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Abstract

Estimating class proportions has emerged as an important di-
rection in positive-unlabeled learning. Well-estimated class
priors are key to accurate approximation of posterior distribu-
tions and are necessary for the recovery of true classification
performance. While significant progress has been made in the
past decade, there remains a need for accurate strategies that
scale to big data. Motivated by this need, we propose an intu-
itive and fast nonparametric algorithm to estimate class pro-
portions. Unlike any of the previous methods, our algorithm
uses a sampling strategy to repeatedly (1) draw an example
from the set of positives, (2) record the minimum distance to
any of the unlabeled examples, and (3) remove the nearest
unlabeled example. We show that the point of sharp increase
in the recorded distances corresponds to the desired propor-
tion of positives in the unlabeled set and train a deep neural
network to identify that point. Our distance-based algorithm
is evaluated on forty datasets and compared to all currently
available methods. We provide evidence that this new ap-
proach results in the most accurate performance and can be
readily used on large datasets.

Introduction

Positive-unlabeled, or PU learning, has emerged as an ac-
tive and important area of machine learning research (Denis
1998; Denis, Gilleron, and Letouzey 2005; du Plessis, Niu,
and Sugiyama 2014; Hsieh, Natarajan, and Dhillon 2015;
Chang et al. 2016). It generally refers to a binary classifi-
cation setting where learning discriminators between posi-
tive and negative examples is based on the data that contain
positively labeled examples and a set of unlabeled examples
that contain an unknown mix of positives and negatives. The
PU framework is well-suited to open world problems and
is common in science and commerce. Typical applications
are found in molecular biology, medicine, social networks,
text mining, online advertising, etc. (Liu et al. 2003; Lee and
Liu 2003; Yu, Han, and Chang 2004; Elkan and Noto 2008;
Ward et al. 2009).

The focus of this work is on the positive-unlabeled set-
ting and the problem of estimating fractions of positive and
negative examples, or class priors, in unlabeled data. Such
a task is often considered in sciences to understand the
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prevalence of natural, physical or social phenomena or in
business to characterize the userbase and can therefore be
an integral part of knowledge generation and decision sup-
port. However, class prior estimation also has instrumental
value in machine learning research as a key component in
the development and evaluation of classification models in
the PU setting (Elkan and Noto 2008; Ward et al. 2009;
Menon et al. 2015; Jain, White, and Radivojac 2016; 2017).

Following Elkan and Noto (2008), we will refer to the
models developed to discriminate between positive and neg-
ative examples as traditional classifiers and the models that
discriminate between positive and unlabeled examples as
nontraditional classifiers. Surprisingly, an optimal nontradi-
tional model is simultaneously an optimal traditional model
for a broad class of loss functions and performance mea-
sures, including classification accuracy and the area under
the ROC curve (Reid and Williamson 2010). However, the
task of approximating posterior distributions is substantially
more difficult and requires estimation of class priors in the
set of unlabeled examples in order to transform a nontradi-
tional classifier into a traditional classifier (Ward et al. 2009;
Jain, White, and Radivojac 2016).

Another task requiring knowledge of class priors is ac-
curate estimation of classification performance. Even in the
cases where optimal traditional and nontraditional classi-
fiers are equivalent, the true traditional performance can
wildly differ from its nontraditional estimates (Jain, White,
and Radivojac 2017; Ramola, Jain, and Radivojac 2019). It
has been recently shown that many true performance mea-
sures can be recovered if one has well-estimated class pri-
ors (Menon et al. 2015; Jain, White, and Radivojac 2017;
Ramola, Jain, and Radivojac 2019). Furthermore, certain
performance metrics, such as balanced error rate and the
Matthews correlation, permit optimal thresholding of the
raw prediction scores based solely on nontraditional evalua-
tion, whereas metrics such as error rate and F1 score do not
guarantee optimal performance (Ramola, Jain, and Radivo-
jac 2019). The latter group of metrics, together with sensitiv-
ity, specificity, and precision, require class prior estimation
for the thresholding task.

Nonparametric estimation of mixing proportions in the
PU setting has been actively researched. Important direc-
tions include (non)identifiability results (Ward et al. 2009;
Scott and Blanchard 2009; Blanchard, Lee, and Scott 2010;
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Jain et al. 2016) and estimation algorithms (Elkan and Noto
2008; du Plessis and Sugiyama 2014; Sanderson and Scott
2014; Jain et al. 2016; Ramaswamy, Scott, and Tewari 2016;
du Plessis, Niu, and Sugiyama 2017; Bekker and Davis
2018), as reviewed in the Background section. Although
estimation algorithms have advanced over the past decade,
there remain issues in both accuracy and scalability. To ad-
dress these problems, we propose an intuitive nonparametric
algorithm based on sampling that only requires finding near-
est neighbors between positive and unlabeled examples. We
evaluate all currently available algorithms on the largest set
of datasets thus far, ranging from low-dimensional to high-
dimensional. We provide evidence that the new algorithm
performs very well against the best alternatives.

The remainder of this paper is structured as follows. We
introduce all important concepts, provide problem specifica-
tion and review related work in the Background section. We
then present our algorithms in the Methodology section. We
describe our evaluation strategy and provide results of all
empirical evaluations in Experiments and Results. Finally,
we offer closing remarks in the Conclusions section.

Background
We consider a binary classification problem of mapping an
input space X to an output space Y = {0, 1}. Let p(x) be
the true distribution of the inputs x ∈ X , p(x|y) be the
class-conditional distribution, and p(y) be the prior distri-
bution for (x, y) ∈ X × Y . Given a set of positive exam-
ples from p(x|y = 1) and a set of unlabeled examples from
p(x), the problem of estimating class priors p(y) can be seen
as estimating the mixing proportion in the following two-
component mixture

f(x) = αf1(x) + (1− α)f0(x), (1)
where α = p(y = 1) is the mixing proportion we seek to
estimate, f(x) = p(x) and fy(x) = p(x|y).
Identifiability

Mixing proportion (α) estimation is an ill-posed problem
due to unidentifiability (Blanchard, Lee, and Scott 2010;
Jain et al. 2016). This means that there exist multiple val-
ues of α that lead to the same f(x) for a given f1(x) because
f0(x) itself can be a mixture containing f1(x). Furthermore,
using PX to denote the set of all densities (except f1) on X ,
the set of all valid α values is an interval of the form [0, α∗],
where
α∗ = af1f = sup{a : f = af1 + (1− a)h0, h0 ∈ PX }.

(2)

The value of 0 from [0, α∗] corresponds to the case where
f0 contains the same amount of f1 as f does (i.e., there
is no f1 in f ), whereas the value of α∗ corresponds to the
“irreducible” case where f0 cannot be expressed as a mix-
ture of f1 and any other distribution from PX . Therefore,
the irreducibility assumption; that is, that f0 is not a mix-
ture containing f1, makes the problem identifiable with α
taking its largest value (Blanchard, Lee, and Scott 2010;
Jain et al. 2016). More formally,

af1f0 = 0⇒ α = α∗. (3)

Estimation

Several algorithms for nonparametric class-prior estimation
have been proposed in the literature (Elkan and Noto 2008;
Ward et al. 2009; du Plessis and Sugiyama 2014; Sanderson
and Scott 2014; Jain et al. 2016; Ramaswamy, Scott, and
Tewari 2016; du Plessis, Niu, and Sugiyama 2017; Bekker
and Davis 2018).

The first algorithm was given by Elkan and Noto (2008)
under the assumptions of non-overlapping supports between
class-conditional distributions and availability of a nontradi-
tional classifier that estimates posterior distributions. Their
work, however, contains six different estimators that often
give different values and it does not provide resolution as
to which one to choose. du Plessis and Sugiyama (2014)
showed that the e1 estimator from Elkan and Noto (2008)
is equivalent to a partial distribution matching formulation
that minimizes Pearson divergence. They have subsequently
generalized this approach to a broad family of f -divergences
(du Plessis, Niu, and Sugiyama 2017).

Jain et al. (2016) derived a nonparametric class-prior es-
timation algorithm called AlphaMax. AlphaMax maximizes
the likelihood of the positive-unlabeled data at multiple val-
ues of α in (0, 1) using convex optimization. It then es-
timates α∗ as the x-coordinate of the elbow on the maxi-
mum log-likelihood versus α curve. Although this approach
can be implemented directly on multidimensional data us-
ing kernel density estimation, it can be computationally pro-
hibitive and lead to sub-optimal performance when run on
high-dimensional data. As a default option, its practical im-
plementation first transforms the data into a single dimen-
sion using the α∗-preserving transform. We will review this
transform in the next subsection because our new algorithm
can be run both on the original as well as on transformed
data.

Ramaswamy, Scott, and Tewari (2016) derive an objec-
tive function based on representing distributions by func-
tions in a Reproducing Kernel Hilbert space (RKHS) on X .
For a given λ ∈ [0,∞), a C-distance function is defined as
the distance of λf + (1 − λ)f1 to its closest distribution in
the RKHS. Theoretically, C-distance is 0 if λf + (1− λ)f1
represents a probability distribution. This is only true for
an interval of λ values between 0 to some maximum λ∗,
beyond which the distance is expected to increase. Prac-
tically, C-distance is estimated by minimizing a quadratic
form defined by a kernel matrix giving pairwise similarity
between all the points (labeled and unlabeled) in the dataset
and an (|M| + |C|) dimensional weight vector. λ∗ is de-
tected from the distance curve via a thresholding (KM-1)
or a gradient thresholding estimator (KM-2) and the class
prior is estimated as 1 − 1/λ∗. This method has a rela-
tively high time complexity due to the computation of an
(|M| + |C|) × (|M| + |C|) kernel matrix and the quadratic
programming in |M|+ |C| variables, where C is the compo-
nent sample and M is the mixture sample.

Bekker and Davis (2018) derive an estimation algorithm
by first identifying feature subspaces with large proportions
of labeled data. Practically, the subspaces are determined
by the high purity nodes of a nontraditional decision tree
trained between the labeled and unlabeled datasets. Because
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such regions have fewer negative examples, the ratio of the
labeled example to the total number of points gives a tight
lower bound of the label frequency; i.e., the probability that
a positive example is in the labeled set. The class prior is
then estimated from the lower bound and the proportion of
labeled examples.

Univariate Transforms

Mixing proportion estimation is often formulated as a den-
sity estimation problem, which may be problematic in high-
dimensional spaces (Jain et al. 2016; Ramaswamy, Scott,
and Tewari 2016). Fortunately, there exist α∗-preserving
transforms that can be used to reduce the data to a single di-
mension, while still preserving α∗ in the transformed space.
Formally, for an α∗-preserving transform, τ : X → R, it
holds that

a
fτ,1
fτ

= af1f , (4)

where fτ and fτ,1 are density functions on R that are ob-
tained as counterparts of f and f1 after transforming the in-
puts using τ . It can be shown that a nontraditional classifier,
a classifier trained to discriminate positive examples against
the unlabeled examples treated as negatives, can serve as an
α∗-preserving transform (Jain et al. 2016).

Methodology

Let M = {mi} be a mixture (unlabeled) sample drawn from
f(x) and C = {ci} be the component (positive) sample
drawn from f1(x). The distance-based algorithm for class
prior estimation takes the following two steps.

1. Construction of the distance curve involves repeatedly
(1) sampling with replacement an example from C, (2)
recording the distance to its nearest neighbor from M, and
(3) removing the nearest neighbor from M. Since M con-
tains approximately α∗|M| positives, distances recorded
until removal of α∗|M| examples are expected to be
smaller compared to those recorded after (Figure 1).

2. Estimating the class prior from the distance curve in-
volves training a prediction model on many simulated
distance curves with known values of α∗ and applying
it to the distance curve obtained from the input samples.

Constructing the Distance Curve

To construct the distance curve, |M| number of examples are
sampled from C with replacement. At each step k, an exam-
ple ck is sampled from C and its nearest neighbor from M

is then removed from M. The distance of the nearest neigh-
bor is computed using some distance function,D, onX ×X .
The sampling can be repeated several times and the recorded
distances are averaged for each of the |M| steps to produce
the smoothed distance curve. More specifically, let dk be the
observed smoothed distance value at step k. The graph of dk
against k/|M| gives a distance curve on the [0, 1] interval and
is used in the next step (Figure 1).

AlthoughD can be an arbitrary distance function, we will
generally work with Minkowski distances (Deza and Deza

Figure 1: An idealized smoothed distance curve. The x-axis
shows the [0, 1] range for mixing proportions and the y-axis
shows the expected distance between the k-th drawn posi-
tive example from C and its nearest unlabeled example from
M. The expected distance between a labeled and its closest
unlabeled example slightly grows until α∗ and then grows
rapidly until 1.

2013). We will additionally use univariate transforms dis-
cussed before and define D to be the distance on the one-
dimensional space obtained by transforming the inputs using
the scoring function, τ , of a nontraditional classifier trained
to separate the labeled positives from the unlabeled data
(Elkan and Noto 2008); i.e., D(x, y) = |τ(x)− τ(y)|. The
choice of τ as a transform is special since, unlike any arbi-
trary transform, it ensures that the class prior is preserved
after the transformation. Finally, to exploit multiple trans-
forms, we will also work with the Cityblock distance be-
tween vectors whose dimensions represent outputs of each
univariate transform.

We record the classification performance for each univari-
ate transform by computing the area under the Receiver Op-
erating Characteristic (ROC) curve (Fawcett 2006). Since
the performance is calculated in the nontraditional sense
we will refer to it as AUCpu. When choosing the optimal
transform, we generally select the classifier with the largest
AUCpu, as described in Experiments and Results.

A pseudo code to generate the distance curve is given in
Algorithm 1. The curve was smoothed with L = 10 repeti-
tions of the sampling process in all experiments.

Estimating the Class Prior from Distance Curves

A multi-layer feed-forward neural network is trained to pre-
dict the class priors using 100 features derived from the
smoothed distance curve. To generate a fixed-length fea-
ture vector from the curve containing the number of points
equal to the size of the unlabeled sample M, we use the 100-
quantiles of the distance values (y-coordinates of the curve).
Precisely, if dk denote the distances sorted in ascending or-
der, then the i-th 100-quantile is given by d�i·|M|/100�, for
i = 1, . . . , 99 and d1 for i = 0. These 100 values are subse-
quently normalized such that the total length of the vector is
equal to 1.

To train the neural network, a rich set of distance curves
is obtained from simulated positive-unlabeled datasets sam-
pled using univariate parametric distributions at many dif-
ferent values of α. Specifically, the data is simulated using
Beta(a1, b1) and Beta(a0, b0) as the positive and negative
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Algorithm 1 DistCurve algorithm for class prior estimation.
Require: M, C, number of repetitions L
Ensure: α∗

// Transform the data as scores from a nontraditional
classifier.
[sMix, sComp]← transform(M,C)
// Calculate AUCpu using bootstrapped samples
// from [sMix, sComp] if comparing multiple
// nontraditional classifiers.
aucpu← AUC(sMix, sComp)
for i = 1, . . . , L do
sm← sMix
for j = 1, . . . ,length(sMix) do

// Sample an example randomly from the
// component sample with replacement.
c← sampleWithReplacement(sComp)
// Get the closest example from the mixture sample.
m← nearestNeighbor(c, sm)
// Remove m from the mixture sample.
sm← remove(m, sm)
// Compute distance between c and m.
dist[i, j]← distance(c,m)

end for
end for
// Take an average of the distances across multiple runs.
d← columnAverage(dist)
// Calculate [0,100) 100-quantiles.
q ← quantiles100(d)
// Predict α∗ by applying a neural network trained on
// simulated data.
α∗ ← applyTrainedNN(q)

component densities. A random sampling of

ci ∼ Beta(a1, b1)
mi ∼ α Beta(a1, b1) + (1− α) Beta(a0, b0)

is used to generate positive and unlabeled samples C and M,
respectively. A total of 100,000 pairs of positive and nega-
tive densities are constructed to capture a diverse range of
overlaps between the class-conditional densities. The den-
sity overlap is measured in terms of the normalized distance
between functions defined in Yang et al. (2019). The range
of the distance values, [0, 1], is divided in 100 equal-width
bins defined by bin boundaries 0, 0.01, . . . 0.99, 1. Density
parameters (a0, b0, a1, b1) are repeatedly sampled as follows

a0 ∼ Uniform(2, 100)

b0 ∼ a0 · Uniform(1, 10)

a1 ∼ a0 + a0 · Beta(0.5, 0.5)
b1 ∼ b0 + b0 · Beta(0.5, 0.5)

and added to their respective bin, until each of the bins con-
tained 1000 parameter sets. The extra parameters are thrown
away. This ensures that different overlap values are uni-
formly represented in the dataset. For each of the 100,000
density pairs selected, 10 mixture distributions are con-
structed by picking 10 different values of α randomly from

Uniform(0.01, 0.99) giving a total of 1,000,000 positive-
unlabeled datasets. The unlabeled and positive sample sizes
are also picked randomly as |M| ∼ Uniform(1000, 10000)
and |C| ∼ Uniform(100, 5000). We note that choices for the
hyperparameters do not play a significant role as long as a
broad selection of the underlying distributions is maintained.

The network was trained as a regression model. It con-
tained 100 input nodes, three hidden layers, with sizes 2048,
1024, and 512, respectively, with each layer followed by
a rectified linear unit activation layer, batch normalization
layer and dropout layer with probability 0.5. The output was
constrained to the range [0, 1]. The model was trained for
100 epochs using batch size 32, minimizing the mean abso-
lute error (MAE) on the class prior prediction. Early stop-
ping was used in the training process, monitoring the loss on
200,000 synthetic instances held out as the validation set.

Experiments and Results

Datasets

Two groups of real-world datasets were collected for exper-
imental evaluation: (1) thirty multi-dimensional real-valued
datasets, generally of low-to-medium dimension, and (2) ten
high-dimensional text mining datasets each with tf-idf fea-
tures. Most datasets were downloaded from the UCI Ma-
chine Learning Repository (Dua and Graff 2017), except for
three text mining datasets that were found in the literature;
Inauthentic (Dalkilic et al. 2006), Webkb (Cardoso-Cachopo
2007), and LifeSci (Yang et al. 2019). All datasets are listed
in the Results subsection, alongside the estimated perfor-
mance of different algorithms.

To create binary classification problems, we broadly fol-
lowed the protocols from previous work (Jain et al. 2016;
Ramaswamy, Scott, and Tewari 2016; du Plessis, Niu, and
Sugiyama 2017; Bekker and Davis 2018). That is, categor-
ical features were transformed into one-hot binary features,
regression target values were transformed to class labels
using the mean target value, and multi-class classification
problems were binarized. Overall, these datasets contained
confidently established positive and negative examples that
allowed us to evaluate the performance of all algorithms by
selecting a sample of positive examples as the positive (com-
ponent) sample while the remaining examples comprised the
unlabeled (mixture) set.

Experimental Protocol

Estimation experiments were run 50 times on each dataset
with randomized selection of positive and unlabeled exam-
ples. More specifically, n1 positive examples were randomly
selected to form the component sample C and the remaining
positive and negative examples constituted the mixture sam-
ple M. The size of the mixture samples was further limited
to n = 10,000, with positives and negatives proportionally
reduced. The size of the component sample C was kept at
n1 = 1,000 except in smaller datasets where n1 = 100 was
set because the total number of positives was not sufficiently
large.

The performance of each estimator was measured using
the Mean Absolute Error (MAE) between the true class prior
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Figure 2: Distributions of absolute errors over different datasets, grouped into multi-dimensional real-valued data and text
mining tf-idf data. Alongside each boxplot is the method’s Mean Absolute Error (MAE) over all instances in the subset and
Mean Rank Error (MRE) calculated using the mean absolute error on each dataset and then averaged over all datasets. The
order of methods was selected according the the best ranking.

and the estimated class prior (Jain et al. 2016); i.e., the ab-
solute errors for each dataset were averaged over the 50 ran-
dom selections of the positive and unlabeled samples. Fol-
lowing Bekker and Davis (2018), we further used MAE to
rank each algorithm’s performance on each dataset and re-
port its average rank amongst six competitors; Mean Rank
Error (MRE). Finally, we measured the time it took each al-
gorithm to complete its estimation on each dataset and report
Mean Time (MT) and Mean Rank Time (MRT). All algo-
rithms were run on identical datasets and computers with
similar hardware, although we cannot guarantee that the
available software implementations are equally optimized.

Selection of Univariate Transforms

Selection of the univariate transform for multi-dimensional
datasets was carried out using the following nontraditional
classification models: (1) a bagged ensemble of 100 two-
layer feed-forward neural networks with h ∈ {1, 5, 25} hid-
den units, (2) a bagged ensemble of 1000 regression trees,
and (3) a polynomial kernel support vector machine (SVM)
with a degree d ∈ {1, 2}, followed by the correction of Platt
(1999). The data was z-score normalized prior to training
(Tan, Steinbach, and Kumar 2006). In the cases of ensem-
ble models, the transform was generated using an out-of-
bag approach, whereas the SVM transforms were created
using 10-fold cross-validation where the predictions on the
10 test sets were combined to ultimately comprise the uni-
variate transform on the entire dataset. Because text mining
datasets were sparse and high-dimensional, we only used
linear SVMs as univariate transforms on these data without
any normalization. As before, SVM scores were transformed
to posterior probabilities using Platt’s correction.

For each experiment in the multi-dimensional datasets,
the optimal transform was selected by sequentially perform-
ing pairwise model comparisons based on the estimated
AUCpu. A more complex model was preferred only when its
AUCpu was higher with statistical significance (P < 0.05)
than that of a previously selected simpler model, as esti-
mated through 1000 bootstrap samples. Over all iterations,
linear SVMs performed best in 43.9% of the cases, neural

Figure 3: Four example distance curves with true mixing
proportion marked in red and the model’s predicted mixing
proportion marked in black.

network ensembles with h = 1 in 3.8%, neural network en-
sembles with h = 5 in 25.9%, neural network ensembles
with h = 25 in 6.6%, quadratic SVMs in 6.2%, and ensem-
bles of regression trees in 13.6% of the cases.

Distance Curves

Sample distance curves, illustrating the performance of our
new algorithm are shown in Figure 3. The estimates are rel-
atively straightforward on Wilt (MAE = 0.008, AUCpu =
0.980) and Newsgroups (MAE = 0.007, AUCpu = 0.875)
datasets where the estimated and true class priors are very
close. On the other hand, performance on the Abalone
dataset (MAE = 0.380; AUCpu = 0.688) was poor. Since
other algorithms similarly overestimated the class prior here,
we hypothesize that either the feature set is not discrimina-
tive enough to enable good classification accuracy or there
may exist a considerable number of unknown positive exam-
ples among the negatively labeled examples. Finally, perfor-
mance on the Farm dataset (MAE = 0.039, AUCpu = 0.774)
was moderate. Regardless of the performance, visual inspec-
tion can provide an additional layer of interpretation.
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Figure 4: Distribution of absolute errors for transformed and
nontransformed multi-dimensional data, together with mean
rank error (MRE) and mean absolute error (MAE) for the
distance-based algorithm.

Comparative Experiments

We compare the performance of our distance-based algo-
rithm to five estimators available in the literature (Elkan and
Noto 2008; Jain et al. 2016; Ramaswamy, Scott, and Tewari
2016; du Plessis, Niu, and Sugiyama 2017; Bekker and
Davis 2018). We implemented the Elkan-Noto algorithm
by following its description from the publication and used
downloadable code for the remaining four procedures. The
AlphaMax and Elkan & Noto estimators used the optimal
model as described above. Both KM-1 and KM-2 kernels
were used for the method of Ramaswamy, Scott, and Tewari
(2016) and the one with the better performance was included
in the comparisons. Finally, PE-DR (du Plessis, Niu, and
Sugiyama 2017) and TIcE (Bekker and Davis 2018) algo-
rithms were run with default parameters.

We note that Elkan and Noto (2008) and Bekker and
Davis (2018) report the class prior that is the fraction of pos-
itive examples in the total dataset (including both positive
and unlabeled examples). The remaining algorithms report
the class prior as the fraction of positive examples in unla-
beled data. The conversion has been made for the former two
algorithms as αnew = ((n + n1) · α − n1)/n, where n and
n1 are the dataset sizes for the unlabeled and labeled data,
respectively.

Figure 2 and Table 2 summarize the performance accu-
racy of all algorithms. The box plots from Figure 2 show the
distribution of absolute error over all 50 iterations of each
dataset with summarized MAE and error rank averaged over
all datasets. The results provide evidence that the new al-
gorithm performs well on a broad class of problems. Table
2 gives MAE for each algorithm on each dataset. We also
timed each experiment in order to evaluate the speed of eval-
uated estimators. The average ranking of each algorithm is
reported in Table 1, together with the average ranking based
on MAE.

Utility of Univariate Transforms

To understand the utility of univariate transforms, we eval-
uated our algorithm with and without transforms. The re-
sults “with transform” included two versions: (1) one-
dimensional data using an optimal transform, selected based
on the estimated performance of a nontraditional classi-

Table 1: Mean Ranking Error (MRE), Mean Absolute Er-
ror (MAE), Mean Ranking Time (MRT), and Mean Time
(MT) measured for all estimators. MRE and MAE calculated
on all datasets; MRT and MT (in seconds) calculated on all
multi-dimensional datasets with a neural network nontradi-
tional classifier (h = 5) used for Elkan-Noto, AlphaMax and
Distance estimators. The main ranking is based on MRE.

Method MRE MAE MRT MT (sec)

Distance 1.7 .10 4.0 66.4
Jain et al. 2.8 .17 5.0 70.1
Ramaswamy et al. 3.0 .13 5.9 2818.1
Elkan & Noto 3.1 .15 3.0 65.6
Bekker & Davis 5.2 .38 1.0 1.1
du Plessis et al. 5.2 .39 2.1 28.3

fier, and (2) six-dimensional transform data using all eval-
uated transforms, where each example was mapped into a
six-dimensional vector (one dimension per transform), from
which the Euclidean distances were computed to obtain the
distance curve. The results “without transform” included
four distance metrics: (1) Minkowski distance with p = 1, or
the cityblock distance, (2) Minkowski distance with p = 2,
or the Euclidean distance, (3) normalized Yang’s distance
with p = 1, and (4) normalized Yang’s distance with p = 2.
Prior to computing distances on multi-dimensional datasets,
all features were normalized using z-scores.

Although the sampling algorithm on the original (untrans-
formed) data led to excellent performance, univariate trans-
forms are clearly beneficial. Combining the transforms pro-
vides additional improvements and suggests that there exist
effective ensembling techniques that will result in superior
performance when used on small and medium sized data.
Interestingly, the evaluated distance functions show only mi-
nor variation in performance.

Conclusions

In this paper, we propose an intuitive and fast algorithm for
estimating class priors from positive and unlabeled data. The
algorithm is based on repeated sampling and nearest neigh-
bor calculation to generate a distance curve, which is subse-
quently used as an input to approximate the class prior via
a regression model. The obtained distance curve can also be
used for visual inspection. Owing to its simplicity, this pro-
cedure is appealing as it can be used with any distance or
kernel functions, including the ones learned from the data at
hand; see, for example, Weinberger and Saul (2009) or Ting
et al. (2016). The algorithm can also rely on one or more
univariate transforms in order to exploit a rich set of clas-
sification models and overcome learning challenges such as
high dimensionality, correlated features, irrelevant features,
etc.

Comprehensive experiments on low-dimensional and
high-dimensional data provide evidence that the new algo-
rithm has excellent performance in a wide range of classifi-
cation problems. It achieves this performance at a competi-
tive speed and can therefore be run on big data. We also in-

6734



Table 2: Mean Absolute Error (MAE) for each estimator on each dataset, along with dataset size (n) and dimension (d)
Dataset n d Jain et al. du Plessis et al. Bekker & Davis Ramaswamy et al. Elkan & Noto Distance

Multi-dimensional Datasets

Abalone 4,177 8 0.504 0.509 0.672 0.423 0.316 0.380
Activity S1 524,282 8 0.011 0.238 0.278 0.071 0.031 0.022
Activity S2 22,646 8 0.857 0.024 0.090 0.002 0.011 0.073
Adult 48,842 119 0.114 0.407 0.120 0.096 0.263 0.062
Airfoil 1,503 5 0.117 0.347 0.456 0.209 0.444 0.086
Anuran 7,195 22 0.084 0.072 0.018 0.039 0.057 0.008
Bank 45,000 13 0.116 0.196 0.270 0.041 0.156 0.066
CASP 45,730 9 0.143 0.375 0.525 0.192 0.260 0.127
Concrete 1,030 8 0.088 0.303 0.418 0.156 0.337 0.061
Covertype 581,010 54 0.040 0.099 0.173 0.005 0.039 0.076
Epileptic 11,500 178 0.009 0.876 0.089 0.110 0.044 0.338
Gas 5,574 127 0.017 0.243 0.172 0.056 0.227 0.011
H1B 6,590 160 0.036 0.269 0.154 0.093 0.012 0.071
Housing 506 13 0.064 0.420 0.345 0.285 0.136 0.088
Landsat 6,435 36 0.008 0.119 0.907 0.013 0.056 0.062
Molbio 3,190 287 0.073 0.328 0.083 0.335 0.169 0.076
Mushroom 8,124 126 0.015 0.240 0.058 0.037 0.318 0.010
Pageblock 5,473 10 0.019 0.426 0.085 0.059 0.047 0.177
Parkinsons 5,875 20 0.060 0.220 0.096 0.158 0.109 0.028
Pendigit 10,992 16 0.021 0.216 0.350 0.042 0.036 0.003
Pima 768 8 0.143 0.321 0.441 0.208 0.149 0.077
Shuttle 58,000 9 0.031 0.163 0.510 0.010 0.015 0.035
Smartphone 10,929 561 0.027 0.236 0.117 0.015 0.045 0.002
Spambase 4,601 57 0.063 0.365 0.134 0.081 0.106 0.027
Thyroid 7,200 21 0.708 0.355 0.053 0.120 0.004 0.393
Transfusion 748 4 0.252 0.393 0.874 0.552 0.023 0.223
Waveform 5,000 21 0.057 0.285 0.270 0.090 0.095 0.438
Waveform (n) 5,000 40 0.055 0.344 0.224 0.103 0.090 0.390
Wilt 4,837 5 0.710 0.251 0.298 0.061 0.032 0.008
Wine 6,497 11 0.113 0.341 0.434 0.189 0.385 0.058

Text Mining Datasets

BBC 2,225 9,635 0.042 0.575 0.837 0.130 0.090 0.031
Farm 4,143 54,877 0.057 0.235 0.561 0.155 0.134 0.039
Inauthentic 930 99,899 0.694 0.564 0.985 0.045 0.080 0.017
LifeSci 9,000 52,516 0.152 0.844 0.785 0.168 0.053 0.073
Movie 2,000 39,659 0.555 0.981 0.291 0.013 0.619 0.014
NIPS 5,811 11,463 0.136 0.769 0.827 0.132 0.106 0.068
Newsgroups 18,846 130,110 0.175 0.782 0.708 0.236 0.027 0.007
Reuters 2,065 8,943 0.044 0.310 0.380 0.099 0.134 0.033
TTC3600 3,600 5,692 0.033 0.668 0.207 0.069 0.098 0.047
Webkb 2,803 7,288 0.102 0.716 0.825 0.083 0.134 0.043

vestigated the utility of univariate transforms and show that
the estimator is the most accurate when paired with a single
or multiple carefully selected univariate transforms through
training of nontraditional classifiers (Elkan and Noto 2008).
Finally, we note that the size of the neural network for the
identification of the elbow point on the distance curve did
not play a significant role on the transformed data and so a
reduction to a few dozen hidden neurons resulted in a very
similar performance. We found, however, that larger net-
works had a significant impact when the algorithm was used
on the original data with Minkowski’s and Yang’s distances,
and we therefore opted to use the larger network as the final
model.

Although future work remains to provide theoretical guar-
antees for our procedure, we believe that, overall, the new al-
gorithm is simple to understand, implement and run. It thus

provides an attractive tool in positive-unlabeled learning.

Acknowledgements

The last two authors should be regarded as joint senior au-
thors. Funding: NSF grant DBI-1458477 (PR). Code Avail-
ability: github.ccs.neu.edu/dzeiberg/ClassPriorEstimation.

References

Bekker, J., and Davis, J. 2018. Estimating the class prior in
positive and unlabeled data through decision tree induction.
In Proceedings of the 32nd AAAI Conference on Artificial
Intelligence, AAAI 2018, 2712–2719.
Blanchard, G.; Lee, G.; and Scott, C. 2010. Semi-supervised
novelty detection. J Mach Learn Res 11:2973–3009.

6735



Cardoso-Cachopo, A. 2007. Improving methods for single-
label text categorization. Ph.D. thesis, Instituto Superior
Tecnico, Universidade Tecnica de Lisboa.
Chang, S.; Zhang, Y.; Tang, J.; Yin, D.; Chang, Y.;
Hasegawa-Johnson, M. A.; and Huang, T. S. 2016. Positive-
unlabeled learning in streaming networks. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD 2016, 755–764.
Dalkilic, M. M.; Clark, W. T.; Costello, J. C.; and Radivo-
jac, P. 2006. Using compression to identify classes of inau-
thentic papers. In Proceedings of the 6th SIAM International
Conference on Data Mining, SDM 2006, 604–608.
Denis, F.; Gilleron, R.; and Letouzey, F. 2005. Learning
from positive and unlabeled examples. Theor Comput Sci
348(16):70–83.
Denis, F. 1998. PAC learning from positive statistical
queries. In Proceedings of the 9th International Conference
on Algorithmic Learning Theory, ALT 1998, 112–126.
Deza, M. M., and Deza, E. 2013. Encyclopedia of distances.
Springer.
du Plessis, M. C., and Sugiyama, M. 2014. Class prior
estimation from positive and unlabeled data. IEICE Trans
Inf & Syst E97-D(5):1358–1362.
du Plessis, M. C.; Niu, G.; and Sugiyama, M. 2014. Analysis
of learning from positive and unlabeled data. In Advances in
Neural Information Processing Systems, NIPS 2014, 703–
711.
du Plessis, M. C.; Niu, G.; and Sugiyama, M. 2017. Class-
prior estimation for learning from positive and unlabeled
data. Mach Learn 106(4):463–492.
Dua, D., and Graff, C. 2017. UCI Machine Learning Repos-
itory. University of California, Irvine, School of Information
and Computer Science. http://archive.ics.uci.edu/ml.
Elkan, C., and Noto, K. 2008. Learning classifiers from only
positive and unlabeled data. In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, KDD 2008, 213–220.
Fawcett, T. 2006. An introduction to ROC analysis. Pattern
Recogn Lett 27:861–874.
Hsieh, C. J.; Natarajan, N.; and Dhillon, I. S. 2015. PU
learning for matrix completion. In Proceedings of the
32rd International Conference on Machine Learning, ICML
2015, 2445–2453.
Jain, S.; White, M.; Trosset, M. W.; and Radivojac, P. 2016.
Nonparametric semi-supervised learning of class propor-
tions. arXiv preprint arXiv:1601.01944.
Jain, S.; White, M.; and Radivojac, P. 2016. Estimating
the class prior and posterior from noisy positives and unla-
beled data. In Advances in Neural Information Processing
Systems, NIPS 2016, 2693–2701.
Jain, S.; White, M.; and Radivojac, P. 2017. Recovering
true classifier performance in positive-unlabeled learning. In
Proceedings of the 31st AAAI Conference on Artificial Intel-
ligence, AAAI 2017, 2066–2072.

Lee, W. S., and Liu, B. 2003. Learning with positive and un-
labeled examples using weighted logistic regression. In Pro-
ceedings of the 20th International Conference on Machine
Learning, ICML 2003, 448–455.
Liu, B.; Dai, Y.; Li, X.; Lee, W.; and Yu, P. S. 2003. Build-
ing text classifiers using positive and unlabeled examples.
In Proceedings of the 3rd IEEE International Conference on
Data Mining, ICDM 2003, 179–186.
Menon, A. K.; van Rooyen, B.; Ong, C. S.; and Williamson,
R. C. 2015. Learning from corrupted binary labels via class-
probability estimation. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning, ICML 2015, 125–
134.
Platt, J. C. 1999. Probabilistic outputs for support vector
machines and comparison to regularized likelihood meth-
ods. MIT Press. 61–74.
Ramaswamy, H. G.; Scott, C.; and Tewari, A. 2016. Mixture
proportion estimation via kernel embedding of distributions.
In Proceedings of the 33rd International Conference on Ma-
chine Learning, ICML 2016, 2996–3004.
Ramola, R.; Jain, S.; and Radivojac, P. 2019. Estimating
classification accuracy in positive-unlabeled learning: char-
acterization and correction strategies. Pac Symp Biocomput
24:124–135.
Reid, M. D., and Williamson, R. C. 2010. Composite binary
losses. J Mach Learn Res 11:2387–2422.
Sanderson, T., and Scott, C. 2014. Class proportion esti-
mation with application to multiclass anomaly rejection. In
Proceedings of the 17th International Conference on Artifi-
cial Intelligence and Statistics, AISTATS 2014, 850–858.
Scott, C., and Blanchard, G. 2009. Novelty detection: unla-
beled data definitely help. In Proceedings of the 12th Inter-
national Conference on Artificial Intelligence and Statistics,
AISTATS 2009, 464–471.
Tan, P. N.; Steinbach, M.; and Kumar, V. 2006. Introduction
to data mining. Pearson.
Ting, K. M.; Zhu, Y.; Carman, M.; Y., Z.; and Zhou, Z. H.
2016. Overcoming key weaknesses of distance-based neigh-
bourhood methods using a data dependent dissimilarity mea-
sure. In Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing, KDD 2016, 1205–1214.
Ward, G.; Hastie, T.; Barry, S.; Elith, J.; and Leathwick, J.
2009. Presence-only data and the EM algorithm. Biometrics
65(2):554–563.
Weinberger, K. Q., and Saul, L. K. 2009. Distance metric
learning for large margin nearest neighbor classification. J
Mach Learn Res 10:207–244.
Yang, R.; Jiang, Y.; Mathews, S.; Housworth, E. A.; Hahn,
M. W.; and Radivojac, P. 2019. A new class of metrics for
learning on real-valued and structured data. Data Min Knowl
Disc 33(4):995–1016.
Yu, H.; Han, J.; and Chang, K. C. C. 2004. PEBL: web
page classification without negative examples. IEEE Trans
Knowl Data Eng 16(1):70–81.

6736


