
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Apprenticeship Learning via Frank-Wolfe

Tom Zahavy, Alon Cohen, Haim Kaplan, Yishay Mansour
Google Research, Tel Aviv

Abstract

We consider the applications of the Frank-Wolfe (FW) algo-
rithm for Apprenticeship Learning (AL). In this setting, we
are given a Markov Decision Process (MDP) without an ex-
plicit reward function. Instead, we observe an expert that acts
according to some policy, and the goal is to find a policy
whose feature expectations are closest to those of the expert
policy. We formulate this problem as finding the projection of
the feature expectations of the expert on the feature expecta-
tions polytope – the convex hull of the feature expectations of
all the deterministic policies in the MDP. We show that this
formulation is equivalent to the AL objective and that solv-
ing this problem using the FW algorithm is equivalent well-
known Projection method of Abbeel and Ng (2004). This in-
sight allows us to analyze AL with tools from convex opti-
mization literature and derive tighter convergence bounds on
AL. Specifically, we show that a variation of the FW method
that is based on taking “away steps” achieves a linear rate of
convergence when applied to AL and that a stochastic ver-
sion of the FW algorithm can be used to avoid precise esti-
mation of feature expectations. We also experimentally show
that this version outperforms the FW baseline. To the best of
our knowledge, this is the first work that shows linear conver-
gence rates for AL.

1 Introduction

We consider sequential decision making in the Markov deci-
sion process (MDP) formalism. Given an MDP, the optimal
policy and its value function are characterized by the Bell-
man equations and can be computed via value or policy iter-
ation. This makes the MDP model useful in problems where
we can specify the MDP model (states, actions, reward, tran-
sitions) appropriately. However, in many real-world prob-
lems, it is often hard to define a reward function, such that
the optimal policy with respect to this reward produces the
desired behavior.

In Apprenticeship Learning (AL), instead of manually
tweaking the reward to produce the desired behavior, the
idea is to observe and mimic an expert. The literature on AL
is quite vast and dates back to the work of Abbeel and Ng

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(2004), who proposed a novel framework for AL. In this set-
ting, the reward function (while unknown to the apprentice)
equals to a linear combination of a set of known features.
More specifically, there is a weight vector w. The rewards
are associated with states, and each state s has a feature vec-
tor φ(s), and its reward is φ(s) · w. The expected return of
a policy π is V π = Φ(π) · w, where Φ(π) is the feature ex-
pectation under policy π. The expert demonstrates a set of
trajectories that are used to estimate the feature expectations
of its policy πE , denoted by ΦE � Φ(πE). The goal is to
find a policy ψ, whose feature expectations are close to this
estimate, and hence will have a similar return with respect
to any weight vector w.

Abbeel and Ng (2004) suggested two algorithms to solve
this problem, one that is based on a maximum margin solver
and a simpler projection algorithm. The algorithm starts
with an arbitrary policy π0 and computes its feature ex-
pectation Φ(π0). At step t they define a reward function
using weight vector wt = ΦE − Φ̄t−1 and find the pol-
icy πt that maximizes it, where Φ̄t is a convex combina-
tion of feature expectations of previous (deterministic) poli-
cies Φ̄t =

∑t
j=1 αjΦ(πj). They show that in order to get

that ‖Φ̄T − ΦE‖ ≤ ε, it suffices to run the algorithm for
T = O(k

(1−γ)2ε2 log(
k

(1−γ)ε)) iterations.
Another type of algorithms, based on online convex op-

timization, was proposed by Syed and Schapire (2008). In
this approach, AL is posed as a two-player zero-sum game.
In each round the “reward player” plays a no-regret algo-
rithm and the “policy player” plays the best response, i.e., it
plays the policy πt that maximizes the reward at time t. The
algorithm runs for T steps and returns a mixed policy ψ that
assigns probability 1/T to each policy πt, t = 1, . . . , T .

Syed and Schapire (2008) proved that their scheme is
faster by a factor of k and requires only T = O(log(k)/(1−
γ)2ε2) iterations. This improvement is closely related to the
analysis of the mirror descent algorithm (MDA, Nemirovsky
and Yudin (1983)). That is, by choosing the norm of the
space (and projecting w.r.t this norm), a dimension-free rate
of convergence (up to logarithmic factor) is achieved. The
results in (Syed and Schapire 2008) use a specific instance
of MDA where the optimization set is the simplex and dis-
tances are measured w.r.t ‖ · ‖1. This version of MDA is

6720

known as multiplicative weights or Hedge.
In this work, we focus on the computational complex-

ity of the problem as a function of ε. We show that a
small modification to the algorithm of Abbeel and Ng
(2004) can lead to a linear rate of convergence, i.e., T =
O(log(1/ε)).1 Methods that are based on online convex op-
timization (like Syed and Schapire (2008)), on the other
hand, cannot achieve rates better than T = O(1/ε2).1

Our result is based on the observation that (a slight mod-
ification) of the algorithm of Abbeel and Ng (2004) is, in
fact, an instantiation of the Frank-Wolfe (FW) method – a
projection free method for convex optimization. To see this,
we formulate the AL problem as finding the projection of the
(estimated) feature expectations of the expert on the feature
expectations polytope — the convex hull of the feature ex-
pectations of all the deterministic policies in the MDP (Def-
inition 7). To compute this polytope (and to project to it),
one has to compute the feature expectations of the exponen-
tially (|A||S|) many deterministic policies in the MDP. The
benefit in applying the FW method to this problem is that it
avoids projecting to this polytope (as in projected gradient
methods); instead, it minimizes a linear objective function
over the polytope, which is equivalent to finding the optimal
policy in an MDP.

The observation that the algorithm of Abbeel and Ng
(2004) is an instantiation of the Frank-Wolfe (FW) method
allows to derive the convergence result of Abbeel and Ng
(2004) immediately (even with a logarithmic factor im-
provement) from known analysis of the FW method.

Furthermore, this equivalence leads us to propose a mod-
ification to this Frank-Wolfe AL algorithm that is based on
taking “away steps.” These steps try to remove weight from
“bad policies” (policies that were added to the solution in
previous iterations but now by removing them we get an im-
provement). This modification gives the first AL algorithm
with a linear rate of convergence. We implemented this al-
gorithm and compared it with the method of Abbeel and Ng
(2004). Our findings suggest that “away steps” indeed give
a better empirical performance.

Finally, in many practical scenarios, an algorithm may
only have access to the environment via a simulator. In such
cases, the feature expectations of the agent cannot be com-
puted explicitly and must be estimated by rolling trajecto-
ries using the agent’s policy. To address this, we design an
algorithm that uses unbiased estimates of the feature expec-
tations (instead of the expected feature expectations) based
on the stochastic FW algorithm (Hazan and Luo 2016). To
the best of our knowledge, this is the first AL algorithm that
addresses this issue from a theoretical point of view.

2 Preliminaries

In this section, we provide the relevant background on con-
vex optimization, apprenticeship learning, and the Frank-
Wolfe algorithm. In convex analysis, we are interested in
solving problems of the form

minimize
x∈K

h(x) (1)

1The O notation hides the dependency in k and γ .

where K is a convex set and h is a convex function. Next, we
briefly define important properties of convex functions and
convex sets.

Definition 1 (Convex set). A set K is convex if ∀x1, x2 ∈
K, ∀λ ∈ [0, 1] : λx1 + (1− λ)x2 ∈ K.
Definition 2 (Diameter of a set). The diameter of a set K is
given by DK = maxx1,x2∈K ||x1 − x2||.
Definition 3 (Convex function). A function h : K → R is
convex if K is a convex set and ∀x1, x2 ∈ K, ∀λ ∈ [0, 1] :
h(λx1 + (1− λ)x2) ≤ λh(x1) + (1− λ)h(x2).

Definition 4 (Properties of convex functions). A differen-
tiable convex function h over a convex set K, i.e., h : K →
R w.r.t ‖ · ‖ is:

1. Strongly convex with strong convexity parameter σ > 0
if ∀x1, x2 ∈ K : (∇h(x1)−∇h(x2)) · (x1 − x2) ≥
σ‖x1 − x2‖2.

2. Smooth with parameter β if ∀x1, x2 ∈ K, |∇h(x1) −
∇h(x2)| ≤ β||x1 − x2||.

3. Lipschitz continuous with parameter Lh if ∀x ∈
K, ‖∇h(x)‖ ≤ Lh.

We use on the Euclidean norm in this paper. We will focus
on a specific convex optimization problem: finding a partic-
ular Euclidean projection on a convex set.

Definition 5 (Euclidean projection). The Euclidean pro-
jection onto a convex set K is given by ProjK(x) =
argminy∈K ||x− y||.
2.1 Inverse reinforcement learning and

apprenticeship learning

For consistency with prior work, we consider the discounted
infinite horizon scenario. We emphasize here that all the re-
sults in this paper can be easily extended to the episodic fi-
nite horizon and the average reward criteria. We indicate the
required changes when appropriate.

We are given an MDP\R, (MDP without a reward) de-
noted

M � {S,A, P, γ,D}, (2)

where S is the set of states, A is the set of actions, P =
{P a | a ∈ A} is the set of transition matrices, γ is the dis-
count factor, and D is the distribution of the initial state.

Each state s is represented by an observable low-
dimensional vector of features φ(s) ∈ [0, 1]k, and the re-
ward function, while unknown to the apprentice, is assumed
to be equal to a linear combination of the features; i.e.,
rw(s) = w · φ(s), for some w ∈ W where W is a con-
vex set. For example, W can be chosen to be the simplex
(Syed and Schapire 2008), or the L2 ball (Abbeel and Ng
2004). We further assume the existence of an expert policy,
denoted by πE , such that we can observe its execution inM .

We define the feature expectations of a policy π in M as2

Φ(π) � E

[∑∞
t=0

γtφ(st)
∣∣∣π, P,D] . (3)

2For other RL criteria there exist equivalent definitions of fea-
ture expectations; see Zahavy et al. (2019) for the average reward.

6721

With this feature representation, the value of a policy π may
be written as V π = w ·Φ(π). In addition, the feature expec-
tations are bounded: ||Φ(π)||∞ ≤ 1/(1− γ).3 Similarly, we
define the occupancy measure of π in M as

xπs,a � E

[∑∞
t=0

γt1st=s,at=a

∣∣∣π, P,D] (4)

Like Abbeel and Ng (2004), and Syed and Schapire
(2008), the policy that we find is not necessarily determin-
istic, but a mixed policy. A mixed policy ψ is a distribu-
tion over Π, the set of all deterministic policies in M . Be-
cause Π is finite (though extremely large), we can fix an
ordering π1, π2, . . . of the policies in Π. This allows us to
treat ψ as a vector, where ψ(i) is the probability assigned
to πi. A mixed policy ψ is executed by randomly select-
ing the policy πi ∈ Π at time 0 with probability ψ(i), and
exclusively following πi thereafter. The definitions of the
value function and the feature expectations are naturally ex-
tended to mixed policies as follows: V (ψ) = Ei∼ψV πi and
Φ(ψ) = Ei∼ψΦ(πi). The following theorem shows that any
mixed policies can be converted into a stochastic policy with
the same value as follows.
Theorem 1 (Theorem 3, Syed, Bowling, and Schapire
(2008)). Let ψ be a mixed policy, and let xj be the occu-
pancy measure (Eq. (4)) of πj , j ∈ [1, . . . , |Π|]. Let π̂ be

a stochastic policy where π̂(a | s) =
∑

j ψ(j)x
j
s,a

∑
a

∑
j ψ(j)x

j
s,a
. Then

V (π̂) = V (ψ), and also Φ(π̂) = Φ(ψ).

The objective of AL is to find a policy π that does at least
as well as the expert with respect to any reward function of
the form r(s) = w · φ(s), w ∈ W . That is we solve

max
ψ∈Ψ

min
w∈W

[w · Φ(ψ)− w · ΦE] (5)

If we denote the value of Eq. (5) by f� then, due to the von-
Neumann minimax theorem we also have that

f� = min
w∈W

max
ψ∈Ψ

[w · Φ(ψ)− w · ΦE] , (6)

We will refer to approximately solving Eq. (6) as IRL, i.e.,
finding w ∈ W such that

∀ψ ∈ Ψ : w · ΦE ≥ w · Φ(ψ)− ε− f�; (7)

and to the problem of approximately solving Eq. (5) as AL,
i.e., finding ψ such that

∀w ∈ W : w · Φ(ψ) ≥ w · ΦE − ε+ f�. (8)

Notice that due to Theorem 1, it is equivalent to solve AL
over Π and Ψ (the sets of deterministic and mixed policies).

The most famous AL algorithm for solving Eq. (8) is
the Projection algorithm of Abbeel and Ng (2004) (Algo-
rithm 1). Notice that we slightly changed the notation and
the order of indices in Algorithm 1 w.r.t Abbeel and Ng
(2004); it is immediate to verify that these algorithms are
equivalent. In addition, line 8 in Algorithm 1 was not part
of the original algorithm. The role of this step is to replace

3Replace 1
1−γ

with H in the finite horizon case and with 1 in
the average reward case.

the post-processing procedure in (Abbeel and Ng 2004)
by maintaining a policy ψt with feature expectations Φ̄t.4
Somewhat ironically, Abbeel and Ng (2004) termed their al-
gorithm the “projection algorithm”, while we will soon see
that it is actually a projection-free algorithm (CG method)
with respect to the feature expectations polytope.

Algorithm 1 The projection method (Abbeel and Ng 2004)
1: Input: feature expectations of the expert ΦE , T number

of iterations
2: Initialize: choose any π0, set ψ0 = eπ0

, Φ̄0 = Φ(ψ0)
3: for t = 1, . . . , T do
4: Set wt = ΦE − Φ̄t−1

5: Compute πt = π∗
wt
,Φt = Φ(πt)

6: αt =
(Φt−Φ̄t−1)·(ΦE−Φ̄t−1)

(Φt−Φ̄t−1)·(Φt−Φ̄t−1)

7: Φ̄t = Φ̄t−1 + αt(Φt − Φ̄t−1)
8: ψt = ψt−1 + αt(eπt − ψt−1)
9: end for

10: Return ψT

The algorithm begins by estimating the feature expecta-
tion Φ0 of some arbitrary policy π0. Then, for iterations
t = 1, . . . , T it finds the optimal policy πt w.r.t reward
wt = ΦE − Φt−1. The feature expectation Φt of the pol-
icy πt are computed and added to the solution Φ̄t, such that
Φ̄t = Φ̄t−1+αt(Φt−Φ̄t−1). The parameter αt is chosen via
a line search, i.e., αt = minα ‖Φ̄t−1+α(Φt−Φ̄t−1)−ΦE‖2.
For ψ to be a mixed policy, αt must be in the range [0, 1].
In the case that ΦE is given exactly, it is guaranteed that
αt ∈ [0, 1]. When ΦE is estimated from samples, for ψ to
be a mixed policy, αt must be truncated to [0, 1].5 Abbeel
and Ng (2004) proved directly that the features expectations
of Φ̄t converge to the features of the expert.

Another type of AL algorithms was proposed by Syed and
Schapire (2008). The idea is to solve Eq. (8) in the following
manner. In each round the “reward player” plays an online
convex optimization algorithm on losses lt(wt) = wt·(ΦE−
Φ(πt)); and the “policy player” plays the best response, i.e,
the policy πt that maximizes the return Φ(πt) · wt at time t.
The algorithm runs for T steps and returns a mixed policy ψ
that draws with probability 1/T a policy πt, t = 1, . . . , T .
Thus, we have that

f� ≤ 1

T

∑T

t=1
max
π∈Π

[wt · Φ(π)− wt · ΦE]

=
1

T

∑T

t=1
[wt · Φ(πt)− wt · ΦE] (9)

≤ min
w∈W

1

T

T∑
t=1

w · [Φ(πt)− ΦE] +O

(√
log(k)

(1− γ)
√
T

)

(10)

= min
w∈W

w · (Φ(ψ)− ΦE) +O

(√
log(k)

(1− γ)
√
T

)
, (11)

4In Section 3, we show explicitly that Φ(ψt) = Φ̄t.
5See a more detailed discussion in Section 3.

6722

where Eq. (9) follows from the fact that the policy player
plays the best response, that is, πt is the optimal policy w.r.t
the reward wt; Eq. (10) follows from the fact that the reward
player plays a no-regret algorithm, e.g., online MDA.

Thus, we obtain from Eq. (11) that ∀w ∈ W : w ·Φ(ψ) ≥
w · ΦE + f� − O

(
1√
T

)
.6 Since this technique runs a no

regret algorithm, it cannot obtain a convergence rate faster
than T = O(1/ε2).6

Finally, IRL can also be formulated as a convex optimiza-
tion problem, but it is not differentiable (Ratliff, Bagnell,
and Zinkevich 2006). IRL is also not strongly convex, as it
does not have a unique solution, as was observed in (Ng and
Russell 2000). For these reasons, convex optimization meth-
ods for IRL did not achieve a linear rate of convergence.

2.2 The conditional gradient (CG) method

A common algorithm to minimize a convex function over
a convex set K is projected gradient descent. This algo-
rithm takes a step in the reverse gradient direction zt+1 =
xt+αt∇h(xt), and then projects zt+1 back into K to obtain
xt+1. Computing this projection may be expensive for some
convex sets. The CG algorithm of Frank and Wolfe (1956)
(Algorithm 2) avoids this projection. It finds a point yt ∈ K
that has the largest correlation with the negative gradient,
and updates xt+1 = (1− αt)xt + αtyt, which by convexity
guarantees to be in K.

To find yt, the algorithm has to minimize a linear objec-
tive function over the feasible set K. We assume that this op-
timization is performed by an oracle (which we call linear-
oracle). If K is a polyhedron (given by its facets), then an or-
acle call is a linear programming problem. The CG method
is useful for problems where implementing such a linear-
oracle is easier than computing a projection onto K.

Algorithm 2 The CG method (Frank and Wolfe 1956)
1: Input: a convex set K, a convex function h, learning rate

schedule αt.
2: Initiation: let x0 ∈ K
3: for t = 1, . . . , T do
4: yt = argminy∈K ∇h(xt−1) · y
5: xt = (1− αt)xt−1 + αtyt
6: end for

To give some context, in AL, the linear-oracle will be
an algorithm that finds the optimal policy in an MDP with
known reward and dynamics, e.g., Policy Iteration (PI). The
polyhedral set will be the set of feature expectations of
all the deterministic policies in this MDP, which is of size
|A||S|. The computational complexity of computing this set
explicitly (and hence projecting onto it) is therefore expo-
nential in the size of the state space. On the other hand,
it is known that PI converges to the optimal policy in a fi-
nite number of iterations (Puterman 1984, Theorem 8.6.6).
A trivial upper bound on the number of iterations is the
total number of deterministic policies, which is |A||S|. In

5The O notation hides the dependency in k and γ .

the discounted and the finite horizon cases, it was shown
that PI runs in strongly polynomial time (Ye 2011). There-
fore the CG algorithm has a computational advantage over
projection-based algorithms in the discounted and finite
horizon settings. For the average-reward criteria, however,
there exist MDPs for which Howard’s PI requires exponen-
tial time (Hansen, Miltersen, and Zwick 2013).

The original paper of Frank and Wolfe contains a proof of
an O(1/t) rate of convergence (Theorem 2, extracted from
Jaggi (2013)). Canon and Cullum (1968) prove that for func-
tions that are not strongly convex, this rate is tight.

Theorem 2. Let h be a convex and β-smooth function. Let
DK be the diameter of K, and let αt = 2

t+1 for t ≥ 1. Then
for any t ≥ 2, (Algorithm 2) computes xt such that

h(xt)− h(x∗) ≤ 2βD2
K

t+ 1
,

where x∗ is a minimizer of h over K.

Remark: The learning rate αt in Theorem 2 can also
be chosen via a line search procedure; the same theoretical
guarantees hold in this setting.

Fast rates. In this paper, we focus on minimizing a
strongly convex function. In this case, if the optimal solution
is in the interior of the feasible set, then CG converges in a
linear rate (Beck and Teboulle 2004; Guélat and Marcotte
1986). Another setting in which a faster rate of convergence
can be derived is when the feasible set is strongly convex. (A
strongly convex set is a set where each convex combination
of two points in the set is in the interior of the set.) In this
case, the convergence rate is O(1/t2) (Garber and Hazan
2015). Alternatively, if the norm of the gradient of the ob-
jective function is bounded away from zero everywhere in
K, then the rate of convergence is linear (Levitin and Polyak
1966) (even if the objective is only convex and not strongly
convex). Unfortunately, for reasons that we will see later on,
none of these cases is relevant for AL. A different approach
to speed up the convergence is to modify the algorithm, as
we describe next.

2.3 Frank-Wolfe with away steps (ASCG)

Away steps conditional gradient (ASCG) is a variation of
the CG method, proposed by Wolfe (1970) for polyhedral
sets. By Carathéodory theorem, the iterate xt can always be
represented as a sparse convex combination of at most k+1

vertices of K, i.e., xt =
∑k+1
i=1 αyiyi. ASCG uses this fact

and removes weight from “bad” elements yi (not needed to
represent the final solution) by taking “away steps.” These
steps decrease the weight of the “bad” elements faster then
they would have decayed via the standard CG iterates.

Explicitly, ASCG (Algorithm 3) maintains the list of ver-
tices S(t) = {yi1 , . . . , yi�t }, where t is the iteration in-
dex, �t = |S(t)|, and ij ≤ t for every j = 1, . . . , �t,
and a corresponding list of coefficients {αyij }�tj=1 such that

xt =
∑�t
j=1 αyij yij .

At each iteration, the algorithm computes a regular CG
step (dFW); In addition, it checks the possibility of decreas-

6723

ing the coefficient αzt of some zt ∈ S(t) in the represen-
tation of xt as a convex combination of S(t) by taking a
so-called “away step” in the direction dAS = xt−zt. The zt
that has the largest correlation with the gradient is chosen,
and the learning rate is set via a line search procedure. In
addition, it is guaranteed that xt+1 remains in K. Once the
step is taken the coefficients of the remaining members in S
are updated such that their combination remains convex (all
coefficients are positive and sum to 1). As a result, members
in S that are not part of the solution are removed as their
coefficient decreases to 0.

In contrast to CG, ASCG maintains the coefficients of xt
as a convex combination of the vertices in S(t) explicitly.
This is required to guarantee that the learning rate of the
away step is chosen such that xt+1 remains in K. In general,
the size of the list S(t) at time t is bounded by t, however,
we know that xt+1 can be written as a convex combination
of at most k+1 points in K. Beck and Shtern (2017) propose
an improved update representation procedure, based on the
Carathéodory theorem, that guarantees that S(t) is of size at
most k + 1 for all t.

Algorithm 3 Frank-Wolfe with away steps (ASCG)
1: Input: a convex set L, and a convex function h
2: Initiation: let x1 ∈ K, S(1) = {x1}, αx1

= 1
3: for t = 1, . . . , T do
4: yt = argmaxy∈K −∇h(xt) · y, dFW = yt − xt
5: zt = argmaxz∈S(k) ∇h(xt) · z, dAS = xt − zt
6: if ∇h(xt) · dFW < ∇h(xt) · dAS then
7: Frank-Wolfe step: d = dFW , γmax = 1
8: else
9: Away step: d = dAS , γmax = αzt/(1− αzt)

10: end if
11: Line-search: γt = argminγ∈[0,γmax] h(xt + γd)
12: Update: xt+1 = xt + γtd
13: Update representation:
14: if Frank-Wolfe step then
15: if (γt = 1) then

16: S(t+1) = {yt}, αyt = 1
17: else
18: αyt = (1− γt)αyt + γt
19: ∀y ∈ S(t) : αy = (1− γt)αy
20: S(t+1) = S(t) ∪ {yt}
21: end if
22: else if Away step then
23: if (γt = γmax) then

24: Drop step: S(t+1) = S(t) \ {zt}
25: else
26: azt = (1− γt)αzt − γt
27: ∀y ∈ S(t) : αy = (1 + γt)αy
28: S(t+1) = S(t)

29: end if
30: end if
31: end for

Guélat and Marcotte (1986) were the first to suggest that
ASCG attains a linear rate of convergence when the set is a

polytope. Garber and Hazan (2013) provided the first official
proof that a variant of CG (that is similar to ASCG) conver-
gence in linear rate; Jaggi (2013) proved this for ASCG.

Theorem 3 below, due to Lacoste-Julien and Jaggi (2014),
specifies the convergence rate of ASCG in terms of a con-
stant C(K) called the pyramidal width of K that depends on
the geometry of K. Here we will use a characterization of
C(K) (which we found to be more intuitive) that is called
the facial distance (Pena and Rodriguez 2018) of K.

Definition 6 (The facial distance, Pena and Rodriguez
(2018), Theorem 1). Let A be a set of points in R

k and let
K = conv(A), The facial distance of K is

C(K) = min
F∈faces(K)

0�F�K

min
u∈F

v∈conv(A\F)

‖u− v‖2.

By conv(B) we denote the convex hull of the points in B,
and by faces(K) we denote the set of faces (convex hulls of
sets of pairwise adjacent vertices) of the polytope K.

Theorem 3 (Linear convergence of ASCG; (Lacoste-Julien
and Jaggi 2014)). Suppose that h is a β−smooth σ−strongly
convex function over a convex set with diameter DK. Then
the error of ASCG decreases geometrically as

h(xt) ≤ h(x1) exp(−ρt),

where ρ = σC(K)2

8D2
Kβ

.

We remark that Garber and Hazan (2016) also give a vari-
ant of Frank-Wolfe that converges linearly on polyhedral
sets when the objective function smooth and strongly con-
vex (as it is in our case). In their result, the convergence rate
is dominated by a constant different from the facial distance,
that equals to the minimum distance between a vertex v and
a hyperplane supporting a facet which does not contain v.
Nonetheless, we conjecture that this constant is strongly re-
lated to facial distance. In this work, we focus on ASCG for
two reasons: it incorporates line search, which is important
in practice, and it is simpler to implement.

3 Convex formulation of AL

In this section, we further assume that W is the L2 ball with
a unit radius (Abbeel and Ng 2004). Since scaling of the
reward by a constant does not affect the resulting policy,
this assumption is without loss of generality. Thus, we can
rewrite Eq. (5) as follows:

max
ψ∈Ψ

min
w∈W

[w · Φ(ψ)− w · ΦE]
= max

ψ∈Ψ
−||Φ(ψ)− ΦE || (12)

= −min
ψ∈Ψ

||Φ(ψ)− ΦE ||, (13)

where in Eq. (12), we use the fact that a unit vector in the
direction of Φ(ψ)−ΦE is the minimizer when W is the unit
L2 ball. Next, we define the feature expectations polytope
K as the convex hull of the feature expectations of all the
deterministic policies in M :

6724

Definition 7 (The feature expectations polytope).

K =

{
x :

k+1∑
i=1

aiΦ(πi), ai ≥ 0,
k+1∑
i=1

ai = 1, πi ∈ Π

}
.

It is straightforward to verify that the bounded features
assumption (|φ(s)| ≤ 1 for all s) implies that the diameter
of the polytope (Definition 2) is DK =

√
k/(1− γ). Defini-

tion 7 also implies the following fact on mixed policies.
Corollary 4. ∀ψ ∈ Ψ, we have that Φ(ψ) ∈ K.

Corollary 4 implies that solving Eq. (13) is equivalent to
finding the mixed policy ψ, whose feature expectations are
ProjK(ΦE), i.e., the euclidean projection (Definition 5) of
the feature expectations of the expert onto K.7 The chal-
lenge is that K has |A||S| vertices (feature expectations of
deterministic policies), thus, computing the projection ex-
plicitly and then finding ψ whose feature expectations are
close to this projection, is computationally prohibitive. This
makes the CG method appealing for solving this projection
problem. In particular, since we are able to compute a mixed
policy ψ whose feature expectation are equal to those of the
projection (via line 8, that we added in Algorithm 1).

We are now ready to define the CG method for AL explic-
itly and to show that it is indeed equivalent to the projection
algorithm of Abbeel and Ng (2004). Consider the square of
Eq. (13) as the objective function for the CG method, where
we take the feature expectation as the argument rather than
the policy ψ. I.e., we define a function h over x ∈ K as

h(x) =
1

2
‖x− ΦE‖2. (14)

Clearly, ∇h(x) = x − ΦE , and therefore line 4 in Al-
gorithm 2 is equivalent to finding the feature expectations
of the optimal policy in an MDP with reward given by
w = −∇h(xt). It follows that lines (4-5) in Algorithm 1
are equivalent to line 4 in Algorithm 2 and line 5 in Algo-
rithm 2 is equivalent to line 7 in Algorithm 1, if we substitute
Φ̄t = xt and Φt = yt.

As we already mentioned in Section 2.1, line 6 of Al-
gorithm 1 is equivalent to setting αt = minα ‖Φ̄t−1 +
α(Φt − Φ̄t−1) − ΦE‖2 (line search). For the CG method
to maintain Φ̄ as a convex combination of feature expecta-
tions, αt must be restricted to [0, 1]. This holds automati-
cally if ΦE ∈ K. When ΦE �∈ K, (e.g., when it is esti-
mated from samples), we should restrict the line search and
set αt = minα∈[0,1] ‖Φ̄t−1 + α(Φt − Φ̄t−1) − ΦE‖2. We
also note that by Theorem 2, we can also set αt = 2

t+1 and
get the same convergence rate. We focus on line search since
it is known to work better empirically.

Notice that h(Φt) (as defined in Eq. (14)) is a 1−smooth
1−strongly convex function. In addition, it has the same
unique minimizer as the original objective (Eq. (13)), which
is not β−smooth. For smooth functions, CG converges at
a rate of O(D2

K/t) = O(k/t(1 − γ)2) (Theorem 2). Thus,
after O(k/(1 − γ)2ε2) iterations, the CG method finds an
ε−optimal solution to Eq. (13). This gives a logarithmic im-
provment on the result of Abbeel and Ng (2004).

7If we know ΦE exactly then it is in K but typically we have
only an estimate.

4 Linear rate of convergence for AL

In the preliminaries section, we described the conditions for
the CG method to achieve a linear rate of convergence. Un-
fortunately, as we now explain, these conditions do not hold
for AL, despite the fact that h(Φt) (Eq. (14)) is a strongly
convex function. First of all, since K is a polytope, it is not
a strongly convex set. Secondly, ΦE cannot be guaranteed
to be an interior point of K. If πE is an optimal policy w.r.t
some reward, and ΦE is given explicitly (and not via sam-
pled trajectories), then it is located on the boundary of K
and is not an interior point. It is perhaps possible to com-
pute a direction into the interior of the set (i.e., by mixing
the feature expectations of the expert policy with those of
a random policy) to modify ΦE by an ε−small step in this
direction such that it will be an interior point. The problem
is that when ΦE is approximated from samples (which is the
case of interest), it is not guaranteed that it is located inside
K. Since we do not know at what distance and at what direc-
tion it from K it is, we cannot guarantee that an ε−step will
take us to the interior. Since CG cannot attain a linear rate of
convergence for AL, we now turn to analyze ASCG for AL.

4.1 ASCG for AL

Recall that in each iteration, the ASCG algorithm chooses
between two alternative steps: an FW step and an away step.
The FW step finds the feature expectations of the optimal
policy in an MDP whose reward is the negative gradient.
This is a standard RL (planning) problem and can be solved,
for example, with policy iteration. We also know that there
exists at least one optimal deterministic policy for it and that
PI will return a solution that is a deterministic policy. Thus,
the list of elements that ASCG maintains (S) is composed of
feature expectations of deterministic policies {π1, π2, . . . , }.
Since the associated coefficients {απ1

, απ2
, . . .} are a con-

vex combination, the mixed policy ψ(πi) = απi is guaran-
teed to have the same feature expectations as Φ̄t. We can
also compute a stochastic policy with the same feature ex-
pectations as ψ using Theorem 1.

The away step in AL checks each one of the determinis-
tic policies in the list and tries to reduce its coefficient. If a
policy that is not part of the final solution was added to the
solution during the run of the algorithm, then the away step
will reduce its coefficient faster then it would have decreased
via standard FW steps.

The AL problem satisfies all the requirements in Theo-
rem 3, thus, it attains a linear rate of convergence, and we
have that h(xt) ≤ h(x1) exp(−ρt). Since h is 1−strongly
convex, 1−smooth, and DK ≤ √

k/(1 − γ), we have that
ρ = σC(K)2

8D2
Kβ

= (1−γ)2C(K)2

8k . The facial distance C(K) is
defined in (Definition 6) and depends on the dynamics of
the MDP and the features. Intuitively, ASCG converge faster
than CG, since it chooses away steps only when they lead to
steeper descent. In the experiments section, we observed that
ASCG indeed enjoys faster convergence than CG in prac-
tice.

6725

5 Real world AL

5.1 Estimating ΦE from samples

In most practical cases, it is unrealistic to assume that the
feature expectations of the expert are given explicitly. In
such cases, AL algorithms estimate the feature expectations
by querying the expert for trajectories and then run AL on
the estimated feature expectations. Lemma 5 bounds the
number of samples needed from the expert to get a good
approximation of its feature expectations.
Lemma 5. Given m samples {τi}mi=1 whose expectation is
ΦE , define the estimator Φ̂(πE) = 1

m

∑m
i=1 τi. Assume that

we performed AL w.r.t Φ̂(πE) and found a solution π such
that ‖Φ(π) − Φ̂(πE)‖ ≤ ε. Then, for any εm, δ it is enough
to have m = 2k ln(2k/δ)/ε2m samples in order to have that
‖Φ(π)− ΦE‖ ≤ ε+ εm with probability 1− δ.

The following proof is based on Abbeel and Ng (2004).

Proof. By Hoeffding’s inequality we get that

∀i ∈ [1, .., k] Pr(|Φ̂E(i)− ΦE(i)| ≥ ε)≤2 exp(−mε2/2).
Applying the union bound over the features we get that

Pr(∃i ∈ [1, .., k], s.t., |Φ̂E(i)− ΦE(i)| ≥ ε)

≤ 2k exp(−mε2/2).
This is equivalent to

Pr(∀i ∈ [1, .., k] |Φ̂E(i)− ΦE(i)| ≤ ε)

≥ 1− 2k exp(−mε2/2),
and to
Pr(‖Φ̂E − ΦE‖∞ ≤ ε) ≥ 1− 2k exp(−mε2/2).

Thus, we got after collecting m = 2 ln(2k/δ)

(εm/
√
k)2

samples of

Φ(E), then with probability 1 − δ, we have that ‖Φ̂E −
ΦE‖∞ ≤ εm√

k
. Therefore, with probability 1 − δ we have

that
‖Φ̂E − ΦE‖2 ≤

√
k‖Φ̂E − ΦE‖∞ ≤ εm. (15)

Now, by the assumption, we have that ‖Φ(π) −
Φ̂(πE)‖2 ≤ ε and that ‖ΦE − Φ̂(πE)‖2 ≤ εm. Thus, we
have that with probability 1− δ

‖Φ(π)− ΦE‖2 = ‖Φ(π)− Φ̂(πE) + Φ̂(πE)− ΦE‖2
≤ ‖Φ(π)− Φ̂(πE)‖2 + ‖ΦE − Φ̂(πE)‖2

(16)
≤ ε+ εm, (17)

where Eq. (16) follows from the triangle inequality, and
Eq. (17) follows from Eq. (15).

In the proof, we assumed that the samples in Lemma 5
are bounded and unbiased. For finite horizon, each sam-
ple can be obtained by observing the expert executing a
trajectory. In the discounted case, we can follow Syed and
Schapire (2008), limit the trajectories to be of length H ≥
(1/(1 − γ)) log(1/(εH(1 − γ))) and show that this comes
at an additional cost of εH . Alternatively, we can follow
Kakade and Langford (2002), execute the expert trajectory

online, and terminate it at each time step with probability
1 − γ. This will make the estimate unbiased. Similarly, Za-
havy et al. (2019) propose an unbiased sampling mechanism
for the average reward criteria based on the Coupling From
The Past (CFTP) protocol. In both of these cases the esti-
mates are only bounded with high probability, but it is pos-
sible to follow Zahavy et al. (2019) to obtain a concentration
result.

5.2 Stochastic CG

In the previous subsection, we analyzed a scenario in which
the feature expectations of the expert are estimated by query-
ing the expert for trajectories. However, in many real-world
applications, it may also not be possible to estimate the fea-
ture expectations of the agent exactly. This may happen, for
example, when the algorithm can only access the environ-
ment by queering a simulator. In such cases, the feature ex-
pectations must be approximated by executing trajectories
of the agent policy in the environment.

To address this issue, we design an AL algorithm that is
based on the Stochastic FW (SFW) algorithm (Hazan and
Luo 2016). The core idea is to replace the expected gradient
∇h(Φ(πt)) = Φ(πt) − ΦE , with an unbiased estimation.
Explicitly, given mt samples {τi}mt

i=1 whose expectation is
Φ(πt), define the estimator Φ̂(πt) = 1

mt

∑mt

i=1 τi. We em-
phasize here there these samples are collected at iteration t
using the agent policy πt and should not be confused with
samples from the expert policy (in the previous subsection)
that are collected once and are given as an input to the al-
gorithm. Once Φ̂(πt) is computed, it is used as an unbiased
estimator of the gradient , ∇̂h(Φ(πt)) = Φ̂(πt) − ΦE and
can be plugged into Algorithm 1. The following theorem an-
alyzes the sample complexity of this algorithm.

Theorem 6. Let h be a G− Lipschitz, convex and β-smooth
function. Let DK be the diameter of K, let αt = 2

t+1 and

let mt =
(
G(t+1)
βD2

K

)2
for t ≥ 1. Then for any t ≥ 2, (Algo-

rithm 2) computes xt such that

h(xt)− h(x∗) ≤ 2βD2
K

t+ 1
,

where x∗ is a minimizer of h over K.

Notice that SFW has the same complexity as FW, but re-
quires sampling mt =

(G(t+1)
βD2

K

)2
trajectories at iteration t.

Finally, we note that Hazan and Luo (2016) also devel-
oped more efficient, variance-reduced stochastic FW algo-
rithms. Still, these algorithms involve computations of the
(expected) gradient (every few iterations) and therefore do
not follow the motivation of this subsection. If it is possi-
ble to gain access to the expected gradient, then, these more
efficient versions may become useful.

6 Experiments

In this section, we compare the CG and ASCG methods for
AL in two AL domains: an autonomous driving simulation
(Abbeel and Ng 2004; Syed and Schapire 2008), and a grid

6726

world domain. The results in each experiment are averaged
over 10 runs of each algorithm (random seeds). The mean is
presented in a solid line; around it, the colored area shows
the mean plus/minus the standard deviation.

Setting. In each domain, there are fixed dynamics and ini-
tial state distribution that are given as a simulator (and not
explicitly in a matrix form). Computation of feature expec-
tations are done through Monte Carlo simulations: Given a
policy π, (that could be the expert or the agent) we exe-
cute NEstimation trajectories of length H from a state drawn
by the initial state distribution. The average of the cumu-
lative discounted sum of the features along these trajecto-
ries is our estimated feature expectations of π. Given a re-
ward function, the optimal policy is computed by running
Q learning (Watkins and Dayan 1992) for NRL steps. Our
implementation of Q learning is standard and includes an
ε−greedy exploration with ε = 0.05 and a learning rate of
αt = 0.2/t0.75 (following Even-Dar and Mansour (2003)).
It is important to note that both of these procedures do not
necessarily return accurate solutions and that these solutions
become more accurate as we increase the computation re-
sources, and specifically,NEstimation, H,NRL. Empirically we
found that as we increased these resources (making our im-
plementation closer to the theoretical framework), the dif-
ferences between the two methods become more significant.

Gridworld domain. In this domain, we place an agent
in a 5×5 grid world domain. The agent can move up,
down, left, and right. At each point in the grid, there is a
reward (negative, zero), and there is a single point with
a positive reward. Once the agent collected a positive
reward, it starts again from the initial state. We used
NEstimation = 300, H = 50, NRL = 300 and run both CG
and ASCG for Niter = 100 steps. In Section 6, we can see
the error of each algorithm as a function of the iteration
number. The error measures the distance (in a logarithmic
scale) between the feature expectations of the expert and
those of the agent at time t, i.e., ‖ΦE − Φt‖. We can see
that ASCG has a clear advantage over CG.

Figure 1: Comparison of CG with ASCG on a 5×5 grid-
world domain

Car simulator. The driving task simulates a three-lane
highway, in which there are two visible cars - cars A and
B. The agent, car A, can drive both on the highway and off-
road. Car B drives on a fixed lane, at a slower speed than

car A. Upon leaving the frame, car B is replaced by a new
car, appearing in a random lane at the top of the screen. The
reward is a linear combination of driving features: speed,
collisions, and off-road driving. The goal of the agent is to
find a driving policy that balances between these features
based on expert preferences.

We used NEstimation = 1000, H = 40, NRL = 1000 and
run both algorithms for Niter = 50 steps. Similar to the
greed domain, we can see that ASCG has a clear advantage
over CG.

Figure 2: Comparison of CG with ASCG on the car driving
simulator

7 Discussion

We presented a convex optimization formulation for AL and
showed that the CG method is equivalent to the projection
algorithm of Abbeel and Ng (2004). This revelation allowed
us to leverage known results on the CG method for AL.
We showed that a version of the CG method that is taking
away steps gives improved performance empirically and has
a provable linear rate of convergence.

We believe that our findings will help to improve AL al-
gorithms further. One direction is to try and find a relaxation
of the problem, where instead of optimizing over the poly-
tope, we optimize over a large strongly convex set that is
contained in the polytope. Such a set can be obtained, for
example, by mixing each deterministic policy with a ran-
dom policy. If the distance between the sets is guaranteed to
be small, then, it should be possible to obtain faster rates.
Another direction is to try and bound the facial distance of
the polytope using parameters of the MDP.

Acknowledgments

We would like to thank Elad Hazan and Dan Garbar for their
comments on this work.

References

Abbeel, P., and Ng, A. Y. 2004. Apprenticeship learning
via inverse reinforcement learning. In Proceedings of the
twenty-first international conference on Machine learning,
1. ACM.

6727

Beck, A., and Shtern, S. 2017. Linearly convergent away-
step conditional gradient for non-strongly convex functions.
Mathematical Programming 164(1-2):1–27.
Beck, A., and Teboulle, M. 2004. A conditional gradient
method with linear rate of convergence for solving convex
linear systems. Mathematical Methods of Operations Re-
search 59(2):235–247.
Canon, M. D., and Cullum, C. D. 1968. A tight upper bound
on the rate of convergence of frank-wolfe algorithm. SIAM
Journal on Control 6(4):509–516.
Even-Dar, E., and Mansour, Y. 2003. Learning rates for q-
learning. Journal of machine learning Research 5(Dec):1–
25.
Frank, M., and Wolfe, P. 1956. An algorithm for quadratic
programming. Naval research logistics quarterly 3(1-2):95–
110.
Garber, D., and Hazan, E. 2013. A linearly convergent con-
ditional gradient algorithm with applications to online and
stochastic optimization. arXiv preprint arXiv:1301.4666.
Garber, D., and Hazan, E. 2015. Faster rates for the frank-
wolfe method over strongly-convex sets. In 32nd Interna-
tional Conference on Machine Learning, ICML 2015.
Garber, D., and Hazan, E. 2016. A linearly convergent vari-
ant of the conditional gradient algorithm under strong con-
vexity, with applications to online and stochastic optimiza-
tion. SIAM Journal on Optimization 26(3):1493–1528.
Guélat, J., and Marcotte, P. 1986. Some comments
on wolfe’s ‘away step’. Mathematical Programming
35(1):110–119.
Hansen, T. D.; Miltersen, P. B.; and Zwick, U. 2013. Strat-
egy iteration is strongly polynomial for 2-player turn-based
stochastic games with a constant discount factor. Journal of
the ACM (JACM) 60(1):1.
Hazan, E., and Luo, H. 2016. Variance-reduced and
projection-free stochastic optimization. In International
Conference on Machine Learning, 1263–1271.
Jaggi, M. 2013. Revisiting frank-wolfe: Projection-free
sparse convex optimization.
Kakade, S., and Langford, J. 2002. Approximately optimal
approximate reinforcement learning. In International con-
ference on Machine learning, 267–274.
Lacoste-Julien, S., and Jaggi, M. 2014. An affine invari-
ant linear convergence analysis for frank-wolfe algorithms.
NIPS 2013 Workshop on Greedy Algorithms, Frank-Wolfe
and Friends.
Levitin, E. S., and Polyak, B. T. 1966. Constrained mini-
mization methods. USSR Computational mathematics and
mathematical physics 6(5):1–50.
Nemirovsky, A. S., and Yudin, D. B. 1983. In Problem
complexity and method efficiency in optimization. Wiley,
New York.
Ng, A. Y., and Russell, S. J. 2000. Algorithms for inverse re-
inforcement learning. International Conference on Machine
Learning (ICML).

Pena, J., and Rodriguez, D. 2018. Polytope conditioning
and linear convergence of the frank–wolfe algorithm. Math-
ematics of Operations Research 44(1):1–18.
Puterman, M. L. 1984. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons.
Ratliff, N. D.; Bagnell, J. A.; and Zinkevich, M. A. 2006.
Maximum margin planning. In Proceedings of the 23rd
international conference on Machine learning, 729–736.
ACM.
Syed, U., and Schapire, R. E. 2008. A game-theoretic ap-
proach to apprenticeship learning. In Advances in neural
information processing systems, 1449–1456.
Syed, U.; Bowling, M.; and Schapire, R. E. 2008. Appren-
ticeship learning using linear programming. In Proceedings
of the 25th international conference on Machine learning,
1032–1039. ACM.
Watkins, C. J., and Dayan, P. 1992. Q-learning. Machine
learning 8(3-4):279–292.
Wolfe, P. 1970. Convergence theory in nonlinear program-
ming. Integer and nonlinear programming 1–36.
Ye, Y. 2011. The simplex and policy-iteration methods are
strongly polynomial for the markov decision problem with
a fixed discount rate. Mathematics of Operations Research
36(4):593–603.
Zahavy, T.; Cohen, A.; Kaplan, H.; and Mansour, Y. 2019.
Average reward reinforcement learning with unknown mix-
ing times. arXiv preprint arXiv:1905.09704.

6728

