymptotic limit with infinite population size considered
in MFG becomes highly relevant. A solution to a dynamic
MFG is determined via the optimal policy of a representa-
tive agent in response to the flow of the entire population.
A mean field (MF) Nash equilibrium arises when the dis-
tribution of the best response policies over the population
generates the exact same population flow. In most cases, a
MF Nash equilibrium provides an approximate Nash equi-
librium for an analogous game with a finite number of play-
ers (Cardaliaguet 2013; Bensoussan, Frehse, and Yam 2013;
Carmona and Delarue 2018).

In the abundant literature on MFG, most papers con-
sider planning problems with fully informed agents about
the game operation scheme, the reward function and the
MF population dynamics. Only a few contributions fo-
cus on learning problems in MFG, see e.g. (Yin et al.
2010; Cardaliaguet and Lehalle 2018; Hadikhanloo 2018;
Hadikhanloo and Silva 2019) for model based approaches.
Very recently, a rapidly growing literature intends to approx-
imate the solution of stationary MFG in the realistic set-
ting where agents with no prior information on the game
learn their best response policy through repeated experience.
These contributions restrict to a stationary setting and fo-
cus on specific Reinforcement Learning (RL) algorithms:
Q-learning (Guo et al. 2019; Yang et al. 2018b), fictitious
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play (Mguni, Jennings, and Munoz de Cote 2018) or pol-
icy gradient methods (Subramanian and Mahajan 2019), and
sometimes rely on hardly verifiable assumptions.

In this paper, we take a step back and adopt a general
high perspective on the convergence of model free learning
algorithms in possibly non-stationary MFG and emphasize
their potential for MAS with a large number of agents. Our
approach investigates how any single-agent learning algo-
rithm can perform in an MFG setting, in order to learn a
(possibly approximate) Nash equilibrium, via repeated ex-
periences and without any prior knowledge. Namely, we
quantify precisely how the convergence of model free it-
erative learning algorithms reduces to the error analysis of
each learning iteration step, in analogy with how the con-
vergence of RL algorithms reduces to the aggregation of
repeated supervised learning approximation errors (Farah-
mand, Szepesvári, and Munos 2010; Scherrer et al. 2015).
For this purpose, our approach relies on a model free Ficti-
tious Play (FP) iterative learning scheme for repeated games,
where each agent calibrates its belief to the empirical fre-
quency of the previously observed population flows. The FP
approach is very natural when agents are trying to learn how
to play a game by experience, while interacting with others.
Before a new round of experience, they need to anticipate
the behavior of the other players, and FP ergodic averaging
is nicely designed for this purpose. This algorithm is typi-
cally useful for building from experience collaboration a co-
operation patterns in a MAS using a decentralized learning
scheme. In our framework of interest, all agents are identical
(as usual in MFG), and we consistently suppose that they use
the same learning scheme. Whenever the agents can com-
pute their exact best response to any population flow, FP is
proved to reach asymptotically a Nash equilibrium in some
(but not all (Shapley 1964)) classes of games, such as first
order monotone MFG (Hadikhanloo 2018). However, in a
realistic setting, the agents are not able to compute their ex-
act best response and can only attain an approximate version
of it. This induces at each iteration a learning approximation
error, which propagates through the FP learning scheme.

The main contribution of this paper is theoretical, as we
provide a rigorous study of the error propagation in Ap-
proximate FP algorithms for MFGs, using an innovative line
of proof in comparison to the standard two time scale ap-
proximation convergence results (Leslie and Collins 2006;
Borkar 1997). Our convergence results are derived under
easily verifiable assumptions on possibly non-stationary
MFG dynamics and cost, which are highly classical in the
MFG literature (namely 1st order monotone MFGs). This al-
lows discussing the convergence to a (possibly approximate)
MF Nash equilibrium, when using any standard single-agent
learning algorithm as an inner step embedded in a FP iter-
ative scheme. Especially, our theoretical framework encom-
passes the convergence of RL algorithms to MFG equilibria
in non stationary settings, which, as far as we know, is new
in the literature. We illustrate our theoretical results on an
authorative MFG numerical experiment on crowd conges-
tion, where the approximate best response of the iterative
FP scheme is computed with a deep RL algorithm. This pro-
vides for the first time a model free learning example on

MFG in a continuous state-action environment.

2 Background

Mean Field Games. MFGs were introduced by Lasry and
Lions (2006a; 2006b) and by Huang, Malhamé, and Caines
(2006) and correspond to the asymptotic limit of a differen-
tial game, where the number of agents is infinite. Since all
agents are assumed to be identical and indistinguishable, in-
dividual interactions are irrelevant in the limit and only the
distribution of states matters (see (Carmona and Delarue
2018) for a complete overview). Most of the MFG literature
is displayed in continuous time, but we choose to present
our analysis in a discrete time setting in order to alleviate
the presentation and emphasize the fruitful connections with
the learning literature.

Finding a Mean Field Nash equilibrium boils down to
identifying the equilibrium distribution dynamics of the pop-
ulation as well as the best response (or optimal policy) of a
representative agent to this population mean field flow. Since
the number of players is infinite, each agent has an infinites-
imal influence on the population distribution. Yet, since all
agents are rational, at equilibrium the state distribution gen-
erated by the optimal policy must coincide with the popula-
tion distribution.
Notations. Let X and A be compact convex subsets of R�

and Rd respectively, which represent the state and action
spaces common to every agent. Let T > 0 be a time hori-
zon and let T denote the time sequence {0, 1, . . . , T}. We
denote by P(X ) the set of probability measures on X and
by MT = P(X )T the set of all possible flows of population
state distributions μ = (μ0, μ1, ..., μT ). The initial distribu-
tion of the population is an atomless measure on X denoted
by μ0. For μ ∈ MT , μt represents the distribution at time t
of the state occupation of the entire population.
State dynamics & Mean field population flow. At any time
t ∈ T, each agent belongs to a state xt ∈ X and picks an
action at ∈ A. For a sequence of actions a := (at)t∈T,
the dynamics of x is governed by a Markov Decision Pro-
cess (MDP) with (possibly non-stationary) transition den-
sity pt(.|xt, at, μt) parameterized by the mean field flow
μ ∈ MT of the population. This indexation transcribes the
interactions with the other agents, through their state distri-
bution μt. Typically, the dynamics of x is described by an
equation of the form

xt+1 = xt + b(xt, at, μt) + εt+1, (1)

where b : X×A×P(X ) → X is a drift function and (εt)t≥1

is a dynamic source of noise. We stress that the mean field
term μt represents the whole population distribution and not
just the average state, as e.g. in (Yang et al. 2018b).

We denote by ΠT the set of policies (or controls) π :
T × X → A which are feedback in the state: at time t,
an agent using policy π while in state xt plays the action
at = π(t, xt). The process x controlled by π ∈ ΠT is de-
noted xπ .
Agent’s reward scheme. An infinitesimal agent starting at
time 0 in state x0 ∈ X chooses a policy π ∈ ΠT in or-
der to maximize the following discounted expected sum of
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rewards:

J(x0, π, μ) := E

[
T−1∑
t=0

γtr(xπ
t , μt, at)

]
, (2)

while interacting with the population MF flow μ ∈ MT . At
time t, the agent’s rewards are impacted by μt, which repre-
sents the aggregate state distribution of all the other agents
(i.e. of the whole population). Since the agents are anony-
mous, only the MF distribution flow μ of the states matters.

As μ0 denotes the state distribution at time 0, the average
reward for a representative agent is given by

J(π, μ) := Ex0∼μ0
[J(x0, π, μ)] , (3)

when this agent uses policy π ∈ ΠT , while the mean field
population flow is μ.

Definition 1 (Best response). A policy π∗ maximizing
J(., μ) is called a best response of the representative agent
to the MF population dynamic flow μ.

MF Nash Equilibrium. While interacting, the agents may
or may not reach a Nash equilibrium, whose definition,
based on the previous best response policy characterization,
reads as follows:

Definition 2 (Mean Field Nash equilibrium). A pair
(π∗

t , μ
∗
t )t∈T consisting of a policy and a MF population dis-

tribution flow is called MF Nash equilibrium if it satisfies

• Agent rationality: π∗ is a best response to μ∗;
• Population consistency: for all t ∈ T, μ∗

t is the distribu-
tion of x∗

t , starting with distribution μ0 and controlled by
policy π∗.

Namely, if the mean field population flow is μ∗, the policy
π∗ is optimal, and if all the agents play according to π∗,
the induced mean field population flow coincides with μ∗.
Hereby, (π∗, μ∗) identifies to an MF Nash equilibrium.

Observe that reaching an MF Nash equilibrium requires
the computation of the exact best response policy, which can
be difficult in practice. We are concerned with the design
of an iterative learning scheme, where the available best re-
sponse is partially accurate and typically approximated by
RL through repeated experiences. For example, this realistic
situation arises when agents are repeatedly optimizing their
daily driving trajectories, without any prior information on
the traffic jam dynamics.

3 Fictitious Play Algorithms for MFG

Fictitious play (Robinson 1951) is an iterative learning
scheme for repeated games, where each agent calibrates
its belief to the empirical frequency of previously observed
strategies of other agents, and plays optimally according to
its beliefs. This constitutes its best response. Even in simple
two-player games, the convergence of FP to a Nash equilib-
rium is not guaranteed (Shapley 1964). However, the con-
vergence of FP has recently been proved for some classes
of MFG (Hadikhanloo 2018; Cardaliaguet and Hadikhanloo
2017).

Yet, in most cases, agents do not have access to the ex-
act best response policy π∗ but use an approximate ver-
sion of it instead, in the spirit of (Leslie and Collins 2006;
Pérolat, Piot, and Pietquin 2018). At iteration n, the agent
has only access to an approximate version π̂n+1 of the best
response π∗,n+1 to the anticipated mean field flow μ̄(n), de-
fined precisely in Algorithm 1.
At iteration step n, the learning scheme induces an average
additional error �n defined as

�n := J(π∗,(n+1), μ̄(n))− J(π̂(n+1), μ̄(n)) ≥ 0 , (4)

for n ∈ N. Observe that �n identifies to the expected loss
over the entire population at step n, when replacing the
the exact best response π∗,(n+1) by the approximate policy
π̂(n+1).
In Section 4 below, we quantify the propagation of approx-
imating errors �n and clarify the convergence properties of
Algorithm 1 for any type of learning procedure at each inter-
mediate step. The specific setting where the approximate op-
timal policy is computed using single-agent RL algorithms
is discussed in Sec 4.3.

Algorithm 1: Approximate Fictitious Play for MFG
Data: An initial distribution μ0; an initial flow of

distributions μ̄(0); a number of steps N .
Result: A flow of distribution μ and a policy π.

1 begin
2 for n = 0, 1, . . . N − 1 do

3 Compute π̂(n+1), the approximate response
policy against μ̄(n)

4 Compute μ̂(n+1), the mean field flow associated
to π̂(n+1) starting with μ̂

(n+1)
0 = μ0

5 Update π̄(n+1), the uniformly randomized
policy over (π̂(k))k=1,...,n+1

6 Update μ̄(n+1) = n
n+1 μ̄

(n) + 1
n+1 μ̂

(n+1)

7

8 return (μ̄(N), π̄(N))

Approximate Nash equilibrium At each step n, we de-
note by π̄(n) the representative agent belief on the aggregate
population policy, defined as an equally randomized version
of all previous approximate best responses (π̂(k))k=1,...,n:
for each t ∈ T and x ∈ X , π̄(n)(t, x) ∈ P(A) is the
probability distribution on the set of actions A according to
which the player picks uniformly at random an element of
{π̂(1)(t, x), . . . , π̂(n)(t, x)}.
With a slight abuse of notation, we write

J(x0, π̄
(n), μ̄(n)) :=

1

n

n∑
k=1

J(x0, π̂
(k), μ̄(n)) , n ∈ N .

and modify the definition of J in (3) accordingly. Observe
for later use that, by construction, μ̄(n) defined in Algo-
rithm 1 coincides with the population MF flow induced by
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the policy π̄(n). In order to assess the quality of (μ̄(n), π̄(n))
as an (approximate) MF Nash equilibrium, we introduce, for
n ∈ N,

en := J(π∗,(n+1), μ̄(n))− J(π̄(n), μ̄(n)) ≥ 0 .

The exploitability en quantifies at iteration n the expected
gain for a typical agent, when shifting its belief π̄(n) to the
exact best response π∗,(n+1), while interacting with the MF
population flow μ̄(n). After n iterations in Algorithm 1, en
is a quantitative measure of the quality of (μ̄(n), π̄(n)) as an
MF Nash equilibrium. For the sake of clarification, let us
introduce a more precise weaker notion of MF Nash equi-
librium, inspired by (Carmona 2004).

Definition 3 (Approximate MF Nash equilibrium). For ε >
0 and δ ∈ (0, 1), a pair (π∗

ε,δ, μ
∗
ε,δ) consisting of a policy

and a population distribution flow is called an (ε, δ)−MF
Nash equilibrium if

μ0

({
x0 ; J(x0, π

∗
ε,δ, μ

∗
ε,δ) ≥ J(x0, π

′, μ∗
ε,δ)− ε, ∀π′})

is at least 1− δ, and μ∗
ε,δ coincides with the MF distribution

flow starting from μ0, when every agent uses policy π∗
ε,δ .

An (ε, δ)−MF Nash equilibrium identifies to a weak equi-
librium which reveals ε-optimal for at least a fraction (1−δ)
of the population. We are now in position to clarify how the
exploitability en quantifies the quality of (μ̄(n), π̄(n)) as an
MF Nash equilibrium.

Theorem 4. If 0 ≤ en ≤ ε2 for some n ∈ N, then
(μ̄(n), π̄(n)) is an (ε, ε)-MF Nash equilibrium in the sense
of Definition 3. If en goes to 0 as n → +∞, any accumula-
tion point of μ̄(n) is a MF Nash equilibrium

Proof. Fix n ∈ N and assume 0 ≤ en ≤ ε2. Let us introduce

ϕ(x0) := J(x0, π
∗,(n+1), μ̄(n))− J(x0, π̄

(n), μ̄(n)) ≥ 0,

as π∗,(n+1) is the best response to the MF flow μ̄(n).
Using Markov’s inequality and the bound on en we obtain

μ0 ({x0 ∈ X : ϕ(x0) ≥ ε}) = Px0∼μ0
[ϕ(x0) ≥ ε]

≤ Ex0∼μ0
[ϕ(x0)]

ε
=

en
ε
,

which is smaller than ε. Collecting the terms and using the
definition of ϕ, we deduce that

μ0

({
x0; J(x0, π̄

(n), μ̄(n)) ≥ J(x0, π
∗,(n+1), μ̄(n))− ε

})
is at least 1 − ε, so that (π̄(n), μ̄(n)) is an (ε, ε)-MF Nash
equilibrium.
The second part of the theorem follows directly.

4 Error propagation & Nash equilibrium

approximation for first order MFG

Since the exploitability en identifies to a relevant quality
measure of Algorithm 1 after n iterations, we now evalu-
ate how the individual learning errors (�k)0≤k≤n aggregate
over en. For the sake of simplicity, we focus our discussion

on 1st order MFG, i.e. without source of noise in the dynam-
ics. This allows us to build our reasoning on the analysis of
(Hadikhanloo 2018, Chapter 3) and to avoid a limitative re-
striction to second order games with a potential structure,
for which similar results should hold in that setting as well,
see Cardaliaguet and Hadikhanloo (2017).

4.1 First order mean field game

The state (xt)t evolves in Rd with dynamics (1), where we
take b(x, a, μ) = a, and (εt)t = 0. In other words, each
agent controls exactly its state variation between two time
steps and does not endure any noise. While interacting with
a MF flow μ ∈ MT , each agent intends to maximize the
classical reward scheme given by (2) with a running reward
at time t of the form:

r(xπ
t , μt, at) �→ r̃(xπ

t , at) + r̄(xπ
t , μt), (5)

where the extra r̄ captures the impact of the other agents’ po-
sitions. In Sec. 5, we provide in particular a congestion ex-
ample where r̄ models an appeal for non-crowded regions.
This type of conditions translates into the so-called Lasry-
Lions monotonicity condition Lasry and Lions (2006a;
2006b) which ensures uniqueness of MF Nash equilibrium.
More precisely, existence and uniqueness of solution to the
1st order MFG of interest hold under the following classical
set of assumptions.

Assumption 1. For some constant C, the reward functions
r̃ and r̄ satisfy:

• For any x ∈ X , the map r̃(x, .) is twice differentiable and

1

C
Id ≤ Daar̃(x, .) ≤ CId ,

• The function r̄ is continuous on : X × P(X ) and r̄(.,m)
is C1 on X ,

• We have
‖r̃(., .)‖∞ + ‖r̄(., .)‖∞ ≤ C ,

• The Lasry-Lions monotonicity condition holds: for all
m1,m2 ∈ P(X ),∫

X
[r̄(.,m1)− r̄(.,m2)] d[m1 −m2] < 0 . (6)

4.2 Error propagation in the Fictitious Play
algorithm

We now investigate how the learning error (�n)n propagates
through FP for any learning algorithm, while Sec 4.3 focuses
on the specific case where the best response is approximated
via RL.
The key ingredient of FP iterative learning schemes is the
quick stabilization of the sequence of beliefs (μ̄(n))n.

Lemma 5. Under Assumption 1, the FP MF flow μ̄(n) sat-
isfies:

d1(μ̄
(n), μ̄(n+1)) ≤ C

n
, n ∈ N, for some C > 0 ,

where d1 is the Wasserstein distance.
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The proof follows from a straightforward adaptation of
(Hadikhanloo 2018, Lemma 3.3.2) to our setting.

As the sequence of beliefs μ̄n stabilizes, the impact of re-
cent learning errors (�n) reduces and we are in position to
quantify the global error en of the algorithm after n itera-
tion steps. This is the main result of the paper, whose proof
interestingly differs from the more classical two-time scale
approximation argument (Borkar 1997).
Theorem 6. Under Assumption 1, the Nash equilibrium
quality (en)n satisfies both estimates: for all n ∈ N

en ≤ C1

n
+

C1

n

n∑
i=1

d1(μ
∗,(i+1), μ̂(i+1)) +

1

n

n∑
i=1

�i, (7)

en ≤ �n +
C2

n
+

C2

n

n∑
i=1

d1(μ̂
(i+1), μ̂(i+2)) +

n∑
i=1

i+ 1

n
�i,

(8)
for some constants C1 and C2.

Sketch of Proof. Our argumentation builds up on the exact
FP analysis of (Hadikhanloo 2018, Theorem 3.3.1), which
hereby extends to the approximate best response setting.
Let us introduce the approximate exploitability

ên := J(π̂(n+1), μ̄(n))− J(π̄(n), μ̄(n)) ≥ 0 ,

so that en = �n + ên, for n ∈ N. In order to control the
exploitability en, we focus our analysis on ên. Denoting Jn :
x ∈ X T �→ J(x0, (xt+1 − xt)t=0,...,T−1, μ̄

(n)), we get:

ên+1 − n

n+ 1
ên =

∫
XT

Jn+1d(μ̂
(n+2) − μ̄(n+1))

− n

n+ 1

∫
XT

Jnd(μ̂
(n+1) − μ̄(n))

= n

∫
XT

(Jn+1 − Jn)d(μ̄
(n+1) − μ̄(n))

+

∫
XT

Jn+1d(μ̂
(n+2) − μ̂(n+1)) ,

where the last equality follows from the definition of μ̄(n).
The monotonicity of the reward in Assumption 1 implies

ên+1 − n

n+ 1
ên ≤

∫
XT

Jn+1d(μ̂
(n+2) − μ̂(n+1)).

Besides, Assumption 1 together with the compactness of X
and (Hadikhanloo 2018, Lemma 3.5.2) and Lemma 5 imply
that Jn+1 − Jn is C/n-Lipschitz, leading to

ên+1 − n

n+ 1
ên ≤

∫
XT

Jnd(μ̂
(n+2) − μ̂(n+1))

+
C

n
d1(μ̂

(n+2), μ̂(n+1)) .

As π∗,(n+1) is the best response to the mean field flow μ̄(n),
recalling the definition of �n in (4), we deduce

ên+1 − n

n+ 1
ên ≤ �n +

C

n
d1(μ̂

(n+2), μ̂(n+1)).

Together with estimate en = �n + ên and (Hadikhan-
loo 2018, Lemma 3.3.1), we derive (8) and conclude the
proof.

Bound (7) indicates a nice averaging aggregation of the
learning errors (�n)n, but requires a strong additional con-
trol on the Wasserstein distance between the MF flows gen-
erated by both approximate and exact best responses. Such
estimate is readily available for the numerical approximation
of convex stochastic control problems (Kushner and Dupuis
2013) but less classical in the RL literature, as discussed
in Sec 4.3. When such an estimate is not available, Bound
(8) provides a slower n�n convergence rate, up to a weak
d1-regularity of the approximate best response in terms of
the mean field flow μ̄(n), recall Lemma 5. Such estimate is
highly classical in the setting of convex stochastic control
problems with Lipschitz rewards (Fleming and Rishel 2012;
Kushner and Dupuis 2013).

At finite distance, the following corollary sums up these
properties in terms of MF Nash equilibrium.

Corollary 7. Under Assumption 1, if ever
1
n

∑n
i=1

(
�i + C1d1(μ

∗,(i), μ̂(i)))
)

or 1
n

∑n
i=1

(
(i + 1)�i +

C2d1(μ̂
(i+1), μ̂(i)))

)
is bounded by ε2/2, (μ̄(n), π̄(n)) is an

(ε, ε)-MF Nash equilibrium, for n large enough.

In a similar fashion, we can conclude on the general
asymptotic convergence of Algorithm 1 to the unique MF-
Nash equilibrium, before discussing the specific implica-
tions for RL best response approximation schemes.

Corollary 8. Under Assumption 1, the approximate FP
algorithm converges to the unique MF Nash equilibrium
whenever one of the following two conditions holds:

1. The approximate best response update procedure μ̄(n) �→
μ̂(n+1) is continuous in d1, and n�n → 0, as n → ∞ ;

2. The learning and policy approximation errors �n and
(d1(μ

∗,(n), μ̂(n)))n converge to 0.

The convergence of the sequence (μ̄(n))n follows from
the tightness and pre-compactness property of this collection
of measures with respect to the Wasserstein distance, see e.g.
Remark 3.5.3 in (Hadikhanloo 2018).

4.3 Discussion on the convergence for Best
Response RL approximation

The result in Theorem 6 is general and relies on standard as-
sumptions of MFGs. It also relies on a good enough control
of the approximation error on the best response at each it-
eration. Here, we discuss to what extent existing theoretical
results for RL algorithms allow satisfying this assumption.

As stated in Corollary 8, in order for the approximate
FP to converge to the exact MF Nash equilibrium, the ap-
proximate best response should converge quickly enough to
the best one, depending on the number of iterations. From
an RL perspective, this would require being able to com-
pute the approximate optimal policy to an arbitrary preci-
sion, with high probability. As far as we know, such a result
is possible only when an exact representation of any value
function is possible, that is, in the tabular setting which im-
poses finite state and action spaces. Notably, convergence
and rate of convergence of Q-learning-like algorithms have
been studied in the literature, see e.g. (Szepesvári 1998;
Kearns and Singh 1999; Even-Dar and Mansour 2003; Azar
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et al. 2011). For example, the speedy Q-learning algorithm
requires O(ln(K)/(ε2(1− γ)4)) steps to learn an ε-optimal
state-action value function with high probability, with K the
number of state-action couples. According to Corollary 8, if
the error is in O(n−α) with α > 1 (and if we have continuity
in d1), then the scheme converges to the Nash equilibrium.
This suggests using O(ln(K)n2α/(1−γ)4) steps for the RL
agent at iteration n. Yet, this kind of results does not provide
guarantees on the continuity in d1.

According to Corollary 7, bounding the learning errors
and the distance between two iterates of the distribution
is sufficient to reach an approximate Nash equilibrium. As
approximate FP can be seen as repeated RL problems,
RL (or approximate dynamic programming) can be seen
as repeated supervised learning problems, and the propa-
gation of errors from supervised to RL is a well studied
field, see e.g. (Farahmand, Szepesvári, and Munos 2010;
Scherrer et al. 2015). Basically, if the supervised learning
steps are bounded by some O(ε), then the learning error of
the RL algorithm is bounded by O(Cε/(1 − γ)2), where
C is a so -called concentrability coefficient, measuring the
mismatch between some measures. In principle, we could
then propagate the learning error of the supervised learn-
ing part up to the FP error, through the RL error. However,
these results do not provide any guarantees on the proxim-
ity between the estimated optimal policy and the actual one
(which would be a sufficient condition for the proximity be-
tween population distributions); it only provides a guaran-
tee on the distance between their respective returns. This
is due to the fact that in RL, the optimal value function is
unique, but not the optimal policy. A perspective would be
to consider regularized MDPs (Geist, Scherrer, and Pietquin
2019), where the optimal policy is unique (and greediness is
Lipschitz). Yet, this would come at the cost of a bias in the
Nash equilibria. The approach in (Guo et al. 2019) somehow
builds partially on this idea in their specific learning scheme.

5 Numerical illustration

As an illustration, we consider a stylized authoritative MFG
model with congestion in the spirit of Almulla, Ferreira, and
Gomes (2017). This application should be seen as a proof of
concept showing that the method described above can be ap-
plied beyond the framework used for our theoretical results.
We compute a model free approximation of the MFG solu-
tion combining Algorithm 1 with Deep Deterministic Pol-
icy Gradient (DDPG) (Lillicrap et al. 2016). As far as we
know, this is the first numerical illustration of model free
deep RL Algorithm for MFG with continuous states and ac-
tions. Our numerical results also demonstrate the empirical
convergence of the Fictitious RL scheme in a larger setting,
even when the MFG is of not first order type.

As usual in RL, instead of (2) we consider the problem in
infinite horizon with the following discounted reward:

J(x0, π, μ) := E

[ ∞∑
t=0

γtr(xπ
t , μt, at)

]
, (9)

when an infinitesimal player interacts with the population
MF flow μ = (μ0, μ1, μ2, . . . ). The goal is to learn the pol-

icy which is optimal in the long run, i.e., when the behavior
of the population becomes stationary.

Environment Each agent has a position x located on the
torus T = [0, 1] with periodic boundary conditions (for sim-
plicity of explicit solution), whose dynamics is governed by
xt+1 = xt + atΔt +

√
Δtεt, t = 0, 1, . . . , where Δt is

the time step of the continuous time process. It receives the
per-step reward

r(xt, μt, at) = r̃(xt)− 1

2
|at|2 − log(μt) ,

where the last term motivates agents to avoid congestion,
i.e. the proximity to a region with a large population den-
sity. In the continuous time setting with no discounting, a
direct PDE argument provides the ergodic solution (a∗, μ∗)
in closed form (Almulla, Ferreira, and Gomes 2017)

a∗ : x �→ π cos(2πx) and μ∗ : x �→ e2 sin(2πx)∫
T
e2 sin(2πy)dy

,

(10)
when the geographic reward is of the form r̃(xt) =
2π2 sin(2πxt)−2π2 cos(2πxt)

2+2 sin(2πxt). This closed
form solution offers a nice benchmark for our experiments
and allows to measure the errors made by our algorithm.

Algorithm 2: Fictitious Play for continuous state and
action Mean Field Games

Data: Number of FP iterations NFP , an empty buffer
of trajectories RFP , the number of trajectories
Ntrajectories FP to add to the replay buffer RFP per
steps

Result: a density μ̄(NFP ) and a strategy π̂(NFP ).
1 begin
2 for n = 1, . . . , NFP do

3 Compute a best response π̂(n) using DDPG
4 Collect trajectories Ntrajectories FP of the strategy

π̂(n) and add them to the buffer RFP

5 Learn the population mean field distribution
μ̄(n) by Monte Carlo samples on RFP

6 Compute the uniformly randomized policy π̄(n)

on (π̂(1), . . . , π̂(n))

7 return μ̄(NFP ) and π̄(NFP )

Implemented Algorithm Model free FP for MFGs takes
a somehow similar approach as Lanctot et al. (2017) in the
sense that we estimate the best response using a model free
RL algorithm (namely DDPG). However we do not maintain
those best responses as in (Lanctot et al. 2017) but rather
learn the population MF flow of the distribution of the rep-
resentative agents. The best response approximation through
DDPG and the estimation of the population MF are left in
the Algorithm. We ran 30000 trajectories of DDPG with a
trajectory length of 300. The noise used for exploration is a
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Figure 1: From left to right: 1) the continuous time explicit solution for γ = 1, 2) the discrete time learned distribution of the
policy with γ = 0.95 and Δt = 0.05. 3) the L2 error between the explicit solution and the density for each FP iterations, 4) the
L2 error between the control and the optimal control and for each FP iterations on a trajectory.

centered normal noise with variance 0.02 and we used Adam
optimizers with 0.001 starting learning rate and τ = 0.01.
At each iteration of FP, we added Ntrajectories FP = 3000 tra-
jectories of length 1000 to the replay buffer. Finally, we es-
timated the density using 100 classes and doing 30000 steps
of Adam (with 0.001 initial learning rate).

Results. Figure 1 presents the learned equilibrium com-
puted for γ = 0.95, N = 90 and uniform initial distribution,
as well as the continuous time closed form ergodic solution
for γ = 1, see (10). We emphasize that the variation in γ
together with the discrete/continuous time difference setting
implies that the theoretical solutions to both problems are
close but do not exactly coincide. We keep this benchmark
since no ergodic closed form solution is available for γ �= 1.
As observed on Figure 1, both ergodic explicit and learned
distributions and controls are close. As expected, the density
of players is larger around the point of maximum of the re-
ward but the distribution is not highly concentrated due to
the logarithmic penalty encoding aversion for congested re-
gions. More precisely, Figure 1 indicates that the L2 errors
between the distributions and the controls decrease with the
number n of iterations. The convergence of control distribu-
tions echoes to the discussion on error propagation in Sec-
tion 4.2. This clearly illustrates the numerical convergence
of the Deep RL FP mean field algorithm.

6 Related work

The related literature is as follows. Recently, model free RL
algorithms for solving MFGs were analyzed in the following
papers: Guo et al. (2019) and Tiwari, Ghosh, and Aggarwal
(2019) study Q-learning, Mguni, Jennings, and Munoz de
Cote (2018) consider FP but contains several inaccuracies,
as already pointed out in Subramanian and Mahajan (2019),
which focuses on policy gradient methods. However, their
studies are restricted to a stationary setting and focus on par-
ticular RL algorithms. Their convergence results hold under
assumptions that are often hard to verify in practice. Al-
though not focusing on an MFG, Yang et al. (2018b) uses
the idea of MF approximation by considering interactions
through the empirical mean action. Numerical illustrations
provided in all these papers are in a finite state-action set-

ting, while we present a numerical example in a continuous
state-action setting. On a different note, Yang et al. (2018a)
studies the link between MFG and inverse RL. Some authors
also study “learning” algorithms which use the full knowl-
edge of the model (and hence are not model-free): Yin et al.
(2010) studied a MF oscillator game while Hu (2019) pro-
posed a decentralized deep FP learning architecture for large
MARL, whose convergence holds on linear quadratic MFG
examples with explicit solution and small maturity.

7 Conclusion and future research
In comparison to the existing literature focusing on specific
RL algorithms for MFGs, we took a step back and offer
a general perspective on the error propagation in iterative
scheme for MFG, using any learning algorithm. We pre-
sented a rigorous convergence analysis of model free FP
learning algorithm for MF Agent systems, encompassing
cases where the best response is approximated using any
single agent learning algorithm as well as non-stationary
settings. We showed how the convergence of model free it-
erative FP algorithm reduces to the error analysis of each
learning iteration step, as the convergence of RL algorithm
reduces to the aggregation of repeated supervised learning
approximation errors (Farahmand, Szepesvári, and Munos
2010; Scherrer et al. 2015). Our theoretical setting covers
for the first time the consideration of non-stationary MFG
and relies on reasonable and verifiable assumptions on the
MFG of interest. The convergence is illustrated for the first
time by numerical experiments in a continuous state-action
setting, based on deep RL algorithm. Our analysis motivates
and properly justifies the use of asymptotic Mean Field ap-
proximation for the study of learning by experience schemes
in Multi-Agent systems, with a large number of agents.
For RL approximation schemes, our analysis suggests a
much faster convergence rate, whenever the best response
approximation quality can be controlled in Wasserstein dis-
tance. This kind of estimate is classical in the numerical ap-
proximation of stochastic control literature but currently not
available in the RL literature. The derivation of such esti-
mate deserves to be addressed in future research papers. Fi-
nally, we focused on convergence properties for a central-
ized Multi-Agent learning algorithm, paving the way for ad-
dressing such property for a more relevant decentralized one.
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