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Abstract

In this paper, we study the online quantum state learn-
ing problem which is recently proposed by Aaronson et al.
(2018). In this problem, the learning algorithm sequentially
predicts quantum states based on observed measurements and
losses and the goal is to minimize the regret. In the previ-
ous work, the existing algorithms may output mixed quan-
tum states. However, in many scenarios, the prediction of a
pure quantum state is required. In this paper, we first pro-
pose a Follow-the-Perturbed-Leader (FTPL) algorithm that
can guarantee to predict pure quantum states. Theoretical
analysis shows that our algorithm can achieve an O(

√
T ) ex-

pected regret under some reasonable settings. In the case that
the pure state prediction is not mandatory, we propose an-
other deterministic learning algorithm which is simpler and
more efficient. The algorithm is based on the online gradient
descent (OGD) method and can also achieve an O(

√
T ) re-

gret bound. The main technical contribution of this result is
an algorithm of projecting an arbitrary Hermitian matrix onto
the set of density matrices with respect to the Frobenius norm.
We think this subroutine is of independent interest and can be
widely used in many other problems in the quantum comput-
ing area. In addition to the theoretical analysis, we evaluate
the algorithms with a series of simulation experiments. The
experimental results show that our FTPL method and OGD
method outperform the existing RFTL approach proposed by
Aaronson et al. (2018) in almost all settings. In the imple-
mentation of the RFTL approach, we give a closed-form so-
lution to the algorithm. This provides an efficient, accurate,
and completely executable solution to the RFTL method.

Introduction

The interdisciplinary research between quantum comput-
ing and machine learning is becoming an attractive area in
recent years (Biamonte et al. 2017; Lloyd, Mohseni, and
Rebentrost 2014). On one hand, people expect to take advan-
tage of the great power of quantum computers to improve the
efficiency of the algorithms in big data processing and ma-
chine learning. One representative example following this
idea is the HHL algorithm (Harrow, Hassidim, and Lloyd
2009). On the other hand, machine learning algorithms and
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theories may also help solve some interesting problems in
quantum computation and quantum information (Carleo and
Troyer 2017). In this paper, we apply the online learning the-
ory to solve an interesting problem of learning an unknown
quantum state.

Learning an unknown quantum state is a fundamental
problem in quantum computation and quantum information.
The basic version is the quantum state tomography prob-
lem (Vogel and Risken 1989), which aims to fully recover
the classical description of an unknown quantum state. Al-
though quantum state tomography gives a complete char-
acterization of the target state, it is quite costly. Recent
advancement showed that fully reconstructing an unknown
quantum state in the worst case needs exponential copies of
the state (Haah et al. 2016; Odonnell and Wright 2016).

However, in some applications, it is unnecessary to fully
reconstruct an unknown quantum state. Some side informa-
tion is sufficient. Therefore, some learning tasks move on
to learn the success probabilities of applying a collection of
two-outcome measurements to an unknown state, with re-
spect to some metrics. Of which, the shadow tomography
problem (Aaronson 2018) requires to estimate the success
probabilities uniformly over all measurements in the collec-
tion. Aaronson (2018) showed that the required number of
copies of the unknown state in the shadow tomography is
nearly linear to the number of qubits and poly-logarithmic
in terms of the number of the measurements.

More generally, it may not need to estimate the success
probabilities within an error uniformly over all two-outcome
measurements. Following the idea of the statistical learn-
ing theory, we may assume that there is a distribution over
some possible two-outcome measurements. And our goal is
to learn a quantum state such that the expected difference be-
tween the success probabilities of applying a measurement
sampled from the distribution to the learned state and the tar-
get state respectively is within a specific error. This is called
the statistical learning model or the PAC-learning model of
quantum states. Aaronson (2007) proved that the number of
samples for the PAC-learning of quantum states only grows
linearly with the number of qubits of the state, which is sur-
prisingly an exponential reduction compared with the full
quantum state tomography.
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However, the assumption that there is a distribution over
some two-outcome measurements and the data are i.i.d. sam-
ples from this distribution does not always hold. The En-
vironment may change over time or it is even adversar-
ial. Complementary to the statistical learning theory, the
online learning theory is good at coping with arbitrary or
even adversarial sequential data. Therefore, Aaronson et al.
(2018) further proposed the model of online quantum states
learning. In this model, the data, such as measurements and
losses, are provided sequentially. The learning algorithm is
to predict a series of quantum states interactively. Its goal is
to minimize the regret, which is the difference in the total
loss between the learning algorithm and the best fixed quan-
tum state in hindsight.

Although the existing theory has provided helpful ideas
for this problem, it is still a challenge to design and analyze
algorithms for online quantum state learning. For example,
a feasible solution in conventional online learning is often
a vector in the real Euclidean space, but a feasible solution
in quantum state learning is a complex matrix with special
constraints. Besides, a direct adaption of the existing tech-
niques can not utilize the properties of the quantum setting.
If we can take advantage of these unique features or lever-
age techniques from quantum computing, we may get better
results or different solutions.

In (Aaronson et al. 2018), the authors proposed three very
different approaches. They evaluated the algorithms with
two metrics, the regret in online learning and the number
of errors. First, they adapted the Regularized Follow-the-
Leader (RFTL) algorithm (Abernethy, Hazan, and Rakhlin
2008; Shalev-Shwartz and Singer 2007) to the online quan-
tum state learning. Particularly, they employed the nega-
tive von Neumann entropy as the regularization. The RFTL
method can achieve an O(L

√
nT ) regret, where L is the

Lipschitz coefficient of the loss functions, n is the number
of qubits of a state, and T is the time horizon of the learn-
ing process. Its number of errors is O( n

ε2 ) under some as-
sumptions. The RFTL method has the best theoretical guar-
antee over the other two methods. Their second method
employs the technique of postselection-based learning pro-
cedure (Aaronson 2005). Its error number is bounded as
O( n

ε3 log
n
ε ) and the regret bound is not available. Their

third method is based on an upper-bound on the sequen-
tial fat-shattering dimension of quantum states (Nayak 1999;
Ambainis et al. 2002; Rakhlin, Sridharan, and Tewari 2015).
It achieves a regret bound of O(L

√
nT log3/2 T ). What

weird is that this result is non-explicit and non-constructive,
that is, we actually do not have any specific algorithm corre-
sponding to this result. Seeing from this discussion, although
the latter two methods highly utilize the techniques of quan-
tum computing and they do not rely on the theory of online
learning, they actually do not outperform the typical RFTL
method. This shows the great power of machine learning
and optimization theories on solving interesting problems in
quantum computation and quantum information.

In this paper, we revisit the problem of online quantum
state learning from the perspective of online convex opti-
mization.

First, predicting a pure quantum state is of special inter-
est in quantum state learning (Lee, Lee, and Bang 2018;
Benedetti et al. 2019) since a pure state has its unique value
in theory and practice. However, the existing RFTL method
cannot make such a guarantee since its prediction is always
a full rank matrix, which corresponds to a mixed state. It is
still a challenge to predict pure states in online quantum state
learning. In this paper, we propose a Follow-the-Perturbed-
Leader (FTPL) algorithm (Kalai and Vempala 2005) that can
guarantee to predict pure quantum states every round. The
key idea is to formulate the optimization objective with a
stochastic linear regularization to be a special semi-definite
programming (SDP), and we show this SDP always has a
rank-1 solution which is corresponding to a pure quantum
state. Our analysis shows that the regret with respect to the
expected prediction is bounded as O(

√
T ). We further adapt

the FTPL method to a typical and reasonable setting with L1

loss. In this case, our FTPL method can achieve an O(
√
T )

expected regret.
Second, if pure states are not mandatory, the online gra-

dient descent (OGD) method (Zinkevich 2003) is a sim-
ple and efficient approach for this problem. Actually, it is
widely used in practice for online learning. However, the
OGD method relies on a subroutine of projection if the fea-
sible solutions are constrained. In this paper, we propose an
algorithm of projecting an arbitrary Hermitian matrix onto
the set of quantum states with respect to the Frobenius norm.
The key idea is to reduce the problem to project a vector
onto the probability simplex. Our algorithm is exact and ef-
ficient. It could be widely used as a subroutine in many other
problems in quantum computing. We apply our method to
the projected online gradient descent algorithm for quantum
state learning and we show that this method can achieve an
O(

√
T ) regret.

Third, the RFTL method due to Aaronson et al. (2018) re-
lies on an offline oracle of solving a linear optimization with
the negative von Neumann entropy regularization, which is
not fully discussed in the original work. In this paper, we
give a closed-form solution to this offline convex optimiza-
tion problem. Our result provides an efficient, accurate, and
completely executable solution to the RFTL method. We
also implement this solution in our experiments.

Last but not least, we conduct a series of simulation ex-
periments to evaluate the algorithms. In our experiments, the
FTPL method and the OGD method outperforms the RFTL
approach in almost all settings.

Preliminaries

For readers unfamiliar with the field of quantum computing
and making this paper self-contained, in this section, we in-
troduce some basic concepts in quantum computation and
quantum information that are necessary for this paper. Inter-
ested readers are recommended to the celebrated textbook
by Nielsen and Chuang (2002).

Quantum state Unlike in classical computers that a bit
is in a deterministic state of either 0 or 1, in quantum com-
puting, a quantum bit (qubit henceforth) could be in a su-
perposition of 0 and 1. The state of a qubit could be de-
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scribed by a unit vector (α0, α1)
T ∈ C

2, where |α0|2 +
|α1|2 = 1, meaning that when measuring the qubit, we may
observe the result 0 with probability |α0|2 or the result 1
with probability |α1|2. Similarly, the state of an n-qubit sys-
tem could be described by a unit vector (α0, . . . , α2n−1)

T ∈
C

2n . When measuring this system, we may observe the re-
sult (i)2 with probability |αi|2 for i = 0, . . . , 2n − 1, where
(i)2 is the n-bit binary representation of integer i.

Pure state, mixed state, and density matrix An n-
qubit system could be in a more complicated state than the
state introduced above. It can be a distribution over those
“simple” states. More precisely, it could be in a “simple”
state Ψi ∈ C

2n with probability pi for some i. For distin-
guishing these cases, we call a state corresponding to a unit
vector a pure state and a state that is a distribution over mul-
tiple pure states a mixed state.

The representation of pure states and mixed states can be
unified with a mathematical tool called density matrix (or
density operator). Specifically, if a quantum state is in a
state Ψi ∈ C

2n with probability pi, its density matrix is a
d× d complex matrix ρ, where d = 2n, defined as

ρ =
∑
i

piΨiΨ
†
i ,

in which Ψ†
i is the adjoint conjugate of Ψi.

It can be showed that a 2n×2n complex matrix ρ is a den-
sity matrix (quantum state) if and only if it is Hermitian, pos-
itive semi-define (PSD), and with trace 1. Further, a density
matrix ρ represents a pure state if and only if rank(ρ) = 1.

The set of density matrices of n-qubit states is denoted as

Kn =
{
ρ ∈ C

2n×2n | ρ = ρ†, ρ � 0,Tr(ρ) = 1
}
.

We abbreviate Kn as K when n is clear in the context. It is
straightforward to verify that Kn is a convex set.

Two-outcome measurement Quantum measurement is
a means to extract classical (observable) information from
a quantum state. While quantum measurement is a broad
topic, in this paper we only consider a special case called
two-outcome measurement (Aaronson 2018; Aaronson et
al. 2018). When applying a two-outcome measurement to a
quantum state, it succeeds with a specific probability. Math-
ematically, a two-outcome measurement could be described
by a Hermitian PSD matrix E ∈ C

d×d with eigenvalues in
[0, 1]. When applying E to a quantum state ρ, it gets a suc-
cessful result (Yes or 1) with probability Tr(Eρ), or a failed
result (No or 0) with probability 1− Tr(Eρ).

Problem Description and Settings

Online quantum state learning is a sequential prediction pro-
cess with interactions between a player (algorithm) and an
adversary over T rounds. In round t, the player predicts
a quantum state ωt ∈ K. Simultaneously the adversary
chooses and reveals a two-outcome measurement Et and a
loss function �t : R → R. At the end of this round the player
suffers a loss �t(Tr(Etωt)).

As a convention in online learning, we assume the loss
function �t is convex and L-Lipschitz.

We assume that the adversary can access the player’s
strategy, without knowing its random numbers if it is a ran-
domized algorithm. Generally, the adversary can select Et

and �t in an arbitrary way. We call it the oblivious setting
if Et and �t are chosen before the game playing, and the
adaptive setting is that Et and �t may depend on the player’s
predictions in previous rounds.

It is called the realizable case if there is an underlying
unknown quantum state ρ to be learned and the loss func-
tion �t is relevant to ρ, while in the non-realizable case the
loss functions need not be consistent with any quantum state
(Aaronson et al. 2018).

Common loss functions are the L1 loss (absolute loss) de-
fined as

�t(x) := |x− bt|,
and the L2 loss (square loss) given by

�t(x) := (x− bt)
2.

In the realizable case, bt may be an approximation to the suc-
cess probability of applying Et to ρ, or a Bernoulli random
variable corresponding to the measurement result.

While we generally discuss the generic settings in this pa-
per, we pay particular attention to a case with L1 loss and
bt ∈ {0, 1}. We argue that this is a typical, realistic, and
reasonable setting since in physics we can only observe the
measurement results of the unknown state.

In online learning, we use the regret to evaluate the per-
formance of an algorithm. In our problem, it is defined as

regretT =

T∑
t=1

�t(Tr(Etωt))−min
ω∈K

T∑
t=1

�t(Tr(Etω)).

The regret is the difference in the total loss between the
learning algorithm and the best fixed prediction in hindsight.
A good algorithm should have a sublinear regret in terms of
the time horizon T , that is, the average regret per round is
approaching to 0 when T trends to infinity.

Many online learning algorithms utilize the gradients of
the loss functions. In our setting, the gradient of the loss �t
with respect to the point ωt is denoted as

∇t =
d

dωt
�t(Tr(Etωt)) = �′t(Tr(Etωt))Et.

Our Results

We present our work in this section. In the first subsection,
we discuss the FTPL method of predicting pure quantum
states. The second subsection proposes a projection algo-
rithm onto the set of density matrices and applies it to the
OGD method. In the third subsection, we provide a closed-
form solution to the RFTL method.

Follow-the-Perturbed-Leader Algorithm for Pure
Quantum State Prediction

Predicting a pure quantum state is of special interest in quan-
tum state learning (Lee, Lee, and Bang 2018; Benedetti et
al. 2019) since a pure quantum state has its unique value in
theory and practice. For example, if we want to utilize the
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learning results by preparing or transporting them, the de-
vice or resource for pure states are more economical than
that for mixed states.

However, although the RFTL method has a good regret
guarantee, it always predicts mixed quantum states since
we can show that ωt is full-rank. This can also be implied
from Claim 14 in (Aaronson et al. 2018). Similarly, the OGD
method which will be introduced shortly cannot make such
promise as well. Therefore, it is still a challenge to predict
ωt as a pure quantum state.

We realize that by adding a stochastic linear regulariza-
tion instead of the deterministic convex regularization as in
the RFTL method, we can always guarantee pure state pre-
diction, leading to a Follow-the-Perturbed-Leader algorithm
depicted in Algorithm 1.

Algorithm 1 FTPL algorithm for pure state prediction

1: for t = 1 to T do
2: Sample a random Hermitian matrix Zt

3: Predict

ωt = argmin
ω∈K

{
η

t−1∑
s=1

Tr(∇sω)− Tr(Ztω)

}
. (1)

4: end for

As claimed above, Algorithm 1 can always predict pure
states, which is formally stated as the following theorem.

Theorem 1. The mathematical programming (1) in Algo-
rithm 1 always has a rank-1 solution. In this case, ωt is a
pure quantum state.

An explicit algorithm to solve the mathematical program-
ming in (1) naturally gives a constructive proof to this theo-
rem, which we present as follows.

Proof. The optimization problem in (1) is actually a semi-
definite programming problem. While SDP is difficult in
general, this special one is easy to solve.

Since ∇s and Zt are Hermitian, we have the following
diagonal decomposition

η

t−1∑
s=1

∇s − Zt = UΛU †,

where Λ is a diagonal matrix and U is a unitary matrix. The
SDP is transformed to a diagonal form as

min
ω′∈K

Tr(Λω′),

in which ω′ = U†ωU . This can be further translated to a
linear programming problem

min
x∈Δd

λTx,

where λ = (Λ1, . . . ,Λd)
T is the diagonal vector of Λ. While

solving linear programming is costly in general, this one is
quite trivial since the feasible set is the probability simplex.
The solution x could be set in such a way that it has only one

element with value 1 corresponding to the smallest element
in λ and other elements are 0. Finally the solution to the
original SDP ωt = Udiag(x)U† is a rank-1 density matrix,
corresponding to a pure quantum state.

Before discussing the regret of the FTPL method, we
turn to the construction of the random Hermitian matrix
Zt. While the exponential distribution is commonly used
in conventional FTPL method (Kalai and Vempala 2005;
Neu and Bartók 2016), we employ the normal distribution
in our algorithm since the former depends on the assump-
tion that the elements in the gradients are all non-negative
which does not hold in our setting.

A random Hermitian matrix Z ∈ C
d×d can be sam-

pled as follows. First its diagonal elements Zi,i ∼ N (0, 1)
for i = 1, . . . , d. And then its upper triangle is filled as
Zi,j ∼ N (0, 1

2 ) + iN (0, 1
2 ) for 1 � i < j � d. Finally

its lower triangle is completed by the definition of Hermi-
tian that Zj,i = Z∗

i,j for 1 � i < j � d, where Z∗
i,j is the

conjugate of the complex number Zi,j . All coefficients in Z
are independent. We denote such a distribution over Hermi-
tian matrices as DN .

Now we turn back to the regret analysis of the FTPL
method. For simplicity, we only consider the oblivious set-
ting in which Zt needs not to be re-sampled every round.
Since it is a randomized algorithm, here we provide a result
in terms of the regret with respect to the expected predic-
tion, that is, if we predict ωt = E[ωt] in round t, we have the
following statement.1

Theorem 2. Suppose Z ∼ DN and Z1 = · · · = ZT = Z.
By setting η = 1

L
√
T

, the regret of algorithm 1 with respect
to the expected prediction is bounded as
T∑

t=1

�t(Tr(EtE[ωt]))−min
ω∈K

T∑
t=1

�t(Tr(Etω)) = O(Ld
√
T ).

Algorithm 1 could be seen as a variant of the algorithm
implied from Theorem 2 that it takes only one sample in-
stead of the expectation as the prediction. Since the exact
expectation is usually inaccessible, it is reasonable in prac-
tice to take samples to replace the expectation as in many
Monte Carlo methods. It is an interesting problem to ana-
lyze the relationship between the regret gap and the number
of samples.

In a special case that the loss function is L1 loss and
bt ∈ {0, 1}, we can adapt the FTPL method to achieve a
better theoretical result that it provides an expected regret
guarantee. As we argue before, this is a typical and reason-
able setting and it has practical value.

In this case, the L1 loss becomes a linear loss as
�t(Tr(Etωt)) = (1− bt)Tr(Etωt) + btTr((Id − Et)ωt)

= Tr (((1− 2bt)Et + btId)ωt) ,

where Id is the d × d identity matrix. The corresponding
gradient is modified to be

∇t = (1− 2bt)Et + btId. (2)
1Due to the space limitation, the detailed proofs to our main

theorems are provided in an extended version of this paper, which
will be available on the Internet.
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By linearity we have

�t(Tr(EtE[ωt])) = E [�t(Tr(Etωt))] .

Applying this observation to Algorithm 1 and Theorem 2,
consequently we have the following expected regret bound.
Theorem 3. For the setting with L1 loss and bt ∈ {0, 1}, the
FTPL algorithm (Algorithm 1) running with the gradients
defined in (2) and Z1 = . . . = Zd ∼ DN achieves an
expected regret bound as

E [regretT ] = E

[
T∑

t=1

�(Tr(Etωt))− min
ω∈K

T∑
t=1

�(Tr(Etω))

]

= O(Ld
√
T ).

This is a more direct result than Theorem 2 since it is
completely consistent with the algorithm.

Projection onto Density Matrices and Its
Application to Online Gradient Descent

Online gradient descent is a simple and efficient method in
online learning and therefore it is widely used in practice.
Besides, the OGD method has other advantages. For exam-
ple, it can achieve a logarithmic regret for strongly convex
loss functions (Hazan, Agarwal, and Kale 2007), which is a
significant improvement compared with the square-root re-
gret in general cases. However, the OGD method relies on a
subroutine of projection for constrained optimization since
one step of an update may lead to a solution outside of the
feasible region so we have to pull it back.

Projection is an operation of finding the nearest point in a
set S to a given point y. Formally, it is defined as

ΠS(y) = argmin
x∈S

‖x− y‖.

It is well known that projection is an important subrou-
tine in many optimization and machine learning algorithms.
However, projection is a tricky operation since there is no
generic approach and the algorithm, as well as the compu-
tational cost, heavily relies on the properties of the feasible
set. For example, it is quite easy to project a point onto a
ball, but projecting a point onto a general polytope is a lin-
ear programming problem and it is quite costly.

In this section, we devise an algorithm that projects an
arbitrary Hermitian matrix onto the set of density matrices
with respect to the Frobenius norm. This operation is an ana-
logue of the projection in vector space with respect to the
Euclidean norm.

Our approach is described in Algorithm 2.2 The main idea
is to project the spectrum vector of the input matrix onto
the probability simplex with respect to the Euclidean norm,
which is a well-studied and efficient process (Chen and Ye
2011; Wang and Carreiraperpinan 2013).

The soundness of Algorithm 2 is stated as the following
theorem.

2We are grateful to the reviewer for pointing out that some sim-
ilar result was independently developed recently, see (Gonçalves,
Gomes-Ruggiero, and Lavor 2016). In addition, some relevant pro-
jection methods were developed under special assumptions such as
sparsity, see (Bolduc et al. 2017; Kyrillidis et al. 2013).

Algorithm 2 Projection onto the set of density matrices

1: Input: a d × d Hermitian matrix A (no matter PSD or
not)

2: Decompose A into its diagonal form A = UQU †
3: Let vector q = (Q1,1, . . . , Qd,d)

T

4: Project vector q onto the d-dimensional probability sim-
plex Δd and get λ = (λ1, . . . , λd)

T, that is

λ = argmin
x∈Δd

‖x− q‖2

5: Let diagonal matrix Λ = diag(λ1, . . . , λd)
6: return A′ = UΛU †

Theorem 4. Suppose A is an arbitrary d×d Hermitian ma-
trix, then the matrix A′ produced by Algorithm 2 is a density
matrix and it satisfies

‖A−A′‖F � ‖A− ρ‖F
for any d× d density matrix ρ.

Our algorithm is computationally efficient. Since the pro-
cess in step 4 of projecting a vector onto the probability sim-
plex takes O(d log d) time, the major part in the computa-
tional cost is from the process of spectrum decomposition in
step 2 and the matrix multiplication in step 6. We think this
problem is of independent interest and our method could be
widely used as a subroutine in many other problems in quan-
tum computing.

With the projection method we propose above, we can de-
sign a projected online gradient descent algorithm for online
quantum state learning, which is depicted in Algorithm 3.

Algorithm 3 OGD method for online quantum state learning

1: Input: T , ω1 = Id/d, step size {ηt}
2: for t = 1 to T do
3: Predict ωt and observe measurement Et as well as

loss function �t.
4: Update and project:

ωt+1 = ΠK(ωt − ηt�
′
t(Tr(Etωt))Et).

5: end for

By adapting the standard technique of analyzing the OGD
method (Hazan 2016) to our setting of learning quantum
states, Algorithm 3 achieves an O(

√
T ) regret bound, which

is stated formally in Theorem 5.

Theorem 5. By setting ηt = η = 1
Ld

√
d−1
T , the regret of

Algorithm 3 is bounded as

regretT � L
√

(d− 1)T .

Closed-form Solution to the RFTL Algorithm

The basic idea of the RFTL method due to Aaronson et al.
(2018) is to predict a density matrix that minimizes a linear
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loss with an additional negative von Neumann entropy reg-
ularization. Specifically, in round t the algorithm predicts

ωt := argmin
ω∈K

{
η

t−1∑
s=1

Tr (∇sω) +

2n∑
i=1

λi(ω) log λi(ω)

}
.

(3)

Aaronson et al. (2018) showed that the regret of the RFTL
algorithm can be upper-bounded as 2L

√
(2 log 2)nT .

Although Aaronson et al. (2018) stated that the mathe-
matical programming in (3) is convex and it can be solved
efficiently, there is still something to do with this offline con-
vex optimization problem to provide an end-to-end solution
to the RFTL method. First, it is a constrained optimization
problem and the feasible set is the set of density matrices. By
utilizing some typical convex optimization algorithms such
as the projected gradient descent, we have to design a sub-
routine of projecting a matrix onto the set of density ma-
trices, as we just did. Second, the gradient of the objective
function in (3) at density matrix ω is η

∑t−1
s=1 ∇s+I+logω,

whose norm is unbounded since ω is an arbitrary density
matrix and its eigenvalues can be arbitrarily close to 0. This
is inconsistent with the bounded-gradient assumption (Lip-
schitz condition) of some convex optimization algorithms
and their analysis.3 Third, generic convex optimization al-
gorithms are often iterative processes. Only an approximate
solution is found after finite steps and the optimal solution
cannot be guaranteed. There is a theoretical gap between
an approximate solution and the optimal assumption in the
analysis of the RFTL method, not to mention that it may take
much time to find an acceptable solution.

Fortunately, we can circumvent all the issues by providing
a closed-form solution to the convex optimization in (3), as

ωt :=
exp

(
−η

∑t−1
s=1 ∇s

)
Tr

(
exp

(
−η

∑t−1
s=1 ∇s

)) . (4)

We formally state the result in the following theorem.

Theorem 6. Suppose ∇s are Hermitian matrices for s =
1, . . . , t − 1, and K is the set of density matrices. ωt given
in equation (4) is the optimal solution of the mathematical
programming problem in (3).

Our result provides an efficient, accurate, and completely
executable solution to the RFTL algorithm. Our solution has
several advantages over using a generic offline convex op-
timization oracle to solve (3). First, it is not iterative and
it produces an exact optimal solution, while generic iterative
optimization algorithms do not guarantee. Second, it is com-
putationally efficient since it only takes one step of diagonal
decomposition, while every step in generic optimization al-
gorithms may require such operation. Besides, our solution
does not depend on the subroutine of projection.

Experiments

In addition to the theoretical analysis discussed above, in this
section, we evaluate the algorithms of online quantum state
learning with a series of simulation experiments.

Experimental Settings

We implement and compare the three algorithms we dis-
cussed, the FTPL method, the OGD method, and the RFTL
method with our closed-form solution.

In this experiment, we consider a typical and reasonable
setting described as follows. First, it is a realizable setting,
that is, there is an underlying unknown quantum state ρ,
pure or mixed, to be learned. The loss functions �t are de-
termined by the measurements applied to ρ, although the
measurements could be chosen randomly or adversarially.
Specifically, we consider the absolute loss �t(z) = |z − bt|,
in which bt is a Bernoulli random variable with expectation
E[bt] = Tr(Etρ), corresponding to the result of measuring
ρ with Et.

Evaluating online learning algorithms without live data
is a challenge, especially for the adversarial settings, since
it is quite difficult to find out the worst case to fool an al-
gorithm. For this purpose, we propose an adaptively adver-
sarial data generation policy to select Et. Specifically, for a
given algorithm and a time step t, the adversary can predict
the output of the algorithm, denoted as ω̃t, since the adver-
sary can access the code of the algorithm. And then the ad-
versary chooses a two-outcome measurement Et that max-
imizes the difference between Tr(Etω̃t) and Tr(Etρ), that
is, Et = argmaxE |Tr(E(ω̃t − ρ))|. We call such data gen-
eration policy an immediate-punishment adversary. In addi-
tion, we also consider the stochastic data generation policy
in which Et is generated randomly. This is the most natu-
ral way to evaluate the algorithms. In short, we implement
four different data generation policy, the stochastic policy
and the immediate-punishment adversarial policies against
the FTPL method, the OGD method, and the RFTL method,
respectively.

Regarding other experimental parameters, we take the
number of qubits n = 4, so the dimension of the density
matrices is 16 × 16. For each experiment, we run for 100
trials with randomly generated target states ρ and report the
average curves.

Experimental Results

The experimental results are illustrated in Figure 1. Each
sub-figure corresponds to a specific experimental setting, la-
beled with its sub-caption. In each sub-caption, the first term
corresponds to the type of the underlying quantum state,
“pure” for a pure state and “mixed” for a mixed state. The
second term denotes the data generation policy, “stochastic”
for the stochastic data policy, “FTPL” for the adversarial data
policy against the FTPL method, and so on.

3Some recent advancement pointed out that the bounded gradi-
ent assumption is unnecessary in some special cases in stochastic
programming (Nguyen et al. 2018). Thanks the reviewer for pro-
viding this reference.
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Figure 1: The experimental results with the metric of average regret. Each sub-figure corresponds to an adversarial setting. The
first term is the type of the target state and the second term is what algorithm the adversary is against for.

We report the experimental results in terms of the aver-
age regret, that is, regretT /T , which should converge to 0
for algorithms with a sublinear regret. In a sub-figure, the
horizontal axis corresponds to the time horizon T and the
vertical axis denotes the average regret. A red curve is for
the FTPL method, a blue curve is for the OGD method, and
a green curve is for the RFTL method.

Seeing from the experimental results, we can observe that
our FTPL method outperforms the RFTL approach in almost
all settings, not to mention its unique merit of predicting
pure states. Specifically, when the target state is pure, the
FTPL method performs much better than the RFTL method,
even though the data policy is adversarial against it. What
surprising is that the FTPL method performs the best even
though the target state is mixed, as long as the adversary is
not against it.

Besides, the performance of the OGD method is quite
good and stable, even though the adversary is against it. It
also outperforms the RFTL method in almost all settings,
which demonstrates the value of the simple and efficient
OGD method in practice.

Summary and Future Work

In this paper, we revisit the problem of online quantum state
learning in the perspective of online convex optimization.

First, we propose a Follow-the-Perturbed-Leader algo-
rithm that can guarantee to predict pure states, which is of
special value in quantum state learning. Our analysis shows
that the regret with respect to the expected prediction is
bounded as O(

√
T ). We further adapt the FTPL method to a

typical and reasonable setting with L1 loss. In this case, the
FTPL method can achieve an O(

√
T ) expected regret.

Second, we propose a simple and efficient online gradient
descent algorithm for online quantum state learning which
can achieve an O(

√
T ) regret bound. The OGD method

is based on an algorithm of projecting an arbitrary Hermi-
tian matrix onto the set of density matrices, which could be
widely used as a subroutine in many other problems in quan-
tum computing.

Third, we give a closed-form solution to the existing
RFTL method. Our result provides an efficient, accurate, and
completely executable solution to the RFTL method.

In addition to the theoretical analysis, we also conduct a
series of simulation experiments to evaluate the algorithms.
The experimental results show that our FTPL and OGD
method outperforms the RFTL method in almost all settings,
not to mention the unique merit of the FTPL method of pre-
dicting pure states. These results demonstrate the value of
our methods in practice.

As for the future work, there are several challenges and
interesting problems in this topic. Compared with the RFTL
method, although our methods have some merit such as pure
state prediction, the regret bounds in our results are worse in
terms of the number of qubits n, since d = 2n. We think
it is due to the loose analysis. Tighter analysis to the FTPL
method and the OGD method in terms of the number of the
qubits n is a challenge. Besides, finding the lower bounds in
different settings is also helpful to understand the problem
of online quantum state learning.
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